

Welcome to E-XFL.COM

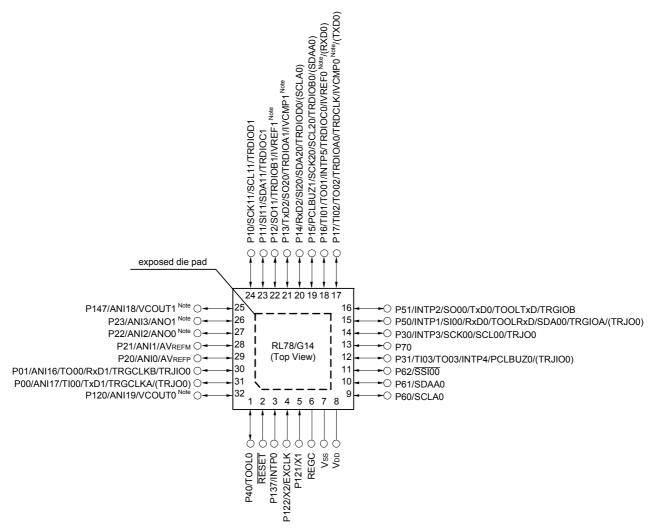
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFl

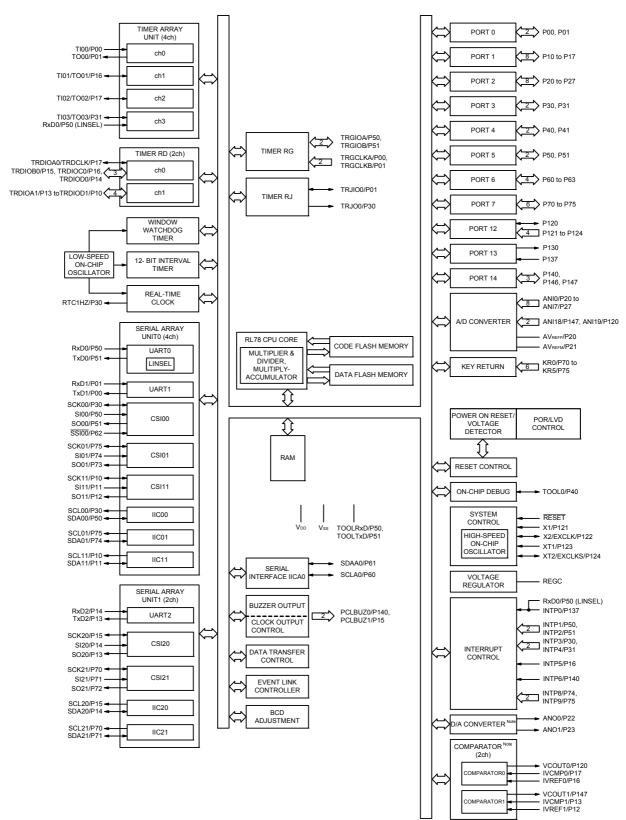

2 010	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104gjafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)


Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

1.5.6 48-pin products

Note Mounted on the 96 KB or more code flash memory products.

1	ი	in	i٦
(2	12	.)

		80-pin	(2/2) 100-pin			
1	tem	· · · · · · · · · · · · · · · · · · ·	•			
1	lem	R5F104Mx (x = K, L)	R5F104Px (x = K, L)			
Clock output/buzz	zer output	2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2. (Main system clock: fMAIN = 20 MHz operati 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.03 (Subsystem clock: fsub = 32.768 kHz operation) 	1			
8/10-bit resolution	n A/D converter	17 channels	20 channels			
D/A converter		2 channels	2 channels			
Comparator		2 channels	2 channels			
Serial interface		 [80-pin, 100-pin products] CSI: 2 channels/UART (UART supporting L CSI: 2 channels/UART: 1 channel/simplified CSI: 2 channels/UART: 1 channel/simplified CSI: 2 channels/UART: 1 channel/simplified 	I I ² C: 2 channels			
	I ² C bus	2 channels	2 channels			
Data transfer con	troller (DTC)	39 sources	39 sources			
Event link control	ler (ELC)	Event input: 26 Event trigger output: 9				
Vectored inter-	Internal	32	32			
rupt sources	External	13	13			
Key interrupt		8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access	ן Note			
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.51 \pm 0.06 \text{ V}$ (TA = -40 to +105°C) • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.50 \pm 0.06 \text{ V}$ (TA = -40 to +105°C)				
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug fu	nction	Provided				
Power supply vol	tage	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)				
Operating ambier	nt temperature	$ T_A = -40 \text{ to } +85^{\circ}\text{C} \text{ (A: Consumer applications, D: Industrial applications),} $ $ T_A = -40 \text{ to } +105^{\circ}\text{C} \text{ (G: Industrial applications)} $				

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz

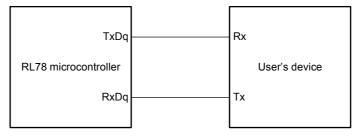
LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

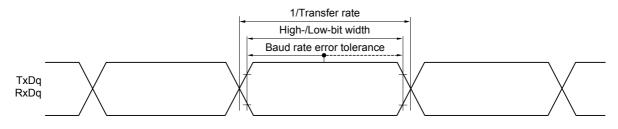
- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe-		clock (fmain)	mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	0.0625		1	μs
cution time)		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clo	ock (fsuв) operation	$1.8~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
		program-	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		ming mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fEX	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD} <$	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,	tEXL	$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		60			ns
		$1.6 \text{ V} \leq \text{V}_{DD} <$	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	100			ns
				$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	500			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level	t⊤ji∟			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

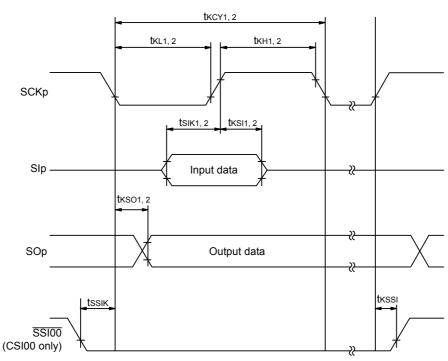

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD $1.8 V \le EVDD0 < 2.7 V$: MIN. 125 ns $1.6 V \le EVDD0 < 1.8 V$: MIN. 250 ns


Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

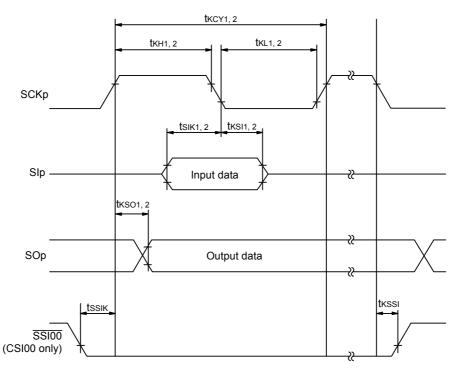
UART mode connection diagram (during communication at same potential)

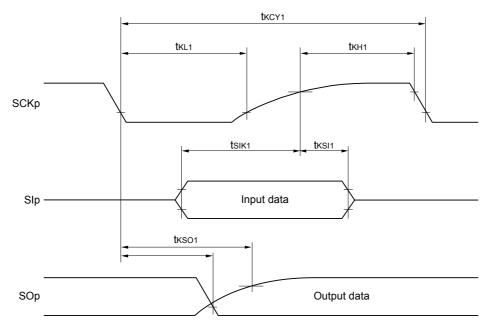
UART mode bit width (during communication at same potential) (reference)



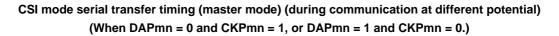
Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

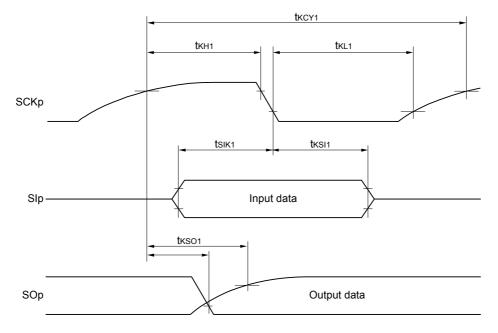
Remark 2. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		1.2	±7.0	LSB
			1.6 V \leq VDD \leq 5.5 V Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI20	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			1.6 V \leq VDD \leq 5.5 V Note 3			±0.85	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V$ Note 3			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3			±6.5	LSB
Differential linearity error	DLE	10-bit resolution	$1.8~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			±2.0	LSB
Note 1			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EV _{DD0}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		١	/ _{BGR} Note	4	V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	node)	۲V	MPS25 Not	te 4	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

		$\mathbf{E}\mathbf{V}\mathbf{D}\mathbf{D}0 = \mathbf{E}\mathbf{V}\mathbf{D}\mathbf{D}1 \leq \mathbf{V}\mathbf{D}\mathbf{D} \leq 5.5 \mathbf{V},$,			(4/:
Items	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \\ \text{IOH1} = -3.0 \text{ mA} \end{array}$	EVDD0 - 0.7			V
		P80 to P87, P100 to P102, P110,	2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
		P111, P120, P130, P140 to P147	2.4 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27, P150 to P156	2.4 V ≤ Vdd ≤ 5.5 V, Ioh2 = -100 μA	VDD - 0.5			V
Output voltage, low	P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130	P31, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 8.5 \ \text{mA} \end{array}$			0.7	V
		$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			0.6	V	
		P140 to P147	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$\begin{array}{l} 2.4 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 0.6 \ \text{mA} \end{array}$			0.4	V
	VOL2	P20 to P27, P150 to P156	$\begin{array}{l} 2.4 \ V \leq V \text{dd} \leq 5.5 \ V, \\ I \text{OL2} = 400 \ \mu A \end{array}$			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA	$\begin{array}{l} 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{IOL3} = 5.0 \text{ mA} \end{array}$			0.4	V	
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{IOL3} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4		
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	9.3	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	9.3	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.7	
				fiH = 32 MHz Note 3		VDD = 3.0 V		4.8	8.7	
				fносо = 48 MHz,		VDD = 5.0 V		4.0	7.3	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	7.3	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.7	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.7	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.9	
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.9	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.3	5.7	mA
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.4	5.8	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.3	5.7	5.7
				VDD = 3.0 V	operation	Resonator connection		3.4	5.8	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.0	3.4	
				VDD = 5.0 V	operation	Resonator connection		2.1	3.5	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.0	3.4	
				VDD = 3.0 V	operation	Resonator connection		2.1	3.5	
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
				TA = +25°C	operation	Resonator connection		4.7	6.1	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	
				TA = +50°C	operation	Resonator connection		4.8	6.7	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5	
				TA = +70°C	operation	Resonator connection		4.8	7.5	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	1
				T _A = +85°C operation	Resonator connection		5.4	8.9		
				fsub = 32.768 kHz Note 4	Normal	Square wave input		7.2	21.0	
				TA = +105°C	operation	Resonator connection		7.3	21.1	

(Notes and Remarks are listed on the next page.)

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

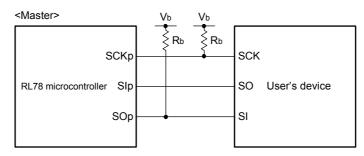
- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

<R> <R>

<R> <R>

<R> <R>

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products


(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Uni	
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA	
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.9		1	
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.5		1	
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.5		1	
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		6.0	11.2	m/	
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		6.0	11.2		
					fносо = 32 MHz,	Normal	VDD = 5.0 V		5.5	10.6	1
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.5	10.6		
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.7	8.6		
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.7	8.6		
				fносо = 24 MHz,	Normal	VDD = 5.0 V		4.4	8.2		
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.4	8.2	2	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.3	5.9		
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		3.3	5.9	1	
			HS (high-speed main)	fmx = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	m	
	mode Note 5 VDD = 5.0 V operation	operation	Resonator connection		3.9	7.0	1				
				fmx = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	1	
				VDD = 3.0 V	operation	Resonator connection		3.9	7.0	1	
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.3	4.1		
				VDD = 5.0 V	operation	Resonator connection		2.3	4.2		
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1		
				VDD = 3.0 V	operation	Resonator connection		2.3	4.2	1	
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		5.2	7.7	μ	
			operation	TA = -40°C	operation	Resonator connection		5.2	7.7	1	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7	1	
				TA = +25°C	operation	Resonator connection		5.3	7.7	1	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.6	1	
				TA = +50°C	operation	Resonator connection		5.5	10.6	1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2		
				TA = +70°C	operation Resonator connection		6.0	13.2	1		
				fsuв = 32.768 kHz ^{Note 4}	Normal	Square wave input		6.8	17.5	1	
				$T_A = +85^{\circ}C$	operation	Resonator connection		6.9	17.5	1	
				fsue = 32.768 kHz ^{Note 4}	Normal	Square wave input		15.5	77.8	1	
				$T_A = +105^{\circ}C$	operation				-	-	
						Resonator connection		15.5	77.8	L	

(Notes and Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential

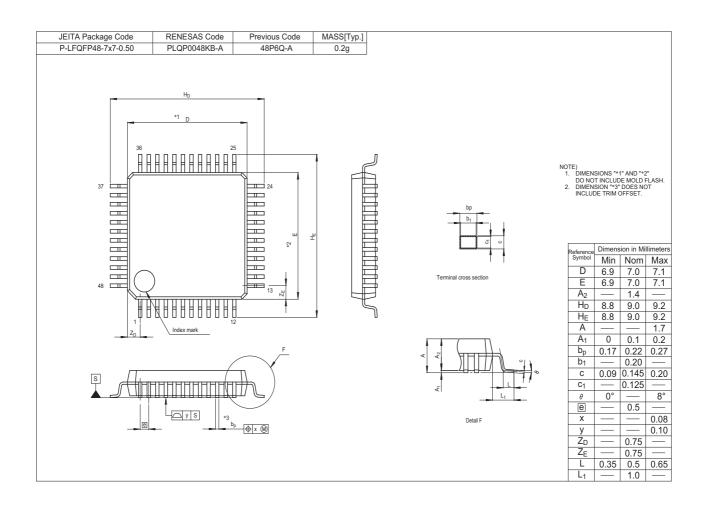
- **Remark 5.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 6.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 7. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 8. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Parameter	Symbol	Con	Conditions				Unit
Voltage detection	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, f	C2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage				V
threshold	VLVDD1	LVIS1, LVIS0 = 1, 0	LVIS1, LVIS0 = 1, 0 Rising release reset voltage				V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

(2) Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

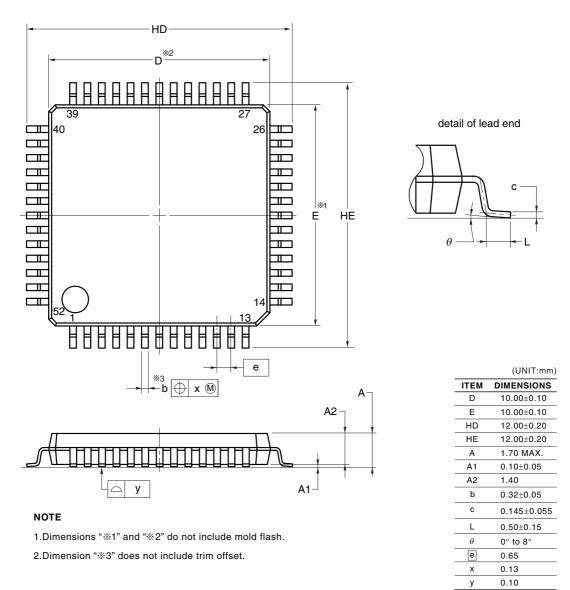
3.6.7 Power supply voltage rising slope characteristics


(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

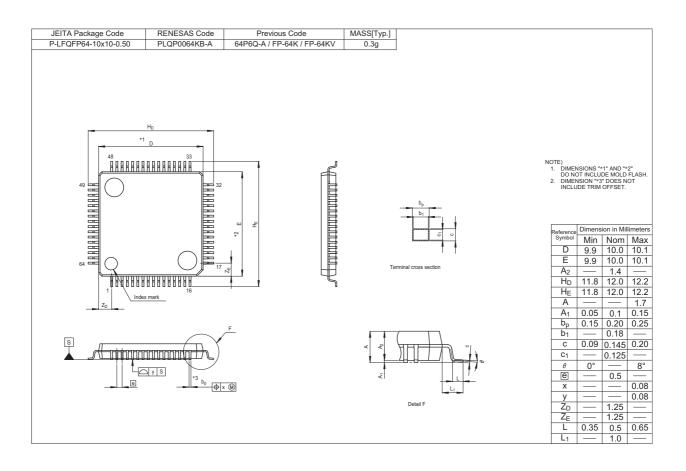
Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

R5F104GKAFB, R5F104GLAFB R5F104GKGFB, R5F104GLGFB



4.7 52-pin products

R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F104LKAFB, R5F104LLAFB R5F104LKGFB, R5F104LLGFB

