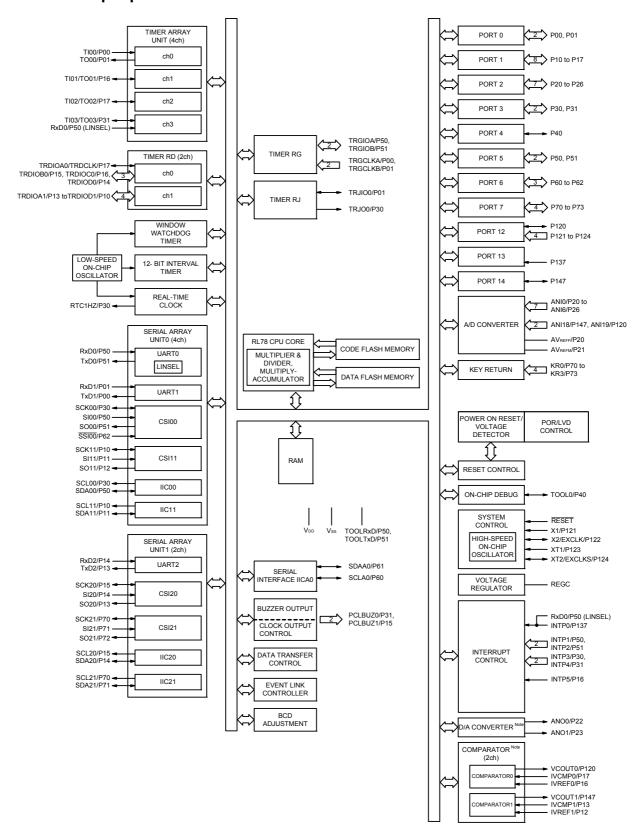


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

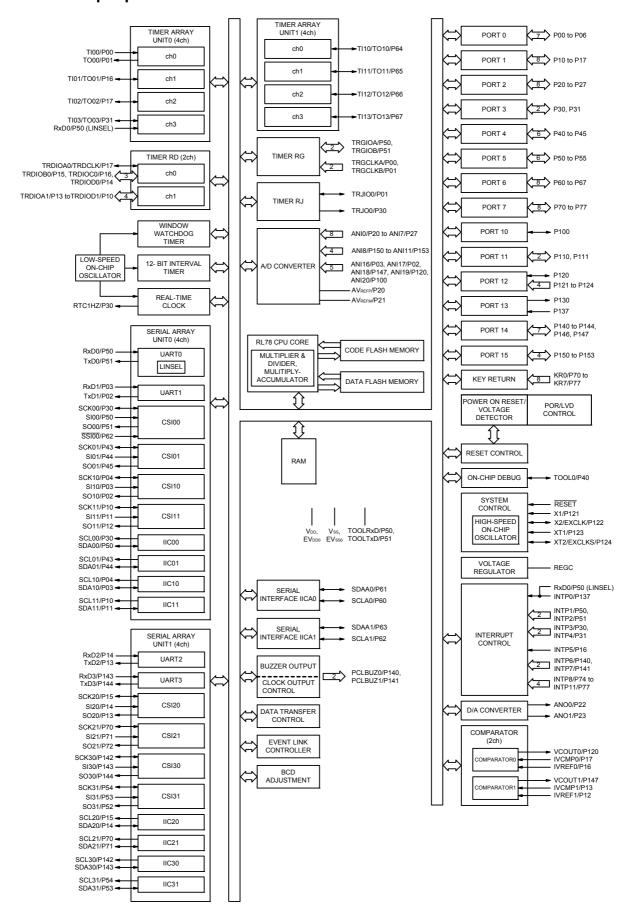
Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104jdgfa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G14 1. OUTLINE


1.5.4 40-pin products

Note Mounted on the 96 KB or more code flash memory products.

RL78/G14 1. OUTLINE

1.5.9 80-pin products

RL78/G14 1. OUTLINE

(2/2)

		40 :	(2/2)					
		48-pin	64-pin					
Item		R5F104Gx	R5F104Lx					
		(x = K, L)	(x = K, L)					
Clock output/buzzer outp	out	2	2					
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5	5 MHz, 5 MHz, 10 MHz					
		(Main system clock: fMAIN = 20 MHz operation						
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09						
		(Subsystem clock: fsub = 32.768 kHz opera	· T					
8/10-bit resolution A/D co	onverter	10 channels 12 channels						
D/A converter		2 channels						
Comparator		2 channels						
Serial interface		[48-pin products]						
		CSI: 2 channels/UART (UART supporting LI	N-bus): 1 channel/simplified I ² C: 2 channels					
		CSI: 1 channel/UART: 1 channel/simplified I	² C: 1 channel					
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels					
		[64-pin products]						
		CSI: 2 channels/UART (UART supporting LI	•					
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels						
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels					
	I ² C bus	1 channel	1 channel					
Data transfer controller (I	DTC)	32 sources	33 sources					
Event link controller (ELC	C)	Event input: 22						
		Event trigger output: 9						
Vectored interrupt	Internal	24	24					
sources	External	10	13					
Key interrupt		6	8					
Reset		Reset by RESET pin						
l		Internal reset by watchdog timer						
		Internal reset by power-on-reset						
		Internal reset by voltage detector						
		Internal reset by illegal instruction execution	Note					
		Internal reset by RAM parity error						
		Internal reset by illegal-memory access						
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.04 V (T _A = -40	· · · · · · · · · · · · · · · · · · ·					
		1.51 ± 0.06 V (TA = -40 • Power-down-reset: 1.50 ± 0.04 V (TA = -40	•					
		1.50 ±0.04 V (TA = -40	•					
Voltage detector		1.63 V to 4.06 V (14 stages)						
On-chip debug function		Provided						
Power supply voltage		V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C)						
1 Ower Supply Voltage		V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)						
Operating ambient temper	erature	TA = -40 to +85°C (A: Consumer applications,	D: Industrial applications)					
	Jature	$T_A = -40 \text{ to } +35 \text{ C}$ (A. Consumer applications, $T_A = -40 \text{ to } +105 \text{°C}$ (G: Industrial applications						
		(3. madound applications	,					

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.4		
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.1		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.1		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		5.1	8.7	mA
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.1	8.7	
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		4.8	8.1	
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		4.8	8.1	
				fHOCO = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	6.9	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.0	6.9	
				fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		3.8	6.3	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		3.8	6.3	
				fHOCO = 16 MHz,	Normal	V _{DD} = 5.0 V		2.8	4.6	
				fih = 16 MHz Note 3	operation	V _{DD} = 3.0 V		2.8	4.6	
			LS (low-speed main)	fносо = 8 MHz,	Normal	V _{DD} = 3.0 V		1.3	2.0	mA
	mode Note 5	mode Note 5	fih = 8 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	2.0		
			LV (low-voltage main)	fHOCO = 4 MHz,	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
		mode Note 5	fiH = 4 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	1.8		
			HS (high-speed main)	fmx = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3	mA
			mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.4	5.5	
				f _{MX} = 20 MHz Note 2,	Normal operation	Square wave input		3.3	5.3	
			_	V _{DD} = 3.0 V		Resonator connection		3.4	5.5	-
				f _{MX} = 10 MHz Note 2, V _{DD} = 5.0 V	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
				f _{MX} = 10 MHz Note 2,	MHz Note 2, Normal	Square wave input		2.0	3.1	
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.2	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	mA
			mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.0	
				f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μА
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
				T _A = +25°C	operation	Resonator connection		4.7	6.1	
			fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7		
			T _A = +50°C	operation	Resonator connection		4.8	6.7		
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5			
		TA = +70°C	operation	Resonator connection		4.8	7.5			
	fs		fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9		
			T _A = +85°C	operation	Resonator connection		5.4	8.9	1	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

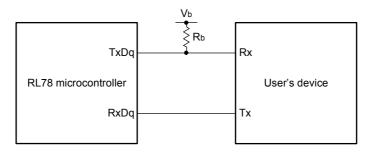
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

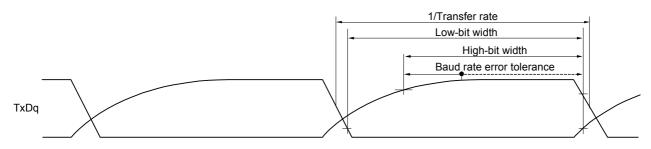
LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

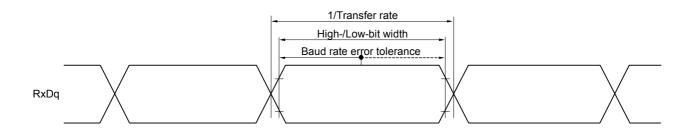
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. filh: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz


LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz


- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
 Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance,
 - Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode		LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 2/fcLk	$\begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_{b} \leq 4.0 \ V, \\ C_{b} &= 20 \ pF, \ R_{b} = 1.4 \ k\Omega \end{aligned}$	200		1150		1150		ns
			$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ Cb &= 20 \ pF, \ Rb = 2.7 \ k\Omega \end{split}$	300		1150		1150		ns
SCKp high-level width	tkH1	$4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 2$ $C_{\text{b}} = 20 \text{ pF, Rb}$	I.0 V,	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{DD0}$ $2.3 \text{ V} \le \text{V}_{b} \le 2$ $C_{b} = 20 \text{ pF, Rb}$	2.7 V,	tkcy1/2 - 120		tkcy1/2 - 120		tkcy1/2 - 120		ns
SCKp low-level width	tKL1	$4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$	4.0 V,	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$	2.7 V,	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) Note 1	tsık1	$4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF}, \text{Rb}$	4.0 V,	58		479		479		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$	2.7 V,	121		479		479		ns
SIp hold time (from SCKp†) Note 1	tksii	$4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$	4.0 V,	10		10		10		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp out- put Note 1	tkso1	$4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$	4.0 V,		60		60		60	ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$	2.7 V,		130		130		130	ns

 $(\textbf{Notes},\,\textbf{Caution},\, \text{and}\,\, \textbf{Remarks} \,\, \text{are listed on the next page.})$

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	٠. ٠	speed main) node	,	speed main) node	,	oltage main) node	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fscL	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} &= 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} 4.0 \ & V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ & V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $		400 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &2.7 \; \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \; \text{V}, \\ &2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ &C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	1150		1550		1550		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1150		1550		1550		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	thigh	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	245		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	200		610		610		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega \end{aligned} $	675		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	600		610		610		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{aligned}$	610		610		610		ns

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

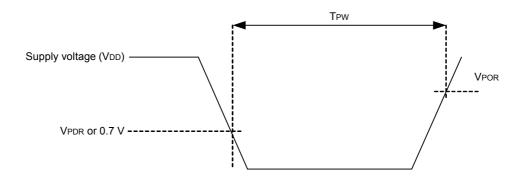
Parameter	Symbol	Conditions F		HS (high-sp mo	,	LS (low-speed main) mode		,	ltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscL	Standard mode:	2.7 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
frequency		fclk ≥ 1 MHz	1.8 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.7 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.6 V ≤ EVDD0 ≤ 5.5 V	_	_	0	100	0	100	kHz
Setup time of	tsu: sta	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
restart condition		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EVDD0 ≤ \$	1.6 V ≤ EVDD0 ≤ 5.5 V		_	4.7		4.7		μs
Hold time Note 1	thd: STA	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.0		4.0		μs
Hold time when	tLOW	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.7		4.7		μs
Hold time when	thigh	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.0		4.0		μs

(Notes, Caution, and Remark are listed on the next page.)

2.6.4 Comparator

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EVDD0 - 1.4	V
	Ivcmp			-0.3		EV _{DD0} + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/μs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode	e, window mode		0.76 VDD		V
Low-electric-potential ref- erence voltage	VTW-	Comparator high-speed mode	e, window mode		0.24 VDD		V
Operation stabilization wait time	tсмр			100			μs
Internal reference voltage Note	VBGR	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ HS (h}$	nigh-speed main) mode	1.38	1.45	1.50	V


Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

2.6.5 POR circuit characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	Tpw		300			μs

- **Note 1.** However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

3.2 Oscillator Characteristics

3.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

3.2.2 On-chip oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін					32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	-1.0		+1.0	%
accuracy		-40 to -20°C	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	-1.5		+1.5	%
		+85 to +105°C	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Note 5. The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} }{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} }$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 6. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/3)

Parameter	Symbol	Conditions	HS (high-spee	ed main) mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) Note	tsıkı	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	162		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	354		ns
		$2.4 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	958		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1	$ 4.0 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 1.4 \text{ k}\Omega $	38		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	38		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	38		ns
Delay time from SCKp↓ to SOp output Note	tkso1	$4.0 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$		200	ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$		390	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega$		966	ns

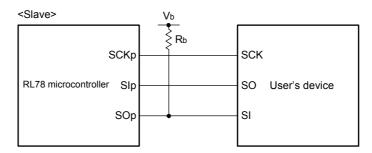
Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	Cor	nditions	HS (high-spee	ed main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	4.0 V ≤ EVDD0 ≤ 5.5 V,	24 MHz < fmck	28/fмск		ns
		$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V}$	20 MHz < fмcк ≤ 24 MHz	24/fмск		ns
			8 MHz < fмcк ≤ 20 MHz	20/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$	24 MHz < fmck	40/fмck		ns
		$2.3 \text{ V} \leq \text{Vb} \leq 2.7 \text{ V}$	20 MHz < fмcк ≤ 24 MHz	32/fмск		ns
			16 MHz < fмcκ ≤ 20 MHz	28/fмск		ns
			8 MHz < fмcк ≤ 16 MHz	24/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		ns
			fмcк ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$	24 MHz < fmck	96/fмск		ns
			20 MHz < fмcк ≤ 24 MHz	72/fмск		ns
			16 MHz < fмcк ≤ 20 MHz	64/fмск		ns
			8 MHz < fмcк ≤ 16 MHz	52/fмск		ns
			4 MHz < fмcк ≤ 8 MHz	32/fмск		ns
			fмcк ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tkH2, tkL2	4.0 V ≤ EVDD0 ≤ 5.5 V, 2.	7 V ≤ V _b ≤ 4.0 V	tkcy2/2 - 24		ns
width		2.7 V ≤ EVDD0 < 4.0 V, 2.	3 V ≤ V _b ≤ 2.7 V	tkcy2/2 - 36		ns
		2.4 V ≤ EVDD0 < 3.3 V, 1.	6 V ≤ V _b ≤ 2.0 V	tkcy2/2 - 100		ns
SIp setup time	tsık2	4.0 V ≤ EVDD0 ≤ 5.5 V, 2.	7 V ≤ V _b ≤ 4.0 V	1/fмск + 40		ns
(to SCKp↑) Note 2		2.7 V ≤ EVDD0 < 4.0 V, 2.	$3 \text{ V} \le \text{Vb} \le 2.7 \text{ V}$	1/fмск + 40		ns
		2.4 V ≤ EVDD0 < 3.3 V, 1.	6 V ≤ V _b ≤ 2.0 V	1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 3	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 4	tKSO2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.$ C _b = 30 pF, R _b = 1.4 kΩ	$7 \text{ V} \le V_b \le 4.0 \text{ V},$		2/fмск + 240	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$			2/fмск + 428	ns
		$2.4 \text{ V} \le \text{EVDD0} < 3.3 \text{ V}, 1.$ C _b = 30 pF, R _V = 5.5 kΩ	6 V ≤ V _b ≤ 2.0 V,		2/fмск + 1146	ns

(Notes, Caution, and Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- Remark 1. R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

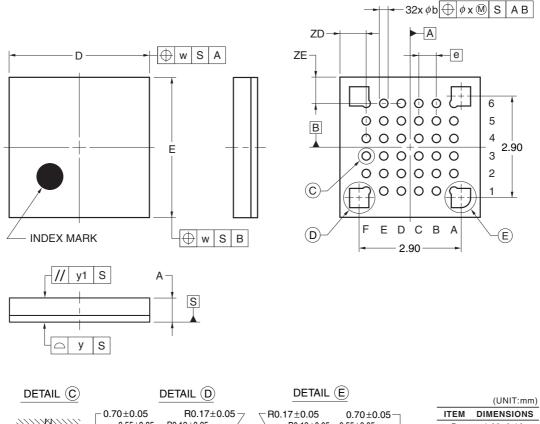
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

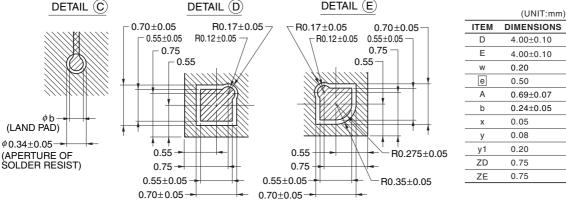
(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI20	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
			$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	2.375		39	μs
			$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	3.5625		39	μs
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		VDD	V
		ANI16 to ANI20		0		EV _{DD0}	V
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		\	V _{BGR} Note 3		V
		Temperature sensor output voltage $ (2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V, HS (high-speed main) mode}) $		VT	V _{TMPS25} Note 3		

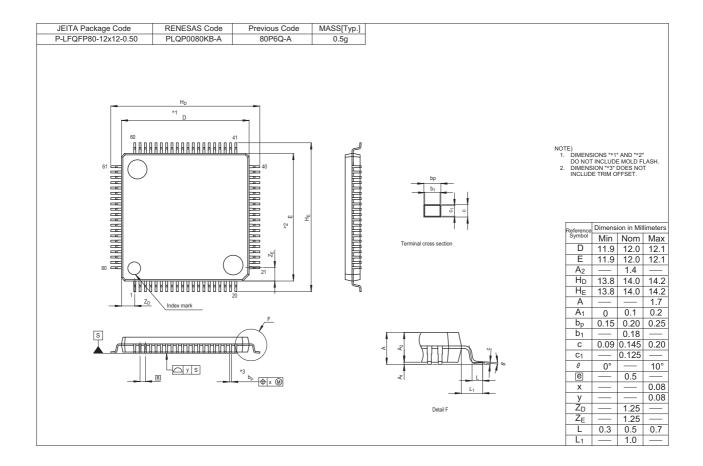
Note 1. Excludes quantization error (±1/2 LSB).


Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.


Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

4.3 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F104MKAFB, R5F104MLAFB R5F104MKGFB, R5F104MLGFB

