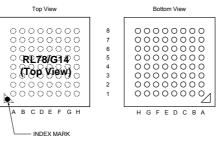


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104gfafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)

	А	В	С	D	E	F	G	н	
8	EVDD0	EVsso	P121/X1	P122/X2/ EXCLK	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ VCOUT0 Note 1	8
7	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIO0	P00/TI00/ TRGCLKA/ (TRJO0)	P140/ PCLBUZ0/ INTP6	7
6	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	P77/KR7/ INTP11/(TXD2)	P31/TI03/ TO03/INTP4/ (PCLBUZ0)/ (TRJIO0)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVrefp	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	P16/TI01/ TO01/INTP5/ TRDIOC0/ IVREF0 Note 1/ (SI00)/(RXD0)	P21/ANI1/ AVrefm	P22/ANI2/ ANO0 Note 1	P23/ANI3/ ANO1 ^{Note 1}	4
3	P70/KR0/ SCK21/ SCL21	P73/KR3/ SO01	P74/KR4/ INTP8/SI01/ SDA01	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note 1/ (SO00)/(TXD0)	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note 1/ (INTP5)/ (TxD0_1) Note 2	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	P72/KR2/ SO21	P71/KR1/ SI21/SDA21	P06/(INTP11)/ (TRJIO0)	P14/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)	P11/SI11/ SDA11/ TRDIOC1/ (RxD0_1) Note 2	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJO0)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	P13/TxD2/ SO20/ TRDIOA1/ IVCMP1 Note 1	P10/SCK11/ SCL11/ TRDIOD1	P146	P147/ANI18/ VCOUT1 Note 1	1
	А	В	С	D	E	F	G	Н	

Note 1. Mounted on the 96 KB or more code flash memory products.

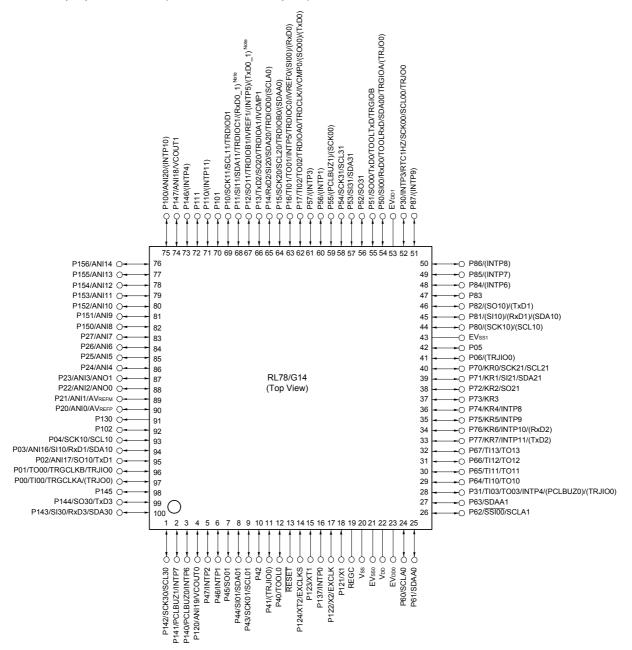
Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as VSS pin.

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.


Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

1.3.10 100-pin products

• 100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)

Note Mounted on the 384 KB or more code flash memory products.

- Caution 1. Make EVsso, EVss1 pins the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	((1/2)					
		30-pin	32-pin	36-pin	40-pin					
	Item	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)					
Code flash mer	Item 30-pin 32-pin 36-pin 40-pin RBF104Ax R8F104Ax R8F104Ax R8F104Cx R8F104Cx (x = F, G) (x = F, G)									
IndicationIndicatorIndicatorIndicator $(x = F, G)$ Code flash memory (KB)96 to 12896 to 12896 to 12896 to 128Data flash memory (KB)8888RAM (KB)12 to 16 Note12 to 16 Note12 to 16 Note12 to 20 NoteAddress space1 MB10 to 16 Mole12 to 16 Note12 to 20 NoteAddress space1 MBX1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (Vob = 2.7 to 5.5 V), LS (low-speed main) mode: 1 to 4 MHz (Vob = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 3 MHz (Vob = 1.6 to 5.5 V)High-speed on-chip oscillator clock (fiH)HS (high-speed main) mode: 1 to 3 MHz (Vob = 1.8 to 5.5 V), LS (low-speed main) mode: 1 to 4 MHz (Vob = 1.8 to 5.5 V), LS (low-speed main) mode: 1 to 4 MHz (Vob = 1.6 to 5.5 V), LS (low-voltage main) mode: 1 to 4 MHz (Vob = 1.6 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (Vob = 1.6 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (Vob = 1.6 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (Vob = 1.6 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (Vob = 1.6 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (Vob = 1.6 to 5.5 V), 										
RAM (KB)		12 to 16 Note	12 to 16 Note	12 to 16 Note	12 to 20 Note					
Address space		1 MB								
-	. . ,	HS (high-speed main) mode:1 to 20 MHz ($VDD = 2.7$ to 5.5 V),HS (high-speed main) mode:1 to 16 MHz ($VDD = 2.4$ to 5.5 V),LS (low-speed main) mode:1 to 8 MHz ($VDD = 1.8$ to 5.5 V),								
		HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V),								
Subsystem clo	ck		_		clock input (EXCLKS)					
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1.6	to 5.5 V							
General-purpos	se register	8 bits \times 32 registers (8 bits	s \times 8 registers \times 4 banks)							
Minimum instru	iction execution time	$0.03125\mu s$ (High-speed of	on-chip oscillator clock: fін	= 32 MHz operation)						
		0.05 µs (High-speed syste	em clock: fmx = 20 MHz op	eration)						
		clock: fsub = 32.768 k								
Instruction set		 Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) 								
I/O port	Total	26	28	32	36					
	CMOS I/O	21	22	26	28					
	CMOS input	3	3	3	5					
	CMOS output	_	_	_	-					
		2	3	3	3					
Timer	16-bit timer									
	Watchdog timer	1 channel								
	Real-time clock (RTC)	1 channel								
	12-bit interval timer	1 channel								
	Timer output	Timer outputs: 13 channe PWM outputs: 9 channels								
	RTC output			1 • 1 Hz (subsystem clock: fs⊍B = 32.768 kHz)						

(Note is listed on the next page.)

(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family

[80-pin, 100-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

			(1/2)				
		80-pin	100-pin				
	Item	R5F104Mx	R5F104Px				
		(x = K, L)	(x = K, L)				
Code flash me	emory (KB)	384 to 512	384 to 512				
Data flash me	mory (KB)	8	8				
RAM (KB)		32 to 48 Note	32 to 48 Note				
Address space	e	1 MB					
Main system clock	High-speed system clock	LS (low-speed main) mode: 1 to 8 MHz (Vor					
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem cl	ock input (EXCLKS) 32.768 kHz				
Low-speed on	-chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 bar	nks)				
Minimum instr	uction execution time	0.03125 μ s (High-speed on-chip oscillator clock: fi H = 32 MHz operation)					
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
		30.5 μs (Subsystem clock: fsuB = 32.768 kHz c	operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 I Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits × 16 Rotate, barrel shift, and bit manipulation (Set. 	, Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) bits + 32 bits)				
I/O port	Total	74	92				
	CMOS I/O	64	82				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer	RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels					
	RTC output	1 ● 1 Hz (subsystem clock: fs∪B = 32.768 kHz)					

Note

In the case of the 48 KB, this is about 47 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

2.1 **Absolute Maximum Ratings**

Absolute Maximum Ratings

Absolute Maximum R	atings			(1/2)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VDD -0.5 to +6.5 EVDD0, EVDD1 EVDD0 = EVDD1 EVss0, EVss1 EVss0 = EVss1			
Input voltage	VI1	P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102,		V
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	· · · · · · · · · · · · · · · · · · ·	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102,		V
	V02	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit	
Supply	IDD1	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4			
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1			
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1			
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	8.7	mA	
			mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	8.7		
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.1		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.1		
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.0	6.9		
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	6.9		
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.3		
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.3		
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6		
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.6		
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.3	2.0	mA	
	mode Note 5	fiH = 8 MHz Note 3	operation	VDD = 2.0 V		1.3	2.0				
		mode Note 5 fiH = 4 MHz Note 3 or	Normal	VDD = 3.0 V		1.3	1.8	mA			
			operation	VDD = 2.0 V		1.3	1.8				
			Normal	Square wave input		3.3	5.3	mA			
			mode Note 5	VDD = 5.0 V	VDD = 5.0 V operation	Resonator connection		3.4	5.5		
				fmx = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3		
				VDD = 3.0 V	operation	Resonator connection		3.4	5.5	1	
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1		
				VDD = 5.0 V	operation	Resonator connection		2.1	3.2		
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1		
				VDD = 3.0 V	operation	Resonator connection		2.1	3.2		
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	mA	
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.2	2.0		
				fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9		
				VDD = 2.0 V	operation	Resonator connection		1.2	2.0		
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA	
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1		
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1		
				TA = +25°C	operation	Resonator connection		4.7	6.1		
	fsuв = 32.	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	1			
				TA = +50°C	operation	Resonator connection	1	4.8	6.7	-	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5		
				TA = +70°C	operation	Resonator connection		4.8	7.5		
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	1	
			TA = +85°C	operation	Resonator connection		5.4	8.9	1		

(Notes and Remarks are listed on the next page.)

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	、 U	n-speed main) Mode	`	-speed main) Mode	LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$2.4~V \le EV \text{DD0} \le 5.5~V$		fMCK/6 Note 2		fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/6 Note 2		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		1.7 V ≤ EVDD0 ≤ 5.5 V		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

- 2.4 V ≤ EVDD0 < 2.7 V: MAX. 2.6 Mbps
- $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

 $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V}$: MAX. 0.6 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 HS (high-speed main) mode:
 $32 \text{ MHz} (2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$

 16 MHz (2.4 V \le \text{VDD} \le 5.5 \text{ V})

 LS (low-speed main) mode:
 $8 \text{ MHz} (1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$

 LV (low-voltage main) mode:
 $4 \text{ MHz} (1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Parameter	Symbol	Cond	ditions	HS (high-spee mode	d main)	LS (low-speed mode	d main)	LV (low-voltag mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	t КСҮ2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	8/fмск		_		—		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		—		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/				tксү2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		ns
low-level width	tĸ∟2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 66		tkcy2/2 - 66		tксү2/2 - 66		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		tkcy2/2 - 66		tксү2/2 - 66		ns
SIp setup time	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7~V \le EV_{DD0} \le 5.5~V$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		1/fмск + 40		1/fмск + 40		ns	
SIp hold time	tksi2	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 4/fc∟к		300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
				1150		1150		1150		ns
SCKp high-level width	tкн1			tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
				tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
				tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \\ 2.7 \ V \leq V_b \leq 4. \\ C_b = 30 \ pF, \ R_b \end{array}$.0 V,	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.3~V \leq V_b \leq 2$	2.7 V \leq EV _{DD0} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 30 pF, R _b = 2.7 k Ω			tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{split} & 1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ & 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note}}, \\ & \text{C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{split}$		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note Use it with $EVDD0 \ge Vb$.

(Remarks are listed two pages after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
Note 2		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	—		3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \le EV_{DD0} \le 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

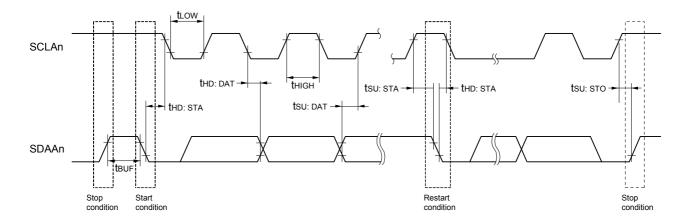
Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(3) I²C fast mode plus

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Parameter	Symbol	Conditions		HS (high-speed main) mode		•	v-speed mode	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: fc∟ĸ ≥ 10 MHz	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0	1000	-	_	—		kHz
Setup time of restart condi- tion	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.7 \text{ V}$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			-		-		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			—		—		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq 5.7$	5 V	0.5		—		_		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	5 V	0.26		-	_	-	_	μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	5 V	50		-	_	-	_	ns
Data hold time (transmission) Note 2	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.45	-	_	-	_	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	5 V	0.26		-	_	-	_	μs
Bus-free time	t BUF	$2.7 \text{ V} \le EV_{DD0} \le 5.7$	5 V	0.5		—		—		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEDAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Note 3. The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \le V_{DD} \le 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq Vpd \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 5			V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			VTMPS25 Note 5		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as follows.							
	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.						
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.						
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.						
Note 4.	Values when the conversion time is set to 57 μs	(min.) and 95 μs (max.).						

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Items	Symbol	Conditions	Conditions				Unit
Input voltage, high Vi	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
Vih3 Vih4 Vih5		TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	1.5		EVDD0	V	
	VIH3	P20 to P27, P150 to P156	0.7 Vdd		Vdd	V	
	VIH4	P60 to P63	0.7 EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		Vdd	V	
Input voltage, low VIL1	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156	0		0.3 Vdd	V	
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	P121 to P124, P137, EXCLK, EXCLKS, RESET			0.2 VDD	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(3/5)

The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

Caution

Parameter Symbo Conditions MIN. TYP. MAX. fносо = 64 MHz, $V_{DD} = 5.0 V$ 2.6 Supply DD1 Operat-HS (high-speed main) Basic current ing mode mode Note 5 fill = 32 MHz Note 3 operation VDD = 3.0 V 2.6 Note 1 fносо = 32 MHz. Basic VDD = 5.0 V 2.3 fiH = 32 MHz Note 3 operation VDD = 3.0 V 2.3 fносо = 64 MHz, VDD = 5.0 V HS (high-speed main) Normal 5.4 10.9 mode Note 5 fiH = 32 MHz Note 3 operation $V_{DD} = 3.0 V$ 54 10.9 VDD = 5.0 V 10.3 fносо = 32 MHz. Normal 5.0 fin = 32 MHz Note 3 operation VDD = 3.0 V 10.3 5.0 VDD = 5.0 V fHOCO = 48 MHz. 42 82 Normal fiH = 24 MHz Note 3 operation VDD = 3.0 V 4.2 8.2 fносо = 24 MHz, Normal VDD = 5.0 V 4.0 7.8 fill = 24 MHz Note 3 operation VDD = 3.0 V 40 78 fносо = 16 MHz, Normal VDD = 5.0 V 3.0 5.6 fin = 16 MHz Note 3 operation VDD = 3.0 V 3.0 5.6 HS (high-speed main) 3.4 f_{MX} = 20 MHz Note 2 Normal Square wave input 6.6 mode Note 5 VDD = 5.0 V operation Resonator connection 3.6 6.7 f_{MX} = 20 MHz Note 2, Normal Square wave input 34 6.6 operation $V_{DD} = 3.0 V$ Resonator connection 3.6 6.7 fmx = 10 MHz Note 2, 2.1 3.9 Normal Square wave input VDD = 5.0 V operation Resonator connection 22 4.0 f_{MX} = 10 MHz Note 2. Normal Square wave input 2.1 3.9 VDD = 3.0 V operation Resonator connection 2.2 4.0 fsub = 32.768 kHz Note 4 49 71 Subsystem clock Normal Square wave input operation operation $T_A = -40^{\circ}C$ Resonator connection 4.9 7.1 fsub = 32.768 kHz Note 4 Normal Square wave input 4.9 7.1 $T_A = +25^{\circ}C$ operation 4.9 7.1 Resonator connection Normal 5.1 8.8 fsub = 32.768 kHz Note 4 Square wave input $T_A = +50^{\circ}C$ operation 8.8 Resonator connection 5.1 10.5 fsub = 32.768 kHz Note 4 Square wave input 5.5 Normal TA = +70°C operation Resonator connection 5.5 10.5 fsub = 32.768 kHz Note 4 Normal 6.5 14.5 Square wave input TA = +85°C operation 6.5 14.5 Resonator connection fsub = 32.768 kHz Note 4 Normal Square wave input 13.0 58.0

 $T_{A} = +105^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes and Remarks are listed on the next page.)

operation

Resonator connection

Unit

mΑ

mΑ

mΑ

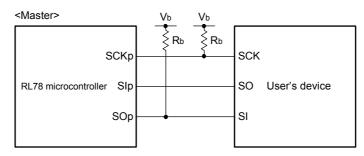
μA

13.0

58.0

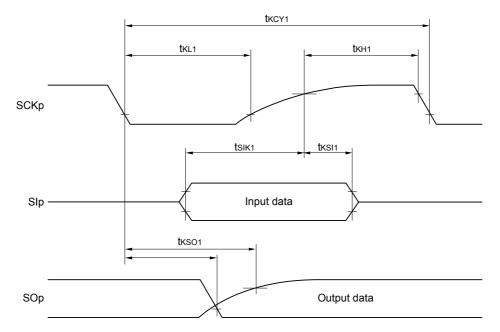
3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min- imum instruction exe- cution time)	Тсү		HS (high-speed main) mode	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
				$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clock (fsub) operation		$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	the self- HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- mode ming mode	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
External system clock fEX		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			1.0		20.0	MHz
frequency f		$2.4~V \leq V \text{DD} \leq$	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			24			ns
input high-level width,	t EXL	$2.4~V \leq V \text{DD} \leq$	2.7 V		30			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$	100			ns
				$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EVdd0} < 2.7 \text{ V}$	120			ns

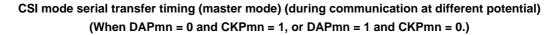

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

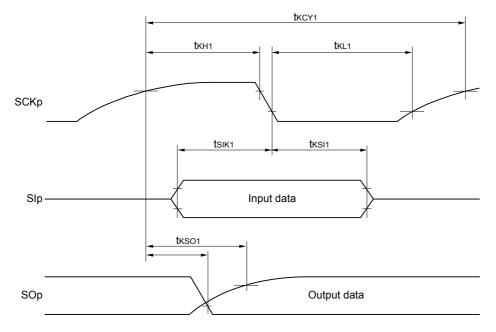
NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

RemarkfMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel
number (n = 0 to 3))



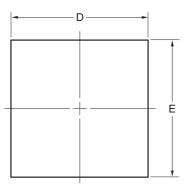
CSI mode connection diagram (during communication at different potential



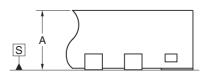

- **Remark 5.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 6.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 7. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 8. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

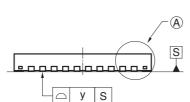
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

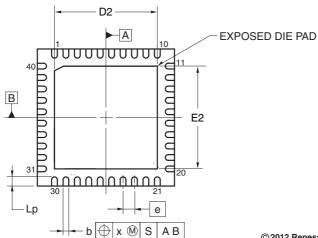
- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

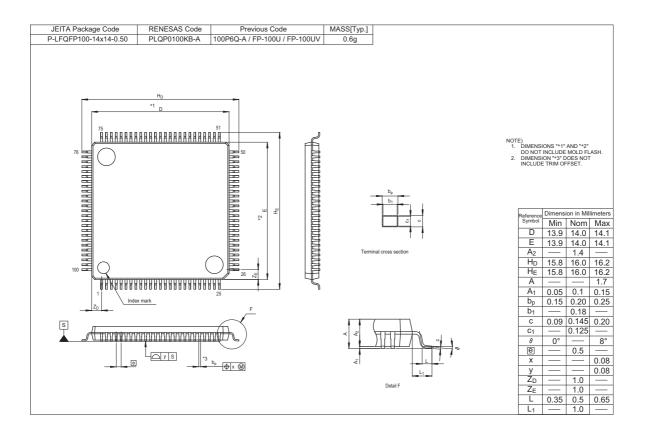

4.4 40-pin products

R5F104EAANA, R5F104ECANA, R5F104EDANA, R5F104EEANA, R5F104EFANA, R5F104EGANA, R5F104EHANA


R5F104EADNA, R5F104ECDNA, R5F104EDDNA, R5F104EEDNA, R5F104EFDNA, R5F104EGDNA, R5F104EHDNA


R5F104EAGNA, R5F104ECGNA, R5F104EDGNA, R5F104EEGNA, R5F104EFGNA, R5F104EGGNA, R5F104EHGNA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-4	0.09


Referance Symbol	Dimension in Millimeters					
	Min	Nom	Max			
D	5.95	6.00	6.05			
E	5.95	6.00	6.05			
А	0.70	0.75	0.80			
b	0.18	0.25	0.30			
е		0.50	—			
Lp	0.30	0.40	0.50			
x		—	0.05			
У			0.05			

ITEM		D2			E2		
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	А	4.45	4.50	4.55	4.45	4.50	4.55

©2012 Renesas Electronics Corporation. All rights reserved.

R5F104PKAFB, R5F104PLAFB R5F104PKGFB, R5F104PLGFB

