

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	192КВ (192К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104ghdfb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

○ ROM, RAM capacities

Elash ROM	Data flach	DAM	RL78/G14						
T IdSIT KOW	Data liasii		30 pins	32 pins	36 pins	40 pins			
192 KB	8 KB	20 KB	—	—	—	R5F104EH			
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG			
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF			
64 KB	4 KB	5.5 KB Note	R5F104AE	R5F104BE	R5F104CE	R5F104EE			
48 KB	4 KB	5.5 KB Note	R5F104AD	R5F104BD	R5F104CD	R5F104ED			
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC			
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA			

Elash ROM	Data flach	DAM	RL78/G14						
T Idolf TOW	Data liasii		44 pins	48 pins	52 pins	64 pins			
512 KB	8 KB	48 KB Note		R5F104GL —		R5F104LL			
384 KB	8 KB	32 KB	_	R5F104GK	—	R5F104LK			
256 KB	8 KB	24 KB Note	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ			
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH			
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG			
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF			
64 KB	4 KB	5.5 KB Note	R5F104FE	R5F104GE	R5F104JE	R5F104LE			
48 KB	4 KB	5.5 KB Note	R5F104FD	R5F104GD	R5F104JD	R5F104LD			
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC			
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	_				

Elach ROM Data flack		DAM	RL78	3/G14
T IdSIT KOW	Data hash		80 pins	100 pins
512 KB	8 KB	48 KB Note	R5F104ML	R5F104PL
384 KB	8 KB	32 KB	R5F104MK	R5F104PK
256 KB	8 KB	24 KB Note	R5F104MJ	R5F104PJ
192 KB	8 KB	20 KB	R5F104MH	R5F104PH
128 KB	8 KB	16 KB	R5F104MG	R5F104PG
96 KB	8 KB	12 KB	R5F104MF	R5F104PF

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H

R5F104xE (x = A to C, E to G, J, L): Start address FE900H

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

10	(n)
1.71	
12/	∠ /

		30-pin	32-pin	36-pin	40-pin			
ľ	tem	R5F104Ax	R5F104Bx	R5F104Cx	R5F104Ex			
		(x = F, G)	(x = F, G)	(x = F, G)	(x = F to H)			
Clock output/buzzer	output	2	2	2	2			
		 [30-pin, 32-pin, 36-pin pro. 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fm///(40-pin products] 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fm/// 256 Hz, 512 Hz, 1.024 (Subsystem clock: fsub 	oducts] 6 kHz, 1.25 MHz, 2.5 MHz 9 kHz, 1.25 MHz, 2.5 MHz 6 kHz, 1.25 MHz, 2.5 MHz 10 kHz, 2.0 MHz operation) 10 kHz, 2.048 kHz, 4.096 kHz = 32.768 kHz operation)	:, 5 MHz, 10 MHz :, 5 MHz, 10 MHz :, 8.192 kHz, 16.384 kHz,	, 32.768 kHz			
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels			
D/A converter		1 channel 2 channels						
Comparator		2 channels						
Serial interface		[30-pin, 32-pin products] • CSI: 1 channel/UART (• CSI: 1 channel/UART: • CSI: 1 channel/UART: [36-pin, 40-pin products] • CSI: 1 channel/UART (• CSI: 1 channel/UART: • CSI: 2 channel/UART:	 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel [36-pin, 40-pin products] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel (SSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel (SSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel (SSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 					
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer contro	ller (DTC)	30 sources	1		31 sources			
Event link controller	(ELC)	Event input: 21 Event trigger output: 8	Event input: 21, Ev	vent trigger output: 9	Event input: 22 Event trigger output: 9			
Data transfer controll Event link controller (Vectored interrupt sources	Internal	24	24	24	24			
sources	External	6	6	6	7			
Key interrupt		—	—	—	4			
Reset		Reset by RESET pin Internal reset by watche Internal reset by power Internal reset by voltage Internal reset by illegal Internal reset by RAM p Internal reset by illegal-	dog timer -on-reset e detector instruction execution ^{Note} parity error memory access	·	_ .			
Power-on-reset circl	uit	• Power-on-reset: $1.51 \pm 0.04 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $1.51 \pm 0.06 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C})$ • Power-down-reset: $1.50 \pm 0.04 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $1.50 \pm 0.06 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C})$						
Voltage detector		1.63 V to 4.06 V (14 stag	es)					
On-chip debug funct	tion	Provided						
Power supply voltag	e	V _{DD} = 1.6 to 5.5 V (T _A = - V _{DD} = 2.4 to 5.5 V (T _A = -	-40 to +85°C) -40 to +105°C)					
Operating ambient t	emperature	$T_A = -40$ to +85°C (A: Co $T_A = -40$ to +105°C (G: In	nsumer applications, D: Industrial applications)	dustrial applications),				

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$1.6 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P47, P102, P120, P130, P140 to P145 (When duty ≤ 70% ^{Note 3})	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			-10.0	mA
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-80.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-10.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			-5.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol			MIN.	TYP.	MAX.	Unit			
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA
current		ing mode	mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.9		
NOLE 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.5		
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.5		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		6.0	11.2	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		6.0	11.2	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.5	10.6	
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.5	10.6	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.7	8.6	
				fiн = 24 MHz Note 3	operation	VDD = 3.0 V		4.7	8.6	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		4.4	8.2	
				fin = 24 MHz Note 3	operation	VDD = 3.0 V		4.4	8.2	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.3	5.9	
				fiн = 16 MHz ^{Note 3}	operation	VDD = 3.0 V		3.3	5.9	
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.5	2.5	mA
			mode Note 5	fin = 8 MHz Note 3	operation	VDD = 2.0 V		1.5	2.5	
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.5	2.1	mA
			mode Note 5	fin = 4 MHz Note 3	operation	VDD = 2.0 V		1.5	2.1	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.7	6.8	mA
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.9	7.0	
			f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.7	6.8		
				VDD = 3.0 V	operation	Resonator connection		3.9	7.0	-
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		2.3	4.1	
						Resonator connection		2.3	4.2	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1	
				VDD = 3.0 V	operation	Resonator connection		2.3	4.2	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4	mA
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.4	2.5	
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4	
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.5	
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		5.2		μΑ
			operation	TA = -40°C	operation	Resonator connection		5.2		
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7	
				TA = +25°C	operation	Resonator connection		5.3	7.7	1
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.6	
				TA = +50°C	operation	Resonator connection		5.5	10.6]
		f	fsub = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2		
			TA	T _A = +70°C	operation	Resonator connection		6.0	13.2	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		6.8	17.5	
				TA = +85°C	operation	Resonator connection		6.9	17.5	

(Notes and Remarks are listed on the next page.)

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

- **Note 4.** This value as an example is calculated when the conditions described in the "Conditions" column are met.
- Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $EV_{DD0} \ge V_b$.
- **Note 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate

sfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

1

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

RL78/G14

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (high-s main) mo	peed ode	LS (low-speed mode	d main)	LV (low-vo main) mo	ltage ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fc∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 20 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$ \begin{array}{ccc} t\mbox{KH1} & 4.0\mbox{ V} \le EV_{DD0} \le 5.5\mbox{ V}, & t\mbox{Kcy1/2 - 50} \\ & 2.7\mbox{ V} \le V_b \le 4.0\mbox{ V}, & \\ & C_b = 20\mbox{ pF, }R_b = 1.4k\Omega & \end{array} $		tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
	$ \begin{array}{c c} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array} \ \ \begin{array}{c} t \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		tксү1/2 - 120		ns					
SCKp low-level width	tĸ∟ı	KL1 4.0 V ≤ EV _{DD0} ≤ 5.5 V, 2.7 V ≤ V _b ≤ 4.0 V, C _b = 20 pF, R _b = 1.4 kΩ		tксү1/2 - 7		tксү1/2 - 50		tkcy1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	tксү1/2 - 10		tkcy1/2 - 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiк1	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_{b} \leq V_{b} \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ	58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tĸsı1	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_{b} \leq V_{b} \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD}\\ 2.7 \ V \leq V_{b} \leq V\\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ		130		130		130	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-speed main) mode		LS (low-speed mode	d main)	LV (low-vol main) mo	ltage ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 ≥ 4/fclk		300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
				1150		1150		1150		ns
SCKp high-level width	₩			tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$2.7 V \le EV_{DD0}$ $2.3 V \le V_b \le 2.$ $C_b = 30 pF, R_b$	tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns	
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		tксү1/2 - 458		tксү1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width	tĸL1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_{b} \leq 4.0 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 1.4 \ k\Omega \end{array}$		tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2. \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			tксү1/2 - 50		tkcy1/2 - 50		ns
		$1.8 V \le EV_{DD0}$ $1.6 V \le V_b \le 2.$ $C_b = 30 \text{ pF, Rb}$	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns	

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note Use it with $EVDD0 \ge Vb$.

(Remarks are listed two pages after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- Remark 2. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

```
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)
```

Parameter	Symbol	Conditions		HS (high-s mo	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	l
SCLA0 clock	fscL	Standard mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency		fc∟k ≥ 1 MHz	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \le EV_{DD0} \le 5.5~V$	-	_	0	100	0	100	kHz
Setup time of tsu: st	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	5.5 V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.7		4.7		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	4.0		4.0		4.0		μs	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	4.0		4.0		4.0		μs	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		_			4.0		μs
Hold time when	tLOW	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.7		4.7		μs
Hold time when	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.0		4.0		μs

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\text{and}} \ensuremath{\textit{Remark}}$ are listed on the next page.)

2.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
detection			Falling edge	3.90	3.98	4.06	V
threshold		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		Vlvd3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		Vlvd5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		Vlvd7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		Vlvd9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
			Falling edge	1.70	1.73	1.77	V
		VLVD13	Rising edge	1.64	1.67	1.70	V
			Falling edge	1.60	1.63	1.66	V
Minimum pulse	width	t∟w		300			μs
Detection delay	y time					300	μs

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F104xxGxx

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.
- Caution 4. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Remark When RL78/G14 is used in the range of T_A = -40 to +85°C, see 2. ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C).

3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)		clock (fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsub) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}\text{DD} \leq 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock input high-level width, low-level width	texн, texL	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
		$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to	tтін, tті∟				1/fмск + 10			ns
TI13 input high-level width, low-level width					Note			
Timer RJ input cycle	fc	TRJIO		$2.7~V \leq EV \text{DD0} \leq 5.5~V$	100			ns
				$2.4~V \leq EV_{DD0} < 2.7~V$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

 Remark
 fmck: Timer array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

('TA = -40 to +105°C. 2.4 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V	V. Vss = EVss0 = EVss1 = 0 V
		,

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$	24 MHz < fмск	28/fмск		ns
			$20 \text{ MHz} < \text{fmck} \leq 24 \text{ MHz}$	24/fмск		ns
			8 MHz < fмск \leq 20 MHz	20/fмск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$	24 MHz < fмск	40/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	32/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \leq 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fмск \leq 16 MHz	24/fмск		ns
			$4 \text{ MHz} < f_{MCK} \leq 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le EV_{DD0} < 3.3 \text{ V},$ $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	24 MHz < fмск	96/fмск		ns
			$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	72/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \leq 20 \text{ MHz}$	64/fмск		ns
			8 MHz < fмcк \leq 16 MHz	52/fмск		ns
			$4 \text{ MHz} < f_{MCK} \leq 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0 \ V \le EV_{DD0} \le 5.5 \ V, \ 2.7 \ V \le V_b \le 4.0 \ V$		tkcy2/2 - 24		ns
width		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V$		tkcy2/2 - 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}$		tксү2/2 - 100		ns
SIp setup time	tsiк2	$4.0 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$		1/fмск + 40		ns
(to SCKp↑) Note 2		$2.7~V \leq EV_{DD0} < 4.0~V,~2.3~V \leq V_b \leq 2.7~V$		1/fмск + 40		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp†) Note 3	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$			2/fмск + 240	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$			2/fмск + 428	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ Rv = 5.5 \ k\Omega \end{array}$			2/fмск + 1146	ns

(Notes, Caution, and Remarks are listed on the next page.)

4. PACKAGE DRAWINGS

4.1 30-pin products

R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP R5F104AAGSP, R5F104ACGSP, R5F104ADGSP, R5F104AEGSP, R5F104AFGSP, R5F104AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]	
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18	

NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

·κ

Α 9.85±0.15 в 0.45 MAX С 0.65 (T.P.) $0.24_{-0.07}^{+0.08}$ D F 0.1±0.05 F 1.3±0.1 G 1.2 8.1±0.2 Н 6.1±0.2 I 1.0±0.2 J 0.17±0.03 κ L 0.5 0.13 Μ Ν 0.10 Р 3°+5° 0.25 т 0.6±0.15 U

©2012 Renesas Electronics Corporation. All rights reserved.

4.4 40-pin products

R5F104EAANA, R5F104ECANA, R5F104EDANA, R5F104EEANA, R5F104EFANA, R5F104EGANA, R5F104EHANA

R5F104EADNA, R5F104ECDNA, R5F104EDDNA, R5F104EEDNA, R5F104EFDNA, R5F104EGDNA, R5F104EHDNA

R5F104EAGNA, R5F104ECGNA, R5F104EDGNA, R5F104EEGNA, R5F104EFGNA, R5F104EGGNA, R5F104EHGNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-4	0.09

Referance	Dimension in Millimeters					
Symbol	Min	Nom	Max			
D	5.95	6.00	6.05			
E	5.95	6.00	6.05			
А	0.70	0.75	0.80			
b	0.18	0.25	0.30			
е		0.50				
Lp	0.30	0.40	0.50			
x —		—	0.05			
У	—		0.05			

ITEM		D2			E2		
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	А	4.45	4.50	4.55	4.45	4.50	4.55

©2012 Renesas Electronics Corporation. All rights reserved.

R5F104GKAFB, R5F104GLAFB R5F104GKGFB, R5F104GLGFB

4.8 64-pin products

R5F104LCAFA, R5F104LDAFA, R5F104LEAFA, R5F104LFAFA, R5F104LGAFA, R5F104LHAFA, R5F104LJAFA R5F104LCDFA, R5F104LDDFA, R5F104LEDFA, R5F104LFDFA, R5F104LGDFA, R5F104LHDFA, R5F104LJDFA R5F104LCGFA, R5F104LDGFA, R5F104LEGFA, R5F104LFGFA, R5F104LGGFA, R5F104LHGFA, R5F104LJGFA R5F104LKAFA, R5F104LLAFA

R5F104LKGFA, R5F104LLGFA

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

R5F104LKAFB, R5F104LLAFB R5F104LKGFB, R5F104LLGFB

