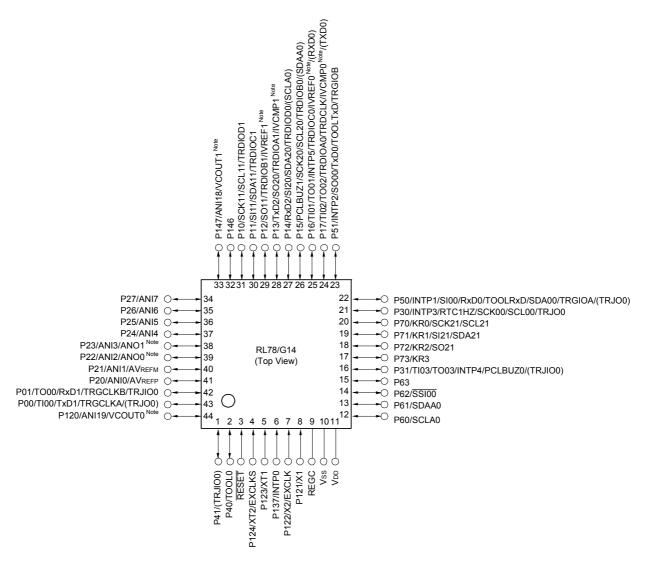


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104gedfb-30

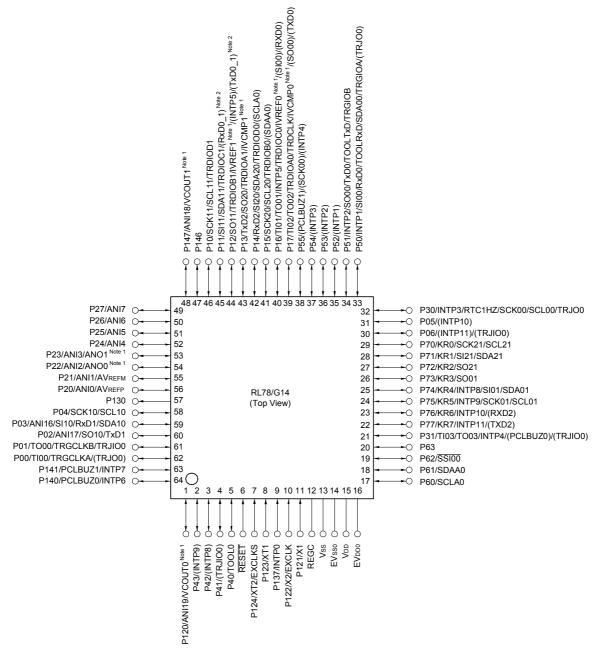
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.5 44-pin products

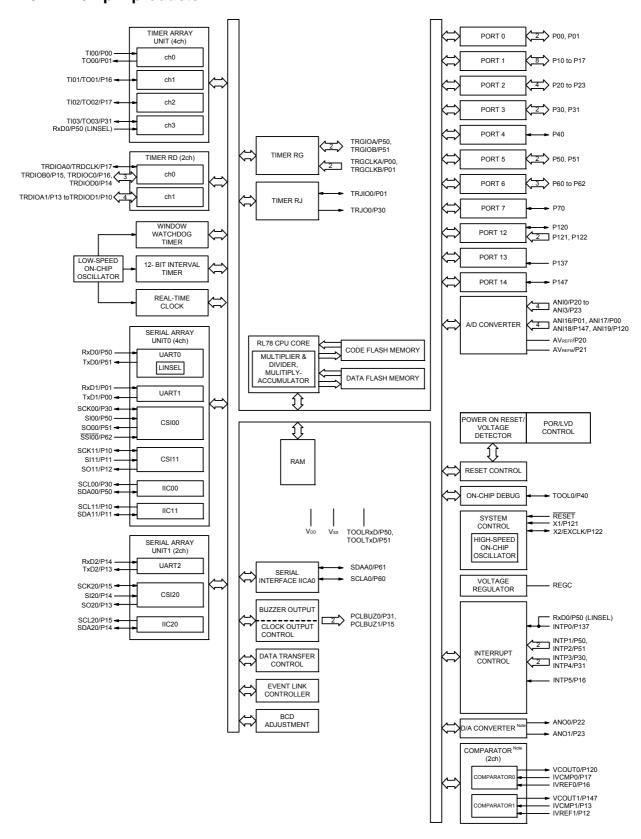
• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).


1.3.8 64-pin products

- 64-pin plastic LQFP (14 × 14 mm, 0.8 mm pitch)
- 64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)

- Note 1. Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.2 32-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

(2/2)

					(2/2)				
		44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)				
Clock output/buz	zer output	2	2	2	2				
		(Main system clock: • 256 Hz, 512 Hz, 1.02	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 						
8/10-bit resolutio	n A/D converter	10 channels	10 channels	12 channels	12 channels				
D/A converter		2 channels		ı	1				
Comparator		2 channels							
Serial interface	120 1	CSI: 1 channel/UAR CSI: 2 channels/UAF [48-pin, 52-pin product CSI: 2 channels/UAF CSI: 1 channel/UAR CSI: 2 channels/UAF	T: 1 channel/simplified I RT: 1 channel/simplified I ts] RT (UART supporting LI T: 1 channel/simplified I RT: 1 channel/simplified RT (UART supporting LI RT: 1 channel/simplified	I ² C: 2 channels IN-bus): 1 channel/simp ² C: 1 channel I ² C: 2 channels IN-bus): 1 channel/simp I ² C: 2 channels I ² C: 2 channels	olified I ² C: 2 channels olified I ² C: 2 channels				
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer cor	troller (DTC)	31 sources	32 sources		33 sources				
Event link contro	ller (ELC)	Event input: 22 Event trigger output: 9							
Vectored inter-	Internal	24	24	24	24				
rupt sources	External	7	10	12	13				
Key interrupt	1	4	6	8	8				
Power-on-reset of	circuit	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 							
Voltage detector		1.63 V to 4.06 V (14 s	1.50 ±0.06 V (TA = -40 to +105°C)						
On-chip debug fu	ınction	Provided							
Power supply vol		V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)							
Operating ambie	nt temperature		TA = -40 to +85°C (A: Consumer applications, D: Industrial applications), TA = -40 to +105°C (G: Industrial applications)						

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Absolute Maximum Ratings

(2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	pin P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147		mA
			P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1 Per pin		P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	lol2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient tem-	TA	In normal c	operation mode	-40 to +85	°C
perature		In flash me	emory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products $(TA = -40 \ to \ +85^{\circ}C, \ 1.6 \ V \le EVDD0 \le VDD \le 5.5 \ V, \ Vss = EVss0 = 0 \ V)(2/2)$

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current	I _{DD2}	HALT mode	HS (high-speed main)	fHOCO = 64 MHz,	V _{DD} = 5.0 V		0.80	3.09	mA
Note 1	Note 2		mode Note 7	fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.80	3.09	
				fHOCO = 32 MHz,	V _{DD} = 5.0 V		0.49	2.40	
				fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.49	2.40	
				fHOCO = 48 MHz,	V _{DD} = 5.0 V		0.62	2.40	
				f _{IH} = 24 MHz Note 4	V _{DD} = 3.0 V		0.62	2.40	
				fHOCO = 24 MHz,	V _{DD} = 5.0 V		0.4	1.83	
				fih = 24 MHz Note 4	V _{DD} = 3.0 V		0.4	1.83	
				fHOCO = 16 MHz,	V _{DD} = 5.0 V		0.37	1.38	
				fih = 16 MHz Note 4	V _{DD} = 3.0 V		0.37	1.38	
			LS (low-speed main)	fHOCO = 8 MHz,	V _{DD} = 3.0 V		260	710	μΑ
			mode Note 7	fiH = 8 MHz Note 4	V _{DD} = 2.0 V		260	710	
			LV (low-voltage main)	fHOCO = 4 MHz,	V _{DD} = 3.0 V		420	700	μΑ
			mode Note 7	f _{IH} = 4 MHz Note 4	V _{DD} = 2.0 V		420	700	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.28	1.55	mA
			mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.40	1.74	
				f _{MX} = 20 MHz Note 3,	Square wave input		0.28	1.55	
				V _{DD} = 3.0 V	Resonator connection		0.40	1.74	
				fmx = 10 MHz Note 3,	Square wave input		0.19	0.86	
			V _{DD} = 5.0 V	Resonator connection		0.25	0.93		
			f _{MX} = 10 MHz Note 3,	Square wave input		0.19	0.86		
				V _{DD} = 3.0 V	Resonator connection		0.25	0.93	
			LS (low-speed main) f _{MX} = 8 MHz Note	fmx = 8 MHz Note 3,	Square wave input		95	550	μΑ
			mode Note 7	V _{DD} = 3.0 V	Resonator connection		140	590	
				f _{MX} = 8 MHz Note 3,	Square wave input		95	550	
				V _{DD} = 2.0 V	Resonator connection		140	590	1
			Subsystem clock	fsuB = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μА
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.30	0.57	
				T _A = +25°C	Resonator connection		0.49	0.76	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.36	1.17	
				T _A = +50°C	Resonator connection		0.59	1.36	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				T _A = +70°C	Resonator connection		0.72	2.16	1
				fsuB = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				T _A = +85°C	Resonator connection		1.16	3.56	
	IDD3 STOP mode TA = -40°C	T _A = -40°C				0.18	0.51	μΑ	
	Note 6	Note 8	T _A = +25°C				0.24	0.51	
			T _A = +50°C				0.29	1.10	1
			T _A = +70°C				0.41	1.90	
			T _A = +85°C				0.90	3.30	

(Notes and Remarks are listed on the next page.)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Items	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdil	TRDIOA0, TRDIOA1, TRDIOE TRDIOC0, TRDIOC1, TRDIO		3/fclk			ns
Timer RD forced cutoff signal	ttdsil	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level	tтgін,	TRGIOA, TRGIOB	2.5/fclk			ns	
width, low-level width	ttgil						
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			16	MHz
TO10 to TO13, TRJIO0, TRJO0,			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRDIOA0, TRDIOA1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1,			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency		LS (low-speed main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LV (low-voltage main) mode	1.6 V ≤ EVDD0 ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			16	MHz
frequency			2.7 V ≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V ≤ EVDD0 < 2.7 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LS (low-speed main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-voltage main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	1.6 V ≤ EVDD0 ≤ 5.5 V	1			μs
Key interrupt input low-level	tkr	KR0 to KR7	1.8 V ≤ EVDD0 ≤ 5.5 V	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl			10			μs

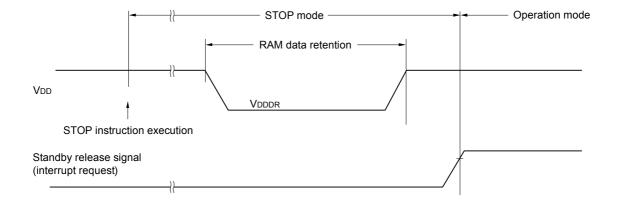
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol		Conditions	HS (high-s main) mo	•	LS (low-speed mode	,	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	cycle time tkcy1 tkcY1 ≥ 4/fcLH		$ \begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b & = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	300		1150		1150		ns
			$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	500		1150		1150		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1150		1150		1150		ns	
SCKp high-level tкн1 width	tкнı	4.0 V ≤ EVDD0 2.7 V ≤ Vb ≤ 4. Cb = 30 pF, Rb	tксү1/2 - 75		tkcy1/2 - 75		tkcy1/2 - 75		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}}$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2$ $C_{\text{b}} = 30 \text{ pF}, \text{ Rb}$	tkcy1/2 - 170		tксү1/2 - 170		tксу1/2 - 170		ns	
		$\begin{split} &1.8 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}^{\text{Note}}, \\ &C_b = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{split}$		tkcy1/2 - 458		tkcy1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width	tKL1	4.0 V ≤ EVDD0 2.7 V ≤ Vb ≤ 4. Cb = 30 pF, Rb	0 V,	tксү1/2 - 12		tkcy1/2 - 50		tксү1/2 - 50		ns
	2.3 V ≤ '		$0.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $0.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $0.5 = 30 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega$			tkcy1/2 - 50		tксү1/2 - 50		ns
1.6 V s		1.6 V ≤ V _b ≤ 2.	$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V &\text{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			tксү1/2 - 50		tксү1/2 - 50		ns

Note Use it with $EVDD0 \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed two pages after the next page.)

2.7 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +85^{\circ}C, Vss = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

2.9 Dedicated Flash Memory Programmer Communication (UART)

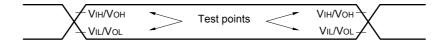
(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is Ta = 25°C

3.5 Peripheral Functions Characteristics

AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

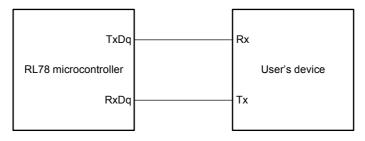
Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
Transfer rate Note 1		2.4 V ≤ EVDD0 ≤ 5.5 V		fMCK/12 Note 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

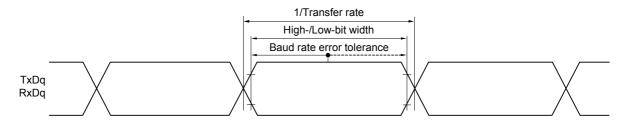
However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \le \text{EV}_{DD0} < 2.7 \text{ V: MAX. } 1.3 \text{ Mbps}$


Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 2. fmck: Serial array unit operation clock frequency

 $(Operation\ clock\ to\ be\ set\ by\ the\ CKSmn\ bit\ of\ serial\ mode\ register\ mn\ (SMRmn).\ m:\ Unit\ number,$

n: Channel number (mn = 00 to 03, 10 to 13))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

•		· · · · · · · · · · · · · · · · · · ·				
Parameter	Symbol Conditions		` • .	HS (high-speed main) mode		
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	2.7 V ≤ EVDD0 ≤ 5.5 V	250		ns
			2.4 V ≤ EV _{DD0} ≤ 5.5 V	500		ns
SCKp high-/low-level width	tkH1, tkL1	4.0 V ≤ EV _{DD0} :	4.0 V ≤ EV _{DD0} ≤ 5.5 V			ns
		2.7 V ≤ EVDD0 :	2.7 V ≤ EV _{DD0} ≤ 5.5 V			ns
		2.4 V ≤ EV _{DD0} :	2.4 V ≤ EV _{DD0} ≤ 5.5 V			ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	4.0 V ≤ EV _{DD0} :	≤ 5.5 V	66		ns
		2.7 V ≤ EV _{DD0} :	2.7 V ≤ EV _{DD0} ≤ 5.5 V			ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		113		ns
SIp hold time (from SCKp↑) Note 2	tksıı			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note	4		50	ns
	- 1	-1				

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cond	ditions	HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	4.0 V ≤ EV _{DD0} ≤ 5.5 V	20 MHz < fmck	16/ƒмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	16 MHz < fмcк	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tkL2	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 14		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsık2	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 40		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 66	ns
			2.4 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 113	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) mode		
			MIN.	MAX.		
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		400 Note 1	kHz	
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega$		100 Note 1	kHz	
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns	
		$2.4V \le EV_{DD0} \le 5.5 V$, $C_b = 100 pF$, $R_b = 3 k\Omega$	4600		ns	
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns	
		2.4 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	4600		ns	
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/fmck + 220 Note 2		ns	
		$2.4V \le EV_{DD0} \le 5.5 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 3 \text{ k}\Omega$	1/f _{MCK} + 580 Note 2		ns	
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	770	ns	
		2.4 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	1420	ns	

Note 1. The value must also be equal to or less than fMCK/4.

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) mode		
			MIN.	MAX.		
SIp setup time (to SCKp↓) ^{Note}	tsıĸ1	$ 4.0 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \text{ Rb} = 1.4 \text{ k}\Omega $	88		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	88		ns	
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega$	220		ns	
SIp hold time (from SCKp↓) Note	tksi1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$	38		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	38		ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	38		ns	
Delay time from SCKp↑ to SOp output Note	tkso1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$		50	ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		50	ns	
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$		50	ns	

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(3/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed m	Unit	
			MIN.	MAX.	
Data setup time (reception)	tsu:DAT	$ 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1/fmck + 340 Note 2		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	1/fmck + 340 Note 2		ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 2.8 \text{ k}\Omega \end{aligned}$	1/fмск + 760 Note 2		ns
		$\begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	1/fмск + 760 Note 2		ns
		$\begin{aligned} 2.4 & \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ 1.6 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	0	770	ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	0	1420	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	0	1420	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	0	1215	ns

Note 1. The value must also be equal to or less than fmck/4.

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

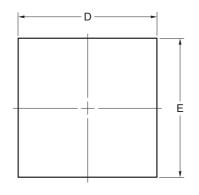
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

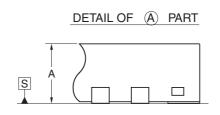
R5F104GAANA, R5F104GCANA, R5F104GDANA, R5F104GEANA, R5F104GFANA, R5F104GGANA,

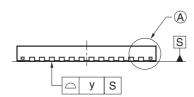
R5F104GHANA, R5F104GJANA

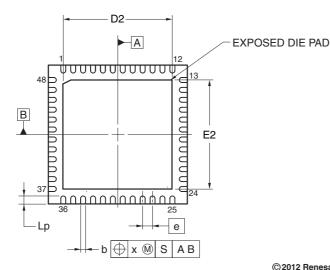
R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GEDNA, R5F104GFDNA, R5F104GGDNA,

R5F104GHDNA, R5F104GJDNA

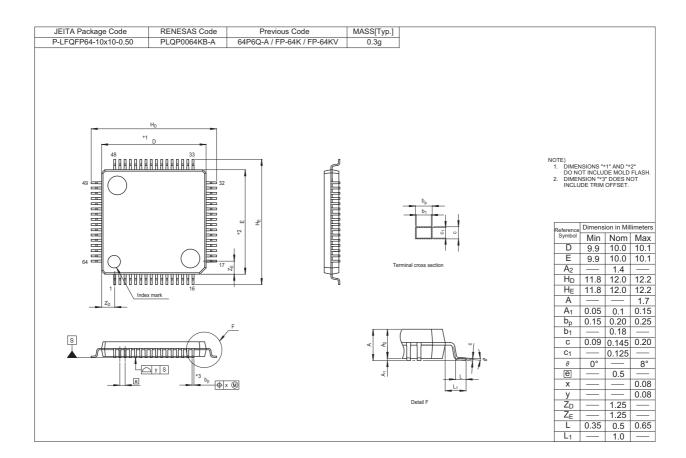

R5F104GAGNA, R5F104GCGNA, R5F104GDGNA, R5F104GEGNA, R5F104GFGNA, R5F104GGGNA,


R5F104GHGNA, R5F104GJGNA


R5F104GKANA, R5F104GLANA

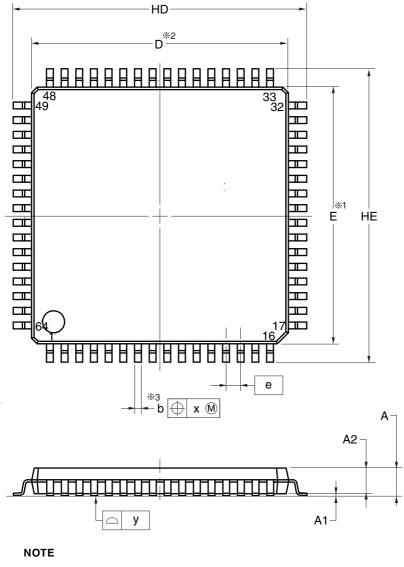

R5F104GKGNA, R5F104GLGNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-5	0.13

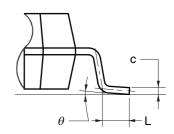


Referance_ Symbol	Dimension in Millimeters						
	Min	Nom	Max				
D	6.95	7.00	7.05				
Е	6.95	7.00	7.05				
Α	0.70	0.75	0.80				
b	0.18	0.25	0.30				
е		0.50					
Lp	0.30	0.40	0.50				
х			0.05				
у			0.05				

ITEM		D2		E2			
112101		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	Α	5.45	5.50	5.55	5.45	5.50	5.55


©2012 Renesas Electronics Corporation. All rights reserved.

R5F104LKAFB, R5F104LLAFB R5F104LKGFB, R5F104LLGFB



R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGGFP, R5F104LHDFP, R5F104LJGFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14x14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7

detail of lead end

(UNIT:mm

	(UNIT:mm)
ITEM	DIMENSIONS
D	14.00±0.10
E	14.00±0.10
HD	16.00±0.20
HE	16.00±0.20
Α	1.70 MAX.
A1	0.10 ± 0.10
A2	1.40
b	$0.37^{+0.08}_{-0.05}$
С	$0.125^{+0.05}_{-0.02}$
L	0.50 ± 0.20
θ	0° to 8°
е	0.80
х	0.20
у	0.10

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.