

Welcome to E-XFL.COM

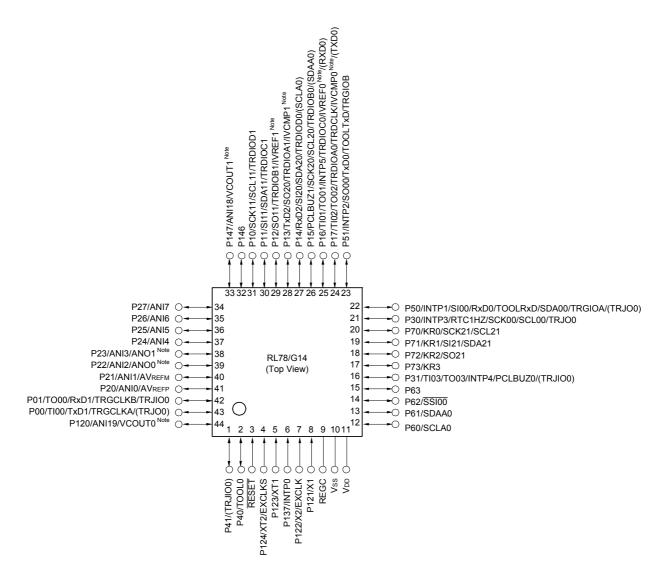
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104jdafa-x0

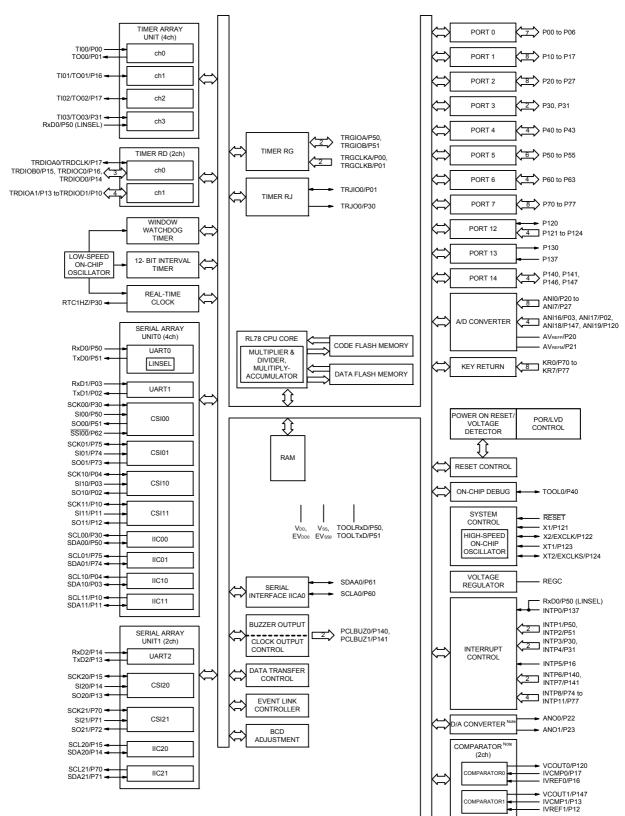

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G14

1.3.5 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)


Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.8 64-pin products

Note Mounted on the 96 KB or more code flash memory products.

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(PIORU, 1) are set to				(1/2)		
		30-pin	32-pin	36-pin	40-pin		
	Item	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)		
Code flash mer	mory (KB)	96 to 128	96 to 128	96 to 128	96 to 192		
Data flash men	nory (KB)	8	8	8	8		
RAM (KB)		12 to 16 Note	12 to 16 Note	12 to 16 Note	12 to 20 Note		
Address space		1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)HS (high-speed main) mode:1 to 20 MHz (VDD = 2.7 to 5.5 V),HS (high-speed main) mode:1 to 16 MHz (VDD = 2.4 to 5.5 V),LS (low-speed main) mode:1 to 8 MHz (VDD = 1.8 to 5.5 V),LV (low-voltage main) mode:1 to 4 MHz (VDD = 1.6 to 5.5 V)					
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mod	 de: 1 to 32 MHz (VDD = 2 de: 1 to 16 MHz (VDD = 2 e: 1 to 8 MHz (VDD = 1.6 de: 1 to 4 MHz (VDD = 1.6 	.4 to 5.5 V), 8 to 5.5 V),			
Subsystem clo	ck		_		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz		
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1.6	to 5.5 V				
General-purpos	se register	8 bits $ imes$ 32 registers (8 bits	s \times 8 registers \times 4 banks)				
Minimum instru	iction execution time	$0.03125\mu s$ (High-speed of	on-chip oscillator clock: fін	= 32 MHz operation)			
		0.05 µs (High-speed syste	em clock: fmx = 20 MHz op	eration)			
			_		30.5 μs (Subsystem clock: fsue = 32.768 kHz operation)		
Instruction set		Multiplication and Accur		+ 32 bits)	,		
I/O port	Total	26	28	32	36		
	CMOS I/O	21	22	26	28		
	CMOS input	3	3	3	5		
	CMOS output	—	_	_	-		
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3		
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer F	RJ: 1 channel, Timer RD: 2	channels, Timer RG: 1 c	hannel)		
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 13 channe PWM outputs: 9 channels					
	RTC output		_		1 • 1 Hz (subsystem clock: fs⊍B = 32.768 kHz)		

(Note is listed on the next page.)

(2	121
(2)	Z)

		11 nin	10 nin	EQ nin	(2/2)				
	14	44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)				
Clock output/buz	zer output	2	2	2	2				
			9.76 kHz, 1.25 MHz, 2.						
			fmain = 20 MHz operatio						
			24 kHz, 2.048 kHz, 4.09		84 kHz, 32.768 kHz				
		(Subsystem clock: fs	uв = 32.768 kHz opera	tion)	1				
8/10-bit resolutio	n A/D converter	10 channels10 channels12 channels12 channels							
Serial interface		• CSI: 1 channel/UAR	T (UART supporting LIN T: 1 channel/simplified I RT: 1 channel/simplified	² C: 1 channel	ified I ² C: 1 channel				
		[48-pin, 52-pin product	ts]						
		CSI: 2 channels/UAF	RT (UART supporting L	N-bus): 1 channel/simp	lified I ² C: 2 channels				
		CSI: 1 channel/UAR	T: 1 channel/simplified I	² C: 1 channel					
		CSI: 2 channels/UAF	RT: 1 channel/simplified	I ² C: 2 channels					
		[64-pin products]			_				
			RT (UART supporting L	, , ,	lified I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels							
		CSI: 2 channels/UAF	RT: 1 channel/simplified	I ² C: 2 channels					
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer cor	troller (DTC)	29 sources	30 sources		31 sources				
Event link contro	ller (ELC)	Event input: 20 Event trigger output: 7							
Vectored inter-	Internal	24	24	24	24				
rupt sources	External	7	10	12	13				
Key interrupt		4	6	8	8				
Reset		 Reset by RESET pin Internal reset by wat Internal reset by pow Internal reset by volt Internal reset by illeg Internal reset by RAN Internal reset by illeg 	chdog timer ver-on-reset age detector al instruction execution M parity error	Note					
Power-on-reset of	sircuit	• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.51 \pm 0.06 \text{ V}$ (TA = -40 to +105°C) • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.50 \pm 0.06 \text{ V}$ (TA = -40 to +105°C)							
Voltage detector		1.63 V to 4.06 V (14 st	tages)						
On-chip debug fu	Inction	Provided							
Power supply vol	tage	VDD = 1.6 to 5.5 V (TA	= -40 to +85°C)						
		VDD = 2.4 to 5.5 V (TA	= -40 to +105°C)						
Operating ambie	nt temperature		Consumer applications : Industrial applications		ons),				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C	, 1.6 V \leq EVDD0 \leq	VDD \leq 5.5 V, Vss =	= EVsso = 0 V)(2/2)
--------------------	-----------------------------	-------------------------	---------------------

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	3.09	mA
Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.80	3.09	1
				fносо = 32 MHz,	VDD = 5.0 V		0.49	2.40	1
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	2.40	1
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.40	1
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.40	1
				fносо = 24 MHz,	VDD = 5.0 V		0.4	1.83	
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	1.83	1
				fносо = 16 MHz,	VDD = 5.0 V		0.37	1.38	1
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	1.38	1
		LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		260	710	μΑ	
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		260	710	1
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	700	μΑ
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		420	700	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.28	1.55	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	1.74	
			f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.55		
			VDD = 3.0 V	Resonator connection		0.40	1.74		
			f _{MX} = 10 MHz Note 3,	Square wave input		0.19	0.86	1	
			VDD = 5.0 V	Resonator connection		0.25	0.93	1	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.19	0.86	
					Resonator connection		0.25	0.93	
			LS (low-speed main) f _{MX} = 8 MHz ^{Note 3} ,	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	550	μΑ
			mode Note 7	te 7 V _{DD} = 3.0 V	Resonator connection		140	590	
				f _{MX} = 8 MHz Note 3,	Square wave input		95	550	
				VDD = 2.0 V	Resonator connection		140	590	
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μΑ
			operation	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.30	0.57	
				TA = +25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz Note 5,	Square wave input		0.36	1.17	
				TA = +50°C	Resonator connection		0.59	1.36	
				fsub = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	
				fsub = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
			TA = +85°C	Resonator connection		1.16	3.56		
		STOP mode	TA = -40°C				0.18	0.51	μΑ
	Note 6	Note 8	TA = +25°C				0.24	0.51	1
			TA = +50°C	$T_A = +50^{\circ}C$			0.29	1.10	1
			TA = +70°C	2			0.41	1.90	
			TA = +85°C				0.90	3.30	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe-		clock (fmain)	mode	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.0625		1	μs
cution time)		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clo	ock (fsuв) operation	$1.8~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
		program-	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		ming mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fEX	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD} <$	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texh, texl	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,		$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		60			ns
		$1.6 \text{ V} \leq \text{V}_{DD} <$	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	100			ns
				$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	500			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level	t⊤JIL			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD $1.8 V \le EVDD0 < 2.7 V$: MIN. 125 ns $1.6 V \le EVDD0 < 1.8 V$: MIN. 250 ns

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

Parameter	Symbol	Cond	ditions	HS (high-spee mode	d main)	LS (low-speed mode	d main)	LV (low-voltag mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	t КСҮ2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	8/fмск		_		—		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		—		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	6/fмск and 500		6/fмск and 500		6/fмск and 500		ns	
	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	6/fмск and 750		6/fмск and 750		6/fмск and 750		ns		
	$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tкн2,	$4.0~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксү2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		ns
low-level width tkL2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	tксү2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns		
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns	
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 66		tkcy2/2 - 66		tксү2/2 - 66		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		tkcy2/2 - 66		tксү2/2 - 66		ns
SIp setup time	tsik2	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tнigн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		100		100		100		ns
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

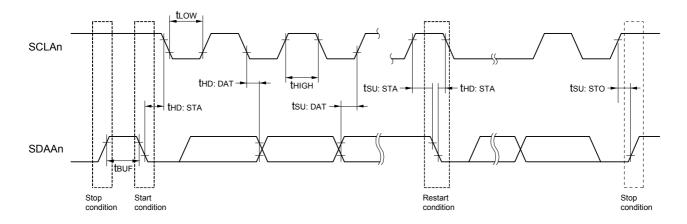
Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

(3) I²C fast mode plus

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Parameter	Symbol	Symbol Conditions			h-speed mode	•	v-speed mode	•	-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	$ \begin{array}{ c c c c } \hline Fast \mbox{ mode plus:} \\ f_{CLK} \geq 10 \mbox{ MHz} \end{array} & 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V} & 0 & 1000 & & \\ \hline \end{array} $		_	kHz					
Setup time of restart condi- tion	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.7 \text{ V}$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			-		-		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			—		—		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq 5.7$	5 V	0.5		—		—		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	5 V	0.26		—		-	_	μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	5 V	50		-	_	-	_	ns
Data hold time (transmission) Note 2	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0 0.45 — —		—		_	μs	
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq 5.$	5 V	0.26		-	_	-	_	μs
Bus-free time	t BUF	$2.7 \text{ V} \le EV_{DD0} \le 5.7$	5 V	0.5		-	_	-	_	μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEDAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Note 3. The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVREFP}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±5.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error Notes 1, 2 Ezs 10-bit resolution $EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR	
		$EVDD0 \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Ill-scale error Notes 1, 2 EFS 10-bit resolution	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V~Note~5$			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 When AVREFP < EVDD0 ≤ VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.20%FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

		0 199		(172)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 Note 1	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P64 to P67,	and -0.3 to VDD +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137,	-0.3 to V _{DD} +0.3 Note 2	V
		P150 to P156, EXCLK, EXCLKS, RESET		
Output voltage	V01	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P60 to P67,	and -0.3 to VDD +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P130, P140 to P147		
	V02	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

(1/2)

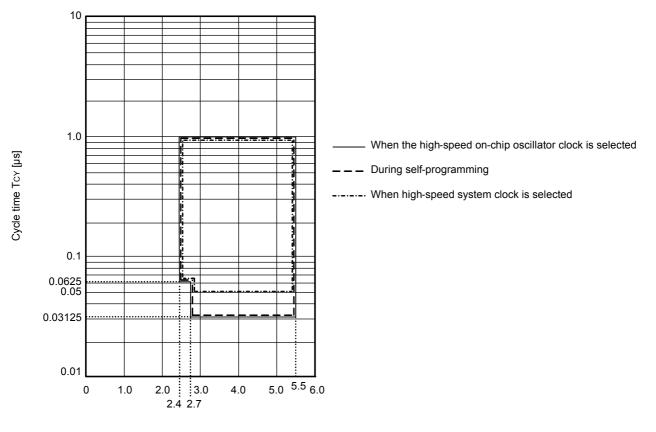
Absolute Maximum Ratings

(2/2)

					(21	
Parameter	Symbols	Conditions		Ratings	Unit	
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA	
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA	
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA	
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA	
		Total of all pins		-2	mA	
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA	
	Total of all pins 170 mA	Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA	
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA	
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA	
	Total o pins	Total of all pins		5	mA	
Operating ambient temperature	Та	In normal operation mode In flash memory programming mode		-40 to +105	°C	
Storage temperature	Tstg			-65 to +150	°C	

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

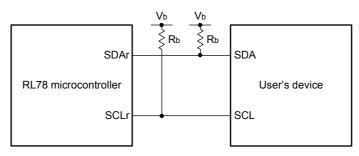
Supply voltage VDD [V]

(4) During communication at same potential (simplified I²C mode)

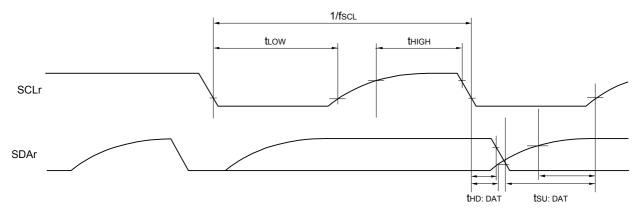
(TA = -40 to +105°C, 2.4 V \leq EV	$VDD0 = EVDD1 \le VDD$	≤ 5.5 V, Vss = EVss₀ = EVss₁ = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) mode		
			MIN.	MAX.		
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz	
		$\begin{array}{l} 2.4 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		100 Note 1	kHz	
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns	
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	4600		ns	
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns	
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ Cb = 100 pF, Rb = 3 k Ω	4600		ns	
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns	
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	1/fMCK + 580 Note 2		ns	
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns	
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} \texttt{=} 100 \ pF, \ R_{b} \texttt{=} 3 \ k\Omega \end{array}$	0	1420	ns	

Note 1. The value must also be equal to or less than fMCK/4.


Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI20	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EV _{DD0}	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 3		V	
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		Vı	VTMPS25 Note 3		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

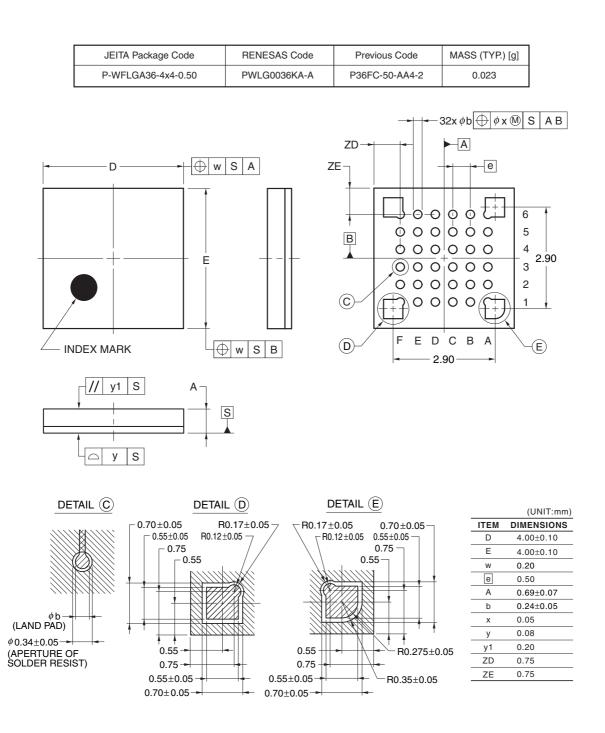
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Voltage detection	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.75	2.86	V
threshold	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
VLVDD2			Falling interrupt voltage	2.75	2.86	2.97	V
		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
		Falling interrupt voltage	2.85	2.96	3.07	V	
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

(2) Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

3.6.7 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

4.3 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA

©2012 Renesas Electronics Corporation. All rights reserved.

