

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104gfdfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(3/5)

48-pins 48-pins 48-pins 48-pins 14-pins 14-pins <t< th=""><th>Pin count</th><th>Package</th><th>Fields of Application Note</th><th>Ordering Part Number</th></t<>	Pin count	Package	Fields of Application Note	Ordering Part Number
(7 × 7 mm, 0.5 mm pitch) R8F104G7AFEB4V0, R8F104GAFBB4X0, R8F104GAFBB4X0, R8F104GAFBB4X0, R8F104GAFBB4X0, R8F104GAFB4X0, R8F104GAFAAA4X0, R8F104GAFB4X0, R8F104GAFAAA4X0, R8F104GAFAA4X0, R8F104JAFAA4X0, R8F104JAFAA4X0, R8F104JAFAA4X0, R8F104JAF	48 pins	48-pin plastic LFQFP	A	R5F104GAAFB#V0, R5F104GCAFB#V0, R5F104GDAFB#V0, R5F104GEAFB#V0,
48-pin plastic HWOFN A R8F104GAAPEBX0, R8F104GAAPBX0, R8F104GAAPAX00, R8F104GAAPBX0, R8F104GAAPAX00, R8F104ABAAPAX0, R8F104ABA		$(7 \times 7 \text{ mm}, 0.5 \text{ mm pitch})$		R5F104GFAFB#V0, R5F104GGAFB#V0, R5F104GHAFB#V0, R5F104GJAFB#V0
Image: Stand				R5F104GAAFB#X0, R5F104GCAFB#X0, R5F104GDAFB#X0, R5F104GEAFB#X0,
ki k				R5F104GFAFB#X0, R5F104GGAFB#X0, R5F104GHAFB#X0, R5F104GJAFB#X0
ki RSF104GLAFB#50, RSF104GLAFB#50 P RSF104GADFB#V0, RSF104GDDFBW0, RSF104GDFBW0, RSF104GDFBW0, RSF104GDFBW0, RSF104GDFBW0, RSF104GDFBW0, RSF104GDFBW0, RSF104GDFBW0, RSF104GJDFBW0, RSF104GJGFBW0, RSF104GDFBW0, RSF104GJGFBW0, RSF104GDFBW0, RSF104GJGFBW0, RSF104GJGAN4U0, RSF104GJAN4U0, RSF104GGAN4U0, RSF104GGAN4U0, RSF104GGAN4U0, RSF104GJAN4U0, RSF104GJAN4U0, RSF104GJAN4U0, RSF104GGAN4U0, RSF104GGAN4U, RSF104JGAAAU, RSF104JGAAUAU, RSF104				R5F104GKAFB#30, R5F104GLAFB#30
D R5F104GADFB#V0, R5F104GCDFB#V0, R5F104GDFB#V0, R5F104GADFB#V0, R5F104GADFB#V0, R5F104GCDFB#V0, R5F104GDDFBV0, R5F104GDFB#V0, R5F104GADFB#V0, R5F104GCDFB#V0, R5F104GDDFB#V0, R5F104GLDFB#V0, R5F104GADFB#V0, R5F104GCDFB#V0, R5F104GDDFB#V0, R5F104GLDFB#V0, R5F104GADFB#V0, R5F104GCDFB#V0, R5F104GDGFB#V0, R5F104GLDFB#V0, R5F104GACFGB#V0, R5F104GCGFB#V0, R5F104GDGFB#V0, R5F104GLDFB#V0, R5F104GACFGFB#V0, R5F104GCGFB#V0, R5F104GDGFB#V0, R5F104GLGFB#V0, R5F104GCGFB#V0, R5F104GCGFB#V0, R5F104GDGFB#X0, R5F104GLGFB#V0, R5F104GCGFB#V0, R5F104GLGFB#S0 48-pin plastic HWQFN (7 × 7 mm, 0.5 mm pitch) A R5F104GCGFB#V0, R5F104GLGFB#00 R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAN#U0, R5F104GLANA#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAN#U0, R5F104GDAN#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAN#U0, R5F104GDAH#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAH#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAH#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAH#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAH#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAH#U0, R5F104GCANA#U0, R5F104GCANA#U0, R5F104GDAH#U0, R5F104GCANA#U0, R5F104GDAH#U0, R5F104				R5F104GKAFB#50, R5F104GLAFB#50
Image: Section of the sectio			D	R5F104GADFB#V0, R5F104GCDFB#V0, R5F104GDDFB#V0, R5F104GEDFB#V0,
52 pins 52-pin plastic LQFP A R5F104GADFB#X0, R8F104GCDFB#X0, R8F104GDDFB#X0, R8F104GDDFB#X0, R8F104GDDFB#X0, R8F104GCDFB#X0, R8F104GDCFB#X0, R8F104GDCFB#X0, R8F104GDCFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GCGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GDGFB#X0, R8F104GCGFB#X0, R8F104GCGFB#X0, R8F104GCGFB#X0, R8F104GDGFB#X0, R8F104GDAM#U0, R8F104GDAM#U0, R8F104GCGFB#X0, R8F104GCGFB#X0, R8F104GDAM#U0, R8F104GCAM#U0, R8F104GDAM#U0, R8F104GDAM#U0, R8F104GCAM#U0, R8F104GCAM#U0, R8F104GDAM#U0, R8F104GCAM#U0, R8F104GCAM#U0, R8F104GCAM#U0, R8F104GCAM#U0, R8F104GCAM#U0, R8F104GDAM#U0, R8F104GDAM#U0, R8F104GCAM#U0, R8F104GC				R5F104GFDFB#V0, R5F104GGDFB#V0, R5F104GHDFB#V0, R5F104GJDFB#V0
62 pin plastic LQFP RSF104GCDFB#X0, RSF104GCDFB#X0, RSF104GCDFB#X0, RSF104GCGFB#X0, RSF104GCGAN#U0, RSF104GCAN#U0,				R5F104GADFB#X0, R5F104GCDFB#X0, R5F104GDDFB#X0, R5F104GEDFB#X0,
S2 pins S2 pin plastic LOPP A RSF104GAGFB#V0, RSF104GCGFB#V0, RSF104GGGFB#V0, RSF104GGGFB#S0, RSF104GGANA#U0, RSF104GGANA#W0, RSF104				R5F104GFDFB#X0, R5F104GGDFB#X0, R5F104GHDFB#X0, R5F104GJDFB#X0
S2 pins S2-pin plastic LOPP A RSF104GFCFB#V0, RSF104GCCFB#V0, RSF104GCGFB#V0, RSF104GCGAN#U0, RSF104GCAN#U0, RSF104G			G	R5F104GAGFB#V0, R5F104GCGFB#V0, R5F104GDGFB#V0, R5F104GEGFB#V0,
kink RsF104GAGFB#X0, RsF104GCGFB#X0, RsF104GDGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGFB#X0, RsF104GGGANA#U0, RsF104GGANA#U0, RSF104GGAAA#U0, RSF104GGANA#U0, RSF104GGANA#U0, RSF104GGANA#U0,				R5F104GFGFB#V0, R5F104GGGFB#V0, R5F104GHGFB#V0, R5F104GJGFB#V0
S2 pins S2-pin plastic LQFP A RSF104GCFGP#X0, RSF104GGCFB#X0, RSF104GGAPB#X0, RSF104GGAPB#X0, RSF104GGAPA#V0, RSF104GAGAPA#V0, RSF104GAGAPA#V0, RSF104GAGAPA#V0, RSF104GGAPA#V0, RSF104GAGAPA#V0, RSF104GGAPA#V0, RSF104JGAFA#V0, RS				R5F104GAGFB#X0, R5F104GCGFB#X0, R5F104GDGFB#X0, R5F104GEGFB#X0,
Image: state in the state in thestate in the state in the state in the state in the st				R5F104GFGFB#X0, R5F104GGGFB#X0, R5F104GHGFB#X0, R5F104GJGFB#X0
Image: space				R5F104GKGFB#30, R5F104GLGFB#30
48-pin plastic HWQFN A RSF104GAANA#U0, RSF104GCANA#U0, RSF104GDANA#U0, RSF104GEANA#U0, RSF104GFANA#U0, RSF104GCANA#U0, RSF104GCANA#W0, RSF104GDANA#U0, RSF104GANA#W0, RSF104GFANA#W0, RSF104GCANA#W0, RSF104GDANA#W0, RSF104GDANA#W0, RSF104GFANA#W0, RSF104GCANA#W0, RSF104GDANA#W0, RSF104GDNA#W0, RSF104GFANA#W0, RSF104GLANA#W0 V NSF104GAANA#W0, RSF104GCANA#W0, RSF104GDNA#W0, RSF104GDNA#W0, RSF104GFANA#W0, RSF104GLANA#W0 V RSF104GCANA#W0, RSF104GDNA#U0, RSF104GDNA#U0, RSF104GCANA#W0, RSF104GDNA#U0, RSF104GDNA#U0, RSF104GDNA#U0, RSF104GFDNA#U0, RSF104GDNA#U0, RSF104GDNA#W0, RSF104GDNA#W0, RSF104GFDNA#W0, RSF104GCDNA#W0, RSF104GDNA#W0, RSF104GDNA#W0, RSF104GFDNA#W0, RSF104GCDNA#W0, RSF104GDDNA#W0, RSF104GDNA#W0, RSF104GFGNA#W0, RSF104GCGNA#W0, RSF104GDCNA#W0, RSF104GDSNA#W0, RSF104GFGNA#W0, RSF104GGCNA#W0, RSF104GDCNA#W0, RSF104GDSNA#W0, RSF104GFGNA#W0, RSF104GCGNA#W0, RSF104GDCNA#W0, RSF104GDSNA#W0, RSF104GFGNA#W0, RSF104GCGNA#W0, RSF104GDCNA#W0, RSF104GDSNA#W0, RSF104GFGNA#W0, RSF104GCGNA#W0, RSF104GDCNA#W0, RSF104GDSNA#W0, RSF104GFGNA#W0, RSF104GCGNA#W0, RSF104GDCNA#W0, RSF104GDSNA#W0, RSF104GFGNA#W0, RSF104GGCNA#W0, RSF104JDAFA#V0, RSF104GFGNA#W0, RSF104GCGNA#W0, RSF104JDAFA#V0, RSF104GFGNA#W0, RSF104GLGNA#W0, RSF104GFGNA#W0, RSF104JDAFA#V0, RSF104JDAFA#V0, RSF104JGCFA#V0, RSF104JDAFA#V0, RSF104JDAFA#V0, RSF104JGCFA#V0, RSF104JDAFA#V0, RSF104JDAFA#V0, RSF104JGCFA#V0, RSF104JDAFA#V0, RSF104JDAFA#V0, RSF104JGCFA#V0, RSF104JDDFA#V0, RSF104JDAFA#V0, RSF104JGDFA#V0, RSF104JDDFA#V0, RSF104JDFA#V0, RSF104JGDFA#V0, RSF104JDDFA#V0, RSF104JDF				R5F104GKGFB#50, R5F104GLGFB#50
(7 × 7 mm, 0.5 mm pitch) R5F104GFANA#U0, R5F104GGANA#U0, R5F104GGANA#U0, R5F104GGANA#U0, R5F104GGANA#U0, R5F104GGANA#W0, R5F104GGDNA#U0, R5F104GGDNA#U0, R5F104GGDNA#U0, R5F104GGDNA#U0, R5F104GGDNA#U0, R5F104GGDNA#U0, R5F104GGDNA#U0, R5F104GGDNA#W0, R5F104JGGA#X0, R5F104JGGDNA#W0, R5F104JGGDA#X0, R5F104JGGDA#X0, R5F104JGGDA#X0, R5F104JGGA#X0, R5F104JGGA#X		48-pin plastic HWQFN	А	R5F104GAANA#U0, R5F104GCANA#U0, R5F104GDANA#U0, R5F104GEANA#U0,
52 pins 52-pin plastic LQFP A R5F104GCANA#W0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JCAFA#V0, R5F104JJCAFA#V0, R5F104JCD		$(7 \times 7 \text{ mm}, 0.5 \text{ mm pitch})$		R5F104GFANA#U0, R5F104GGANA#U0, R5F104GHANA#U0, R5F104GJANA#U0
52 pins 52-pin plastic LQFP A R5F104GKANA#W0, R5F104GGANA#W0, R5F104GGANA#W0, R5F104GGANA#W0, R5F104GGANA#W0, R5F104GGANA#U0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JGAFA#X0, R5F104JGAA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JGAA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JGAA#X0, R5F104JGAA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JJAFA#X0, R5F104JGAA#X0, R5F104JGFA#X0, R5F104JJAFA#X0, R5F10				R5F104GAANA#W0, R5F104GCANA#W0, R5F104GDANA#W0, R5F104GEANA#W0,
52 pins 52-pin plastic LQFP A R5F104JCAA#V0, R5F104GLGNA#U0, R5F104GDNA#U0, R5F104GDNA#W0, R5F104GGNA#U0, R5F104GGNA#U0, R5F104GGGNA#W0, R5F104JGGAA#V0, R				R5F104GFANA#W0, R5F104GGANA#W0, R5F104GHANA#W0, R5F104GJANA#W0
52 pins 52-pin plastic LQFP A R5F104GKANA#W0, R5F104GCDNA#U0, R5F104JCDNA#U0, R5F104GDDNA#U0, R5F104GDNA#W0, R5F104GDRNA#W0, R5F104GDRNA#W0, R5F104GDRNA#W0, R5F104GDRNA#W0, R5F104GGNA#W0, R5F104GDRNA#W0, R5F104GDRNA#W0, R5F104GDRNA#W0, R5F104GDRNA#W0, R5F104GDRNA#W0, R5F104GGNA#W0, R5F104GDRNA#W0, R5F104GGNA#W0, R5F104GDRNA#W0, R5F104JDRFNA#V0, R5F104JJDFNA#V0, R5F104JJDF				R5F104GKANA#U0, R5F104GLANA#U0
b D R5F104GADNA#U0, R5F104GCDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#U0, R5F104GDNA#W0, R5F104GDNA#U0, R5F104JDAFA#V0, R5F104JDAFA#				R5F104GKANA#W0, R5F104GLANA#W0
S2 pins 52-pin plastic LQFP A R5F104GRNA#V0, R5F104GGNA#W0, R5F104GGGNA#W0, R5F104JGFA#X0, R5F104JGGFA#X0, R5F104JGGA#X0, R5F104JGGA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JJGFA#X0, R5F104JGG			D	R5F104GADNA#U0, R5F104GCDNA#U0, R5F104GDDNA#U0, R5F104GEDNA#U0,
Separation RSF104GADNA#W0, RSF104GCDNA#W0, RSF104GDDNA#W0, RSF104GEDNA#W0, RSF104GFDNA#W0, RSF104GGDNA#W0, RSF104GDNA#W0, RSF104GJDNA#W0, RSF104GGDNA#U0, RSF104GGDNA#U0, RSF104GDNA#U0, RSF104GJDNA#W0, RSF104GGNA#U0, RSF104GGQNA#U0, RSF104GGDNA#W0, RSF104GJGNA#U0 RSF104GGNA#W0, RSF104GGQNA#W0, RSF104GDNA#W0, RSF104GJGNA#W0 RSF104GGNA#W0, RSF104GGQNA#W0, RSF104GDNA#W0, RSF104GJGNA#W0 RSF104GGNA#W0, RSF104GLGNA#W0 RSF104GGNA#W0, RSF104GLGNA#W0 RSF104GGNA#W0, RSF104GLGNA#W0 RSF104GGNA#W0, RSF104JDAFA#V0, RSF104JEAFA#V0, RSF104JFAFA#V0, RSF104JGAFA#V0, RSF104JDAFA#V0, RSF104JEAFA#V0, RSF104JFAFA#V0, RSF104JGAFA#V0, RSF104JDAFA#V0, RSF104JAFAFA#V0, RSF104JGAFA#V0, RSF104JDAFA#V0, RSF104JJAFA#V0, RSF104JGAFA#V0, RSF104JDAFA#X0, RSF104JJAFA#X0, RSF104JGAFA#X0, RSF104JDDFA#V0, RSF104JJAFA#X0, RSF104JGAFA#V0, RSF104JDDFA#V0, RSF104JJAFA#X0, RSF104JGDFA#V0, RSF104JDDFA#V0, RSF104JJDFA#X0, RSF104JGDFA#V0, RSF104JDDFA#X0, RSF104JJDFA#X0, RSF104JGDFA#V0, RSF104JDDFA#X0, RSF104JJDFA#X0, RSF104JGDFA#V0, RSF104JDGFA#V0, RSF104JJDFA#X0, RSF104JGGFA#V0, RSF104JDGFA#V0, RSF104JJDFA#X0, RSF104JGGFA#V0, RSF104JDGFA#X0, RSF104JJDFA#X0, RSF104JGGFA#V0, RSF104JDGFA#X0, RSF104JJDFA#X0, RSF104JGGFA#V0, RSF104JDGFA#X0, RSF104JJGFA#X0, RSF104JGGFA#V0, RSF104JDGFA#X0, RSF104JJGFA#X0, RSF104JGGFA#V0, RSF104JJGFA#X0, RSF104JJGFA#X0, RSF104JGGFA#X0, RSF104JJGFA#X0, RSF104JJGFA#X0, RSF104JGGFA				R5F104GFDNA#U0, R5F104GGDNA#U0, R5F104GHDNA#U0, R5F104GJDNA#U0
52 pins 52-pin plastic LQFP A R5F104GF0NA#W0, R5F104JGCGNA#U0, R5F104JGCGNA#U0, R5F104JGGGNA#W0, R5F104JGGGNA#W0, R5F104GJGNA#W0, R5F104GGGNA#W0, R5F104GJGNA#W0, R5F104GJGNA#W0, R5F104GGGNA#W0, R5F104GGGNA#W0, R5F104GGGNA#W0, R5F104GJGNA#W0, R5F104GGGNA#W0, R5F104GGGA#W0, R5F104GGGNA#W0, R5F104GGGGGA#W0, R5F104GGGGNA#W0, R5F104GGGGNA#W0, R5F104GGGGNA#W0,				R5F104GADNA#W0, R5F104GCDNA#W0, R5F104GDDNA#W0, R5F104GEDNA#W0,
G R5F104GAGNA#U0, R5F104GCGNA#U0, R5F104GDGNA#U0, R5F104GDGNA#U0, R5F104GEGNA#U0, R5F104GFGNA#U0, R5F104GGGNA#U0, R5F104GDGNA#U0, R5F104GJGNA#U0 R5F104GGGNA#W0, R5F104GGGNA#W0, R5F104GDGNA#W0, R5F104GJGNA#W0 R5F104GFGNA#W0, R5F104GGGNA#W0, R5F104GDGNA#W0, R5F104GJGNA#W0 R5F104GKGNA#W0, R5F104GLGNA#W0 S52 pins 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch) A R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JJAFA#V0, R5F104JGAFA#V0, R5F104JDAFA#V0, R5F104JJAFA#V0 R5F104JGAFA#V0, R5F104JDAFA#V0, R5F104JJAFA#V0 R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0 R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0 R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJAFA#X0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JGDFA#V0, R5F104JDGFA#V0, R5F104JJDFA#V0 R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#X0, R5F104JJGFA#X0 R5F104JGGFA#X0, R5F104JJGFA#X0 R5F104JGGFA#X0, R5F104JJGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JGGFA#X0 R5F104JG				R5F104GFDNA#W0, R5F104GGDNA#W0, R5F104GHDNA#W0, R5F104GJDNA#W0
52 pins 52-pin plastic LQFP A R5F104GRGNA#U0, R5F104GCGNA#U0, R5F104GGGNA#W0, R5F104GGGNA#W0, R5F104GJGNA#W0 52 pins 52-pin plastic LQFP A R5F104GRGNA#W0, R5F104JGGNA#W0 R5F104JGAGNA#W0 52 pins 52-pin plastic LQFP A R5F104JGAFA#V0, R5F104JDAFA#V0, R5F104JBAFA#V0, R5F104JJAFA#V0, R5F104JJAFA#V0, R5F104JJAFA#V0, R5F104JJAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JJAFA#V0, R5F104JJAFA#V0, R5F104JJAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JJAFA#X0 D R5F104JGAFA#V0, R5F104JDAFA#V0, R5F104JDAFA#X0, R5F104JFAFA#X0, R5F104JGAFA#X0, R5F104JGA#X0, R5F104JJGA#X0, R5F104JJGA#X0, R5F104JGA#X0, R5F104JGA			G	R5F104GAGNA#U0, R5F104GCGNA#U0, R5F104GDGNA#U0, R5F104GEGNA#U0,
R5F104CAGNA#W0, R5F104GCGNA#W0, R5F104GDGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0, R5F104GEGNA#W0 S2 pins 52-pin plastic LQFP A R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JEAFA#V0, R5F104JFAFA#V0, R5F104JFAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#X0, R5F104JJGA#X0, R				
S2 pins 52-pin plastic LQFP A R5F104GKGNA#W0, R5F104GLGNA#W0 (10 × 10 mm, 0.65 mm pitch) A R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JEAFA#V0, R5F104JFAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JGAFA#X0, R5F104JAFA#X0, R5F104JAFA#X0, R5F104JGAFA#X0, R5F104JGA				R5F104GAGNA#W0, R5F104GCGNA#W0, R5F104GDGNA#W0, R5F104GEGNA#W0,
S2 pins 52-pin plastic LQFP A R5F104GKGNA#V0, R5F104GLGNA#V0, R5F104JEAFA#V0, R5F104JFAFA#V0, (10 × 10 mm, 0.65 mm pitch) A R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JJAFA#V0 R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JGAFA#X0, R5F104JDDFA#X0, R5F104JGDFA#X0, R5F104JDDFA#X0, R5F104JJDFA#X0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JDDFA#X0, R5F104JJDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#X0, R5F104JDDFA#X0, R5F104JJDFA#X0, R5F104JGDFA#X0, R5F104JDDFA#X0, R5F104JGDFA#X0, R5F104JDDFA#X0, R5F104JJDFA#X0, R5F104JGDFA#X0, R5F104JDDFA#X0, R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JJDFA#X0, R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JJGFA#V0, R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JGGFA#X0, R5F104JDGFA#X0, R5F104JJGFA#V0, R5F104JGGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JDGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JJGFA#X0,				
52 pins 52-pin plastic LQFP A R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JEAFA#V0, R5F104JFAFA#V0, (10 × 10 mm, 0.65 mm pitch) A R5F104JCAFA#V0, R5F104JHAFA#V0, R5F104JJAFA#V0 R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JDAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JDAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JCDFA#V0, R5F104JDAFA#X0, R5F104JDAFA#X0, R5F104JCDFA#V0, R5F104JDDFA#V0, R5F104JDAFA#V0, R5F104JCDFA#X0, R5F104JDDFA#V0, R5F104JDAFA#X0, R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JDAFA#X0, R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JDAFA#X0, R5F104JGDFA#X0, R5F104JDAFA#X0, R5F104JDAFA#X0, R5F104JCDFA#X0, R5F104JDGFA#X0, R5F104JDAFA#X0, R5F104JGGFA#X0, R5F104JDGFA#X0, R5F104JJGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JJGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JJGGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JJGFA#X0, R5F104JJGFA#X0,				
52 pins 52-pin plastic LQFP A R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JEAFA#V0, R5F104JFAFA#V0, R5F104JFAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#V0, R5F104JGAFA#X0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#V0, R5F104JGDFA#X0, R5F104JGDFA#X0, R5F104JGDFA#X0, R5F104JGDFA#X0, R5F104JGDFA#X0, R5F104JGDFA#X0, R5F104JGDFA#X0, R5F104JGDFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#X0, R5F104JJGGFA#X0, R5F104JJGGFA#X0	50			
(10 × 10 mm, 0.05 mm pich) RSF 104JGAFA#V0, RSF 104JBAFA#V0, RSF 104JAFA#V0 RSF 104JCAFA#X0, RSF 104JDAFA#X0, RSF 104JAFA#V0 RSF 104JCAFA#X0, RSF 104JDAFA#X0, RSF 104JAFA#V0 RSF 104JCAFA#X0, RSF 104JDAFA#X0, RSF 104JAFA#V0 RSF 104JGAFA#X0, RSF 104JDAFA#X0, RSF 104JJAFA#X0 D RSF 104JCDFA#V0, RSF 104JDDFA#V0, RSF 104JDAFA#X0 RSF 104JGDFA#V0, RSF 104JDDFA#V0, RSF 104JJDFA#V0 RSF 104JGDFA#V0, RSF 104JDDFA#V0, RSF 104JJDFA#V0 RSF 104JCDFA#X0, RSF 104JDDFA#X0, RSF 104JDDFA#X0, RSF 104JEDFA#X0, RSF 104JGDFA#X0, RSF 104JGDFA#X0, RSF 104JDDFA#X0 RSF 104JGDFA#X0, RSF 104JDDFA#X0, RSF 104JDDFA#X0 G RSF 104JCGFA#V0, RSF 104JDGFA#V0, RSF 104JJGFA#V0, RSF 104JGGFA#V0, RSF 104JGGFA#X0, RSF 104JJGGFA#X0	52 pins	52-pin plastic LQFP	A	R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JEAFA#V0, R5F104JFAFA#V0,
R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JEAFA#X0, R5F104JFAFA#X0, R5F104JGAFA#X0, R5F104JDAFA#X0, R5F104JJAFA#X0, R5F104JGAFA#X0, R5F104JDDFA#V0, R5F104JJEDFA#V0, R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0, R5F104JCDFA#X0, R5F104JDDFA#V0, R5F104JJDFA#V0, R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JJDFA#X0, R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JJDFA#X0, R5F104JGDFA#X0, R5F104JDDFA#X0, R5F104JJDFA#X0, R5F104JGDFA#X0, R5F104JDGFA#X0, R5F104JJDFA#X0, R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JJGFA#V0, R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JJGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JJGFA#X0, R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JJGFA#X0,				
DR5F104JCDFA#V0, R5F104JDDFA#V0, R5F104JEDFA#V0, R5F104JEDFA#V0, R5F104JGDFA#V0, R5F104JDDFA#V0, R5F104JJDFA#V0 R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JEDFA#X0, R5F104JGDFA#X0, R5F104JGDFA#X0, R5F104JDDFA#X0, R5F104JJDFA#X0GR5F104JGDFA#X0, R5F104JDGFA#V0, R5F104JEGFA#V0, R5F104JFGFA#V0, R5F104JGGFA#V0, R5F104JDGFA#V0, R5F104JJGFA#V0, R5F104JGGFA#V0, R5F104JJGFA#V0, R5F104JJGFA#V0, R5F104JGGFA#V0, R5F104JJGFA#V0, R5F104JJGFA#V0, R5F104JGGFA#X0, R5F104JJGFA#V0, R5F104JJGFA#V0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JJGGFA#X0, R5F104JGGFA#X0, R5F104JJGGFA#X0, R5F104JGGFA#X0, R5F104JJGGFA#X0, R5F104JJGGFA#X0, R5F104JJGFA#X0, R5F104J				RSF 104JCAFA#X0, RSF 104JDAFA#X0, RSF 104JEAFA#X0, RSF 104JFAFA#X0,
BFIGH 10430DF A#V0, R0F 10430DF A#X0, R0F 10430DF A#X0				
R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JEDFA#X0, R5F104JEDFA#X0, R5F104JGDFA#X0, R5F104JDGFA#X0, R5F104JJDFA#X0GR5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JEGFA#V0, R5F104JFGFA#V0, R5F104JGGFA#V0, R5F104JHGFA#V0, R5F104JJGFA#V0 R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JEGFA#X0, R5F104JFGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0, R5F104JJGFA#X0			D	R5F104.JGDFA#V0, R5F104.JHDFA#V0, R5F104.JJDFA#V0, R5F104.JJDFA#V0,
G R5F104JGDFA#X0, R5F104JHDFA#X0, R5F104JJGFA#X0 G R5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JEGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#V0, R5F104JGGFA#X0, R5F104JJGFA#X0, R5F104JJGFA#X0				
G R5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JEGFA#V0, R5F104JFGFA#V0, R5F104JGGFA#V0, R5F104JHGFA#V0, R5F104JJGFA#V0 R5F104JGGFA#X0, R5F104JDGFA#X0, R5F104JEGFA#X0, R5F104JCGFA#X0, R5F104JGGFA#X0, R5F104JGFA#X0, R5F104JGGFA#X0, R5F104JGGFA#X0,				R5F104JGDFA#X0, R5F104JHDFA#X0, R5F104JJDFA#X0
R5F104JGGFA#V0, R5F104JHGFA#V0, R5F104JJGFA#V0 R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JEGFA#X0, R5F104JFGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0			G	R5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JEGFA#V0. R5F104JFGFA#V0.
R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JEGFA#X0, R5F104JFGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0			_	R5F104JGGFA#V0, R5F104JHGFA#V0, R5F104JJGFA#V0
R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0				R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JEGFA#X0, R5F104JFGFA#X0.
				R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0

Note

For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

(2)2	١
(2/2)

		80-pin 100-pin				
Item		R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Clock output/buzz	er output	2	2			
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.4	5 MHz, 5 MHz, 10 MHz			
		(Main system clock: fмаin = 20 MHz operation	on)			
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09	96 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz			
		(Subsystem clock: fs∪B = 32.768 kHz opera	tion)			
8/10-bit resolution	A/D converter	17 channels	20 channels			
D/A converter		2 channels	2 channels			
Comparator		2 channels	2 channels			
Serial interface		[80-pin, 100-pin products]				
		CSI: 2 channels/UART (UART supporting L	N-bus): 1 channel/simplified I ² C: 2 channels			
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels			
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels			
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels			
	I ² C bus	2 channels	2 channels			
Data transfer cont	troller (DTC)	39 sources	39 sources			
Event link controll	er (ELC)	Event input: 26				
		Event trigger output: 9				
Vectored inter-	Internal	32	32			
rupt sources	External	13	13			
Key interrupt		8	8			
Reset		Reset by RESET pin				
		 Internal reset by watchdog timer 				
		 Internal reset by power-on-reset 				
		 Internal reset by voltage detector 				
		Internal reset by illegal instruction execution	Note			
		 Internal reset by RAM parity error 				
		Internal reset by illegal-memory access				
Power-on-reset ci	rcuit	• Power-on-reset: 1.51 ±0.04 V (TA = -40	to +85°C)			
		1.51 ±0.06 V (TA = -40	to +105°C)			
		• Power-down-reset: $1.50 \pm 0.04 \vee (T_{A} = -40)$	$10 + 85^{\circ}C$			
Voltage detector		$1.50 \pm 0.00 \text{ V} (1\text{A} = -40 \text{ IO} + 105^{\circ}\text{C})$				
On-chip debug function Provided						
Power supply yelt	200	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_{A} = 40 \text{ to } \pm 85^{\circ} \text{ C})$				
	aye	$V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_A = -40 \text{ to } +0.5 \text{ C})$				
Operating ambien	it temperature	$T_{A} = -40$ to +85°C (A: Consumer applications	D: Industrial applications)			
		$T_A = -40$ to +105°C (G: Industrial applications)			

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{0}}1~\mbox{MHz}$ to 8 MHz}$$

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit				
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA				
current		ing mode	mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.9						
NOLE 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.5						
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.5						
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		6.0	11.2	mA				
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		6.0	11.2					
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.5	10.6					
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.5	10.6					
		fHOCO = 48 MHz, Normal	VDD = 5.0 V		4.7	8.6								
				fiн = 24 MHz Note 3	operation	VDD = 3.0 V		4.7	8.6					
				fносо = 24 MHz,	Normal	VDD = 5.0 V		4.4	8.2					
				fin = 24 MHz Note 3	operation	VDD = 3.0 V		4.4	8.2					
				fносо = 16 MHz,	Normal VDD = 5.0 V	VDD = 5.0 V		3.3	5.9					
				fiн = 16 MHz ^{Note 3}	operation	VDD = 3.0 V		3.3	5.9					
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.5	2.5	mA				
			mode Note 5	fin = 8 MHz Note 3	operation	VDD = 2.0 V		1.5	2.5					
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.5	2.1	mA				
			mode Note 5	fin = 4 MHz Note 3	operation	VDD = 2.0 V		1.5	2.1					
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.7	6.8	mA				
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.9	7.0					
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.7	6.8					
				VDD = 3.0 V	operation	Resonator connection		3.9	7.0					
					f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1				
				VDD = 5.0 V	operation	Resonator connection		2.3	4.2					
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1					
				VDD = 3.0 V	operation	Resonator connection		2.3	4.2					
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4	mA				
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.4	2.5					
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4					
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.5					
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		5.2		μΑ				
			operation	TA = -40°C	operation	Resonator connection		5.2						
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7					
				TA = +25°C	operation	Resonator connection		5.3	7.7					
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.6					
				TA = +50°C	operation	Resonator connection		5.5	10.6					
				fsub = 32.768 kHz Note 4 TA = +70°C	Normal	Square wave input		5.9	13.2					
					operation	Resonator connection		6.0	13.2					
				fsub = 32.768 kHz Note 4	Normal	Square wave input		6.8	17.5					
								TA = +85°C	operation	Resonator connection		6.9	17.5	

(Notes and Remarks are listed on the next page.)

Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level	tтdiн,	TRDIOA0, TRDIOA1, TRDIOE	B0, TRDIOB1,	3/fclk			ns
width, low-level width	t⊤dil	TRDIOC0, TRDIOC1, TRDIOI	D0, TRDIOD1				
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	$2MHz < fclk \le 32 MHz$	1			μs
input low-level width			$f_{CLK} \leq 2 \ MHz$	1/fclk + 1			
Timer RG input high-level	tтgiн,	TRGIOA, TRGIOB		2.5/fclk			ns
width, low-level width	t⊤gi∟						
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			8	MHz
TRJIOU, TRJOU, TRDIOA0, TRDIOA1			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRDIOC0, TRDIOC1,		LS (low-speed main) mode	$1.8 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$			4	MHz
TRDIOD0, TRDIOD1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRGIOA, TRGIOB output frequency		LV (low-voltage main) mode	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6~V \le V_{DD} \le 5.5~V$	1			μs
width, low-level width	t INTL	INTP1 to INTP11	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1			μs
Key interrupt input low-level	t KR	KR0 to KR7	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	250			ns
width			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	1			μs
RESET low-level width	trsl			10			μs

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol	Conditions		HS (high r	-speed main) node	LS (low-	speed main) node	LV (low-v r	oltage main) node	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 kΩ, V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps
			$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \\ V_b = 2.3 \mbox{ V} \end{array}$		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

1

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{|V_b|})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Parameter	Symbol	Conditions	HS (high- n	speed main) node	LS (low-s	speed main) 10de	LV (low-v m	oltage main) node	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	t
SCLr clock frequency	fscL	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	t∟ow		475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\label{eq:linear} \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ & C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	245		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
			610		610		610		ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l²C mode) (TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

2.7 **RAM Data Retention Characteristics**

TA = -40 to +85°C, Vss = 0V)							
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Data retention supply voltage	VDDDR		1.46 Note		5.5	V	

The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset Note is effected, but RAM data is not retained when a POR reset is effected.

2.8 **Flash Memory Programming Characteristics**

$(1A = -40 tO + 60 C, 1.6 V \le VDD \le 0.5 V, VSS = 0 V$	$(T_A = -40 \text{ to } +85^{\circ}\text{C}.)$	$1.8 \text{ V} \leq \text{VDD} \leq 5.5$	V. Vss = 0 V)
---	--	--	-----------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years Ta = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 **Dedicated Flash Memory Programmer Communication (UART)**

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operat- ing current	ITMPS Note 1				75.0		μA
D/A converter operating cur- rent	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating cur-	I _{CMP} Notes 1, 12, 13	VDD = 5.0 V,	Window mode		12.5		μA
rent		Regulator output voltage = 2.1 V	Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		V _{DD} = 5.0 V, Regulator output voltage = 1.8 V	Window mode		8.0		μA
			Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μA
LVD operating current	ILVD Notes 1, 7				0.08		μΑ
Self-programming operat- ing current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.

Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)		clock (fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsub) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width, tExL	$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns	
low-level width	texhs, texls				13.7			μs
TI00 to TI03, TI10 to	tтін, tті∟				1/fмск + 10			ns
TI13 input high-level width, low-level width					Note			
Timer RJ input cycle	fc	TRJIO		$2.7~V \leq EV \text{DD0} \leq 5.5~V$	100			ns
				$2.4~V \leq EV_{DD0} < 2.7~V$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

 Remark
 fmck: Timer array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

(4) During communication at same potential (simplified I²C mode)

|--|

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) mode	
			MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ \text{R}_b = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} \texttt{=} 100 \ pF, \ R_{b} \texttt{=} 3 \ k\Omega \end{array}$	4600		ns
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ \text{R}_b = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns
		$\label{eq:linear} \begin{split} 2.4 V &\leq E V_{DD0} \leq 5.5 \; V, \\ C_{b} &= 100 \; pF, \; R_{b} = 3 \; k \Omega \end{split}$	1/f _{MCK} + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.4 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	0	1420	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer Note 5. rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

1

Maximum transfer rate =
$$\frac{1.5}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

Baud rate e

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Note 6. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin Caution products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

4.3 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA

©2012 Renesas Electronics Corporation. All rights reserved.

4.5 44-pin products

R5F104FAAFP, R5F104FCAFP, R5F104FDAFP, R5F104FEAFP, R5F104FFAFP, R5F104FGAFP, R5F104FHAFP, R5F104FJAFP

R5F104FADFP, R5F104FCDFP, R5F104FDDFP, R5F104FEDFP, R5F104FFDFP, R5F104FGDFP, R5F104FHDFP, R5F104FJDFP

R5F104FAGFP, R5F104FCGFP, R5F104FDGFP, R5F104FEGFP, R5F104FFGFP, R5F104FGGFP, R5F104FJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

ΝΟΤΕ

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

0.10

1.00

1.00

у

ZD

ZE

R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA R5F104PFGFA, R5F104PGGFA, R5F104PHGFA, R5F104PJGFA R5F104PKAFA, R5F104PLAFA R5F104PKGFA, R5F104PLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

© 2012 Renesas Electronics Corporation. All rights reserved.

ZD

ZE

0.575

0.825

REVISION HISTORY	RL78/G14 Datasheet
-------------------------	--------------------

Rev. Date Pa		Description		
	Page	Summary		
3.20	Jan 05, 2015	p.135, 137, 139, 141, 143, 145	Modification of specifications in 3.3.2 Supply current characteristics	
		p.197	Modification of part number in 4.7 52-pin products	
3.30	Aug 12, 2016	p.143, 145	Addition of maximum values in (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products of 3.3.2 Supply current characteristics	

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.