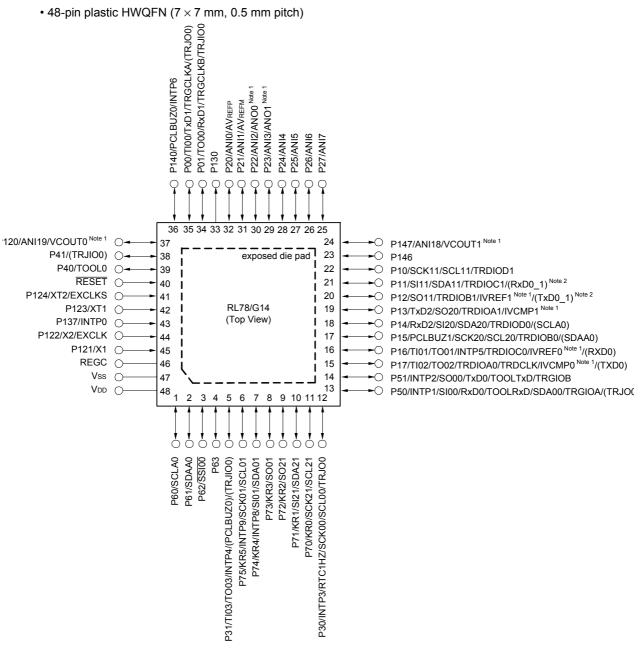


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

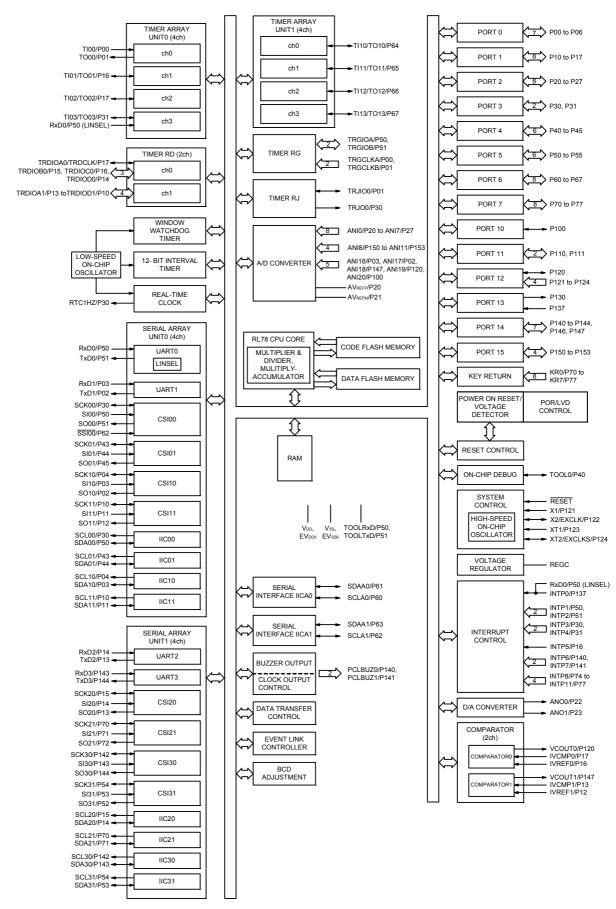

Details

XFI

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104geafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Note 1. Mounted on the 96 KB or more code flash memory products.

Note 2. Mounted on the 384 KB or more code flash memory products.

- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

1.5.9 80-pin products

(2/2)	
(2)2)	

		44-pin	48-pin	52-pin	(2/) 64-pin				
	tem	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)				
Clock output/buzzer output		2	2	2	2				
		(Main system clock: • 256 Hz, 512 Hz, 1.02	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 						
8/10-bit resolution	n A/D converter	10 channels	10 channels	12 channels	12 channels				
D/A converter		2 channels		1					
Comparator		2 channels							
Serial interface		 CSI: 1 channel/UAR CSI: 2 channels/UAF [48-pin, 52-pin product CSI: 2 channels/UAF CSI: 1 channel/UAR CSI: 2 channels/UAF [64-pin products] CSI: 2 channels/UAF 	RT: 1 channel/simplified ts] RT (UART supporting L T: 1 channel/simplified RT: 1 channel/simplified RT (UART supporting L RT: 1 channel/simplified	I ² C: 1 channel II ² C: 2 channels IN-bus): 1 channel/sim I ² C: 1 channel II ² C: 2 channels IN-bus): 1 channel/sim II ² C: 2 channels	plified I ² C: 2 channels plified I ² C: 2 channels				
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer con	troller (DTC)	31 sources	32 sources		33 sources				
Event link control	ller (ELC)	Event input: 22 Event trigger output: 9							
Vectored inter-	Internal	24	24	24	24				
rupt sources	External	7	10	12	13				
Key interrupt		4	6	8	8				
Reset Power-on-reset circuit		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 							
		1.51 ±0.06 V (TA = -40 to +105°C) • Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C)							
Voltage detector		1.63 V to 4.06 V (14 st	ages)						
On-chip debug fu		Provided	101 0700						
Power supply vol	tage	VDD = 1.6 to 5.5 V (TA VDD = 2.4 to 5.5 V (TA							
Operating ambie	nt temperature	$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)							

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[80-pin, 100-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

			(1/2)					
		80-pin	100-pin					
	Item	R5F104Mx	R5F104Px					
		(x = K, L)	(x = K, L)					
Code flash me	emory (KB)	384 to 512	384 to 512					
Data flash me	mory (KB)	8	8					
RAM (KB)		32 to 48 Note	32 to 48 Note					
Address space	e	1 MB						
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)HS (high-speed main) mode:1 to 20 MHz (VDD = 2.7 to 5.5 V),HS (high-speed main) mode:1 to 16 MHz (VDD = 2.4 to 5.5 V),LS (low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 5.5 V),LV (low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 5.5 V)						
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 16 MHz (Vr LS (low-speed main) mode: 1 to 8 MHz (Vor	HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V),					
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem cl	ock input (EXCLKS) 32.768 kHz					
Low-speed on-chip oscillator clock		15 kHz (TYP.): VDD = 1.6 to 5.5 V						
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)						
Minimum instr	uction execution time	0.03125 μ s (High-speed on-chip oscillator clock: fi H = 32 MHz operation)						
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)						
		30.5 μs (Subsystem clock: fsuB = 32.768 kHz c	operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 I Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits × 16 Rotate, barrel shift, and bit manipulation (Set. 	, Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) bits + 32 bits)					
I/O port	Total	74	92					
	CMOS I/O	64	82					
	CMOS input	5	5					
	CMOS output	1	1					
	N-ch open-drain I/O (6 V tolerance)	4	4					
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)						
	Watchdog timer	1 channel						
	Real-time clock (RTC)	1 channel						
	12-bit interval timer	1 channel						
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels						
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)						

Note

In the case of the 48 KB, this is about 47 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

2. ELECTRICAL SPECIFICATIONS (TA = -40 to $+85^{\circ}$ C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications TA = -40 to +85°C

R5F104xxAxx

- D: Industrial applications TA = -40 to +85°C R5F104xxDxx
- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			70.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			4.5	mA
		Total of P05, P06, P10 to P17,	$4.0~\text{V} \leq EV_{\text{DD0}} \leq 5.5~\text{V}$			80.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			20.0	mA
		P111, P146, P147 (When duty \leq 70% ^{Note 3})	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA
 - Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply IDD1 Op	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA			
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4				
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1				
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1				
					HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	8.7	mA
			mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	8.7			
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.1			
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.1			
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.0	6.9			
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	6.9			
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.3			
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.3			
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6			
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.6			
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.3	2.0	mA		
		· · · /	fiH = 8 MHz Note 3	operation	VDD = 2.0 V		1.3	2.0				
			LV (low-voltage main)	fносо = 4 MHz, fiн = 4 MHz ^{Note 3}	Normal operation	VDD = 3.0 V		1.3	1.8	mA		
		mode Note 5	mode Note 5			VDD = 2.0 V		1.3	1.8	1		
			HS (high-speed main)		Normal	Square wave input		3.3	5.3	mA		
		mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.4	5.5	1			
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		3.3	5.3			
					operation	Resonator connection		3.4	5.5	1		
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1			
				V _{DD} = 5.0 V	operation	Resonator connection		2.1	3.2	1		
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1			
				VDD = 3.0 V	operation	Resonator connection		2.1	3.2	1		
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	mA		
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.2	2.0			
				fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	1		
				VDD = 2.0 V	operation	Resonator connection		1.2	2.0			
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA		
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1			
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1			
				TA = +25°C	operation	Resonator connection		4.7	6.1			
			fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	1			
				TA = +50°C	operation	Resonator connection	1	4.8	6.7	1		
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5	1		
				TA = +70°C	operation	Resonator connection		4.8	7.5	1		
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	1		
				TA = +85°C	operation	Resonator connection		5.4	8.9	1		

(Notes and Remarks are listed on the next page.)

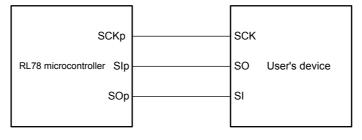
- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),

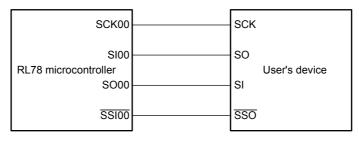
n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))


Description	0		0				1)((),		Unit	
Parameter	Symbol		Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		400		400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
		1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	—		400		400		ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVREFP}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V})$

Parameter	Symbol	Cond	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±5.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±0.60	%FSR
Integral linearity error Note 1	ILE	ILE 10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V$ Note 5			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 When AVREFP < EVDD0 ≤ VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.20%FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

Absolute Maximum Ratings

(2/2)

					(21
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та		pperation mode	-40 to +105	°C
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items Symb		Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156	0.7 Vdd		Vdd	V	
	VIH4	P60 to P63	0.7 EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 VDD	V

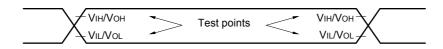
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(3/5)

The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

Caution



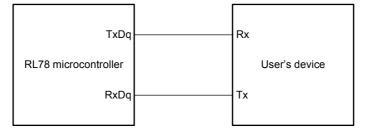
- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

3.5 Peripheral Functions Characteristics

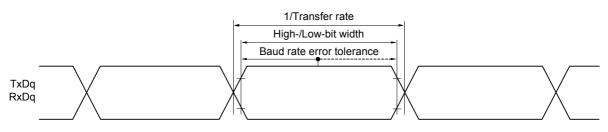
AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)


$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

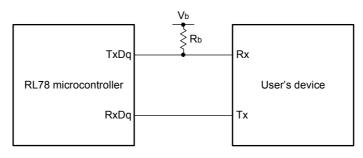
Parameter	Symbol	Conditions	HS (high-spee	ed main) Mode	Unit
			MIN.	MAX.	
Transfer rate Note 1		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/12 Note 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps


Note 1.Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 = 1.Note 2.The following conditions are required for low voltage interface when EVDD0 < VDD.
 $2.4 V \le EVDD0 < 2.7 V$: MAX. 1.3 MbpsNote 3.The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: 32 MHz (2.7 V $\le VDD \le 5.5 V$)
16 MHz (2.4 V $\le VDD \le 5.5 V$)

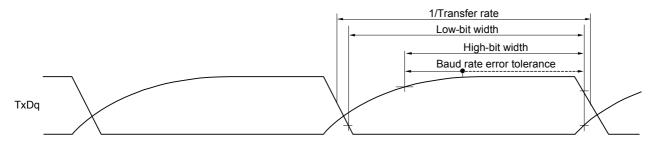
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

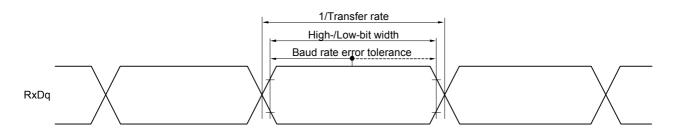
UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)



Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14) **Remark 2.** fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

Parameter	Symbol	Cond	litions	MIN.	TYP.	MAX.	Unit
Resolution	RES		8		10	bit	
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time tcc		10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI20	•	0		AVREFP and EVDD0	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ± 1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD0 \leq VDD, the MAX. values a	ire as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

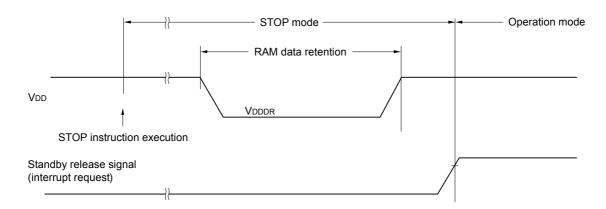
Zero-scale error/Full-scale error:

Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

3.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)


Pa	irameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V
threshold			Falling edge	3.83	3.98	4.13	V
		VLVD1	Rising edge	3.60	3.75	3.90	V
			Falling edge	3.53	3.67	3.81	V
		VLVD2	Rising edge	3.01	3.13	3.25	V
			Falling edge	2.94	3.06	3.18	V
		VLVD3	Rising edge	2.90	3.02	3.14	V
			Falling edge	2.85	2.96	3.07	V
		VLVD4	Rising edge	2.81	2.92	3.03	V
			Falling edge	2.75	2.86	2.97	V
		VLVD5	Rising edge	2.70	2.81	2.92	V
			Falling edge	2.64	2.75	2.86	V
		VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V
		VLVD7	Rising edge	2.51	2.61	2.71	V
			Falling edge	2.45	2.55	2.65	V
Minimum pulse wid	dth	tlw		300			μs
Detection delay tin	ne					300	μs

3.7 **RAM Data Retention Characteristics**

(TA = -40 to +105°C, Vss = 0V)									
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Data retention supply voltage	VDDDR		1.44 Note		5.5	V			

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

3.8 **Flash Memory Programming Characteristics**

(T _A = -40 to +105°C	$V_{\rm r}, 2.4 \ V \le V \text{DD} \le 5.5 \ V, \ V \text{ss} = 0 \ V$	
	,	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C ^{Note 4}	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C ^{Note 4}	100,000			
		Retained for 20 years T _A = 85°C ^{Note 4}	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

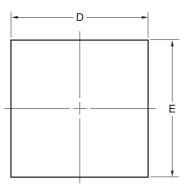
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Note 4. This temperature is the average value at which data are retained.

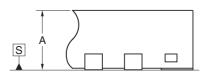
3.9 Dedicated Flash Memory Programmer Communication (UART)

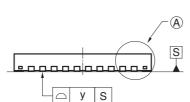
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

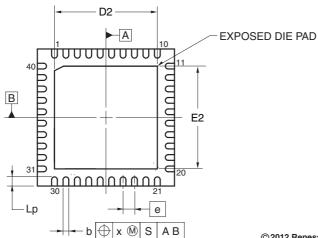
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps


4.4 40-pin products

R5F104EAANA, R5F104ECANA, R5F104EDANA, R5F104EEANA, R5F104EFANA, R5F104EGANA, R5F104EHANA


R5F104EADNA, R5F104ECDNA, R5F104EDDNA, R5F104EEDNA, R5F104EFDNA, R5F104EGDNA, R5F104EHDNA


R5F104EAGNA, R5F104ECGNA, R5F104EDGNA, R5F104EEGNA, R5F104EFGNA, R5F104EGGNA, R5F104EHGNA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-4	0.09

Referance	Dimens	sion in Mill	imeters
Symbol	Min	Min Nom	
D	5.95	6.00	6.05
E	5.95	6.00	6.05
А	0.70	0.75	0.80
b	0.18	0.25	0.30
е		0.50	—
Lp	0.30	0.40	0.50
х		—	0.05
У			0.05

ITEM		D2			E2			
		MIN	NOM	MAX	MIN	NOM	MAX	
EXPOSED DIE PAD VARIATIONS	А	4.45	4.50	4.55	4.45	4.50	4.55	

©2012 Renesas Electronics Corporation. All rights reserved.

