

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104jedfa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(1/5)

Pin count	Package	Fields of Application Note	Ordering Part Number
30 pins	30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)	A	R5F104AAASP#V0, R5F104ACASP#V0, R5F104ADASP#V0, R5F104AEASP#V0, R5F104AEASP#V0, R5F104AGASP#V0
			R5F104AAASP#X0, R5F104ACASP#X0, R5F104ADASP#X0, R5F104AEASP#X0, R5F104AFASP#X0, R5F104AGASP#X0
		D	R5F104AADSP#V0, R5F104ACDSP#V0, R5F104ADDSP#V0, R5F104AEDSP#V0, R5F104AFDSP#V0, R5F104AGDSP#V0
			R5F104AADSP#X0, R5F104ACDSP#X0, R5F104ADDSP#X0, R5F104AEDSP#X0, R5F104AFDSP#X0, R5F104AGDSP#X0
		G	R5F104AAGSP#V0, R5F104ACGSP#V0, R5F104ADGSP#V0, R5F104AEGSP#V0, R5F104AFGSP#V0, R5F104AGGSP#V0
			R5F104AAGSP#X0, R5F104ACGSP#X0, R5F104ADGSP#X0, R5F104AEGSP#X0, R5F104AFGSP#X0, R5F104AGGSP#X0
32 pins	32-pin plastic HWQFN (5 \times 5 mm, 0.5 mm pitch)	A	R5F104BAANA#U0, R5F104BCANA#U0, R5F104BDANA#U0, R5F104BEANA#U0, R5F104BFANA#U0, R5F104BGANA#U0
			R5F104BAANA#W0, R5F104BCANA#W0, R5F104BDANA#W0, R5F104BEANA#W0, R5F104BFANA#W0, R5F104BGANA#W0
		D	R5F104BADNA#U0, R5F104BCDNA#U0, R5F104BDDNA#U0, R5F104BEDNA#U0, R5F104BFDNA#U0, R5F104BGDNA#U0
			R5F104BADNA#W0, R5F104BCDNA#W0, R5F104BDDNA#W0, R5F104BEDNA#W0, R5F104BFDNA#W0, R5F104BGDNA#W0
		G	R5F104BAGNA#U0, R5F104BCGNA#U0, R5F104BDGNA#U0, R5F104BEGNA#U0, R5F104BFGNA#U0, R5F104BFGNA#U0
			R5F104BAGNA#W0, R5F104BCGNA#W0, R5F104BDGNA#W0, R5F104BEGNA#W0, R5F104BFGNA#W0, R5F104BGGNA#W0
	32-pin plastic LQFP (7 × 7, 0.8 mm pitch)	A	R5F104BAAFP#V0, R5F104BCAFP#V0, R5F104BDAFP#V0, R5F104BEAFP#V0, R5F104BFAFP#V0, R5F104BGAFP#V0
			R5F104BAAFP#X0, R5F104BCAFP#X0, R5F104BDAFP#X0, R5F104BEAFP#X0, R5F104BFAFP#X0, R5F104BGAFP#X0
		D	R5F104BADFP#V0, R5F104BCDFP#V0, R5F104BDDFP#V0, R5F104BEDFP#V0, R5F104BFDFP#V0, R5F104BGDFP#V0
			R5F104BADFP#X0, R5F104BCDFP#X0, R5F104BDDFP#X0, R5F104BEDFP#X0, R5F104BFDFP#X0, R5F104BGDFP#X0
		G	R5F104BAGFP#V0, R5F104BCGFP#V0, R5F104BDGFP#V0, R5F104BEGFP#V0, R5F104BFGFP#V0, R5F104BGGFP#V0
			R5F104BAGFP#X0, R5F104BCGFP#X0, R5F104BDGFP#X0, R5F104BEGFP#X0, R5F104BFGFP#X0, R5F104BGGFP#X0
36 pins	36-pin plastic WFLGA $(4 \times 4 \text{ mm}, 0.5 \text{ mm pitch})$	A	R5F104CAALA#U0, R5F104CCALA#U0, R5F104CDALA#U0, R5F104CEALA#U0, R5F104CFALA#U0, R5F104CGALA#U0
			R5F104CAALA#W0, R5F104CCALA#W0, R5F104CDALA#W0, R5F104CEALA#W0, R5F104CFALA#W0, R5F104CGALA#W0
		G	R5F104CAGLA#U0, R5F104CCGLA#U0, R5F104CDGLA#U0, R5F104CEGLA#U0, R5F104CFGLA#U0, R5F104CFGLA#U0, R5F104CFGLA#U0
			R5F104CAGLA#W0, R5F104CCGLA#W0, R5F104CDGLA#W0, R5F104CEGLA#W0, R5F104CFGLA#W0, R5F104CGGLA#W0
L			

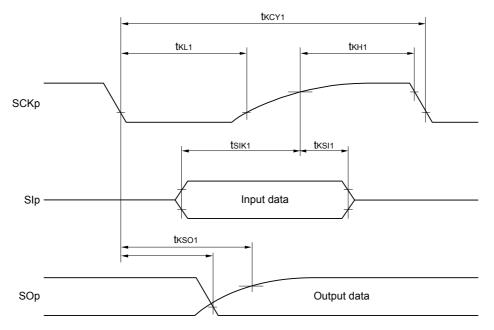
Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

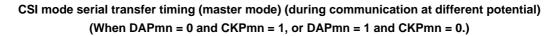
Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

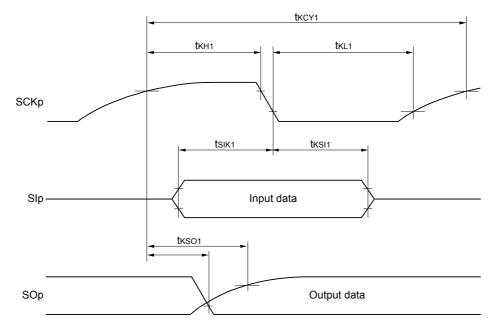
(2/2)	
(2)2)	

		44-pin	48-pin	52-pin	(2/) 64-pin			
	tem	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx			
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)			
Clock output/buz	zer output	2	2	2	2			
		(Main system clock: • 256 Hz, 512 Hz, 1.02	<u>–</u> 9.76 kHz, 1.25 MHz, 2. fмам = 20 MHz operati 24 kHz, 2.048 kHz, 4.09 ив = 32.768 kHz opera	l 5 MHz, 5 MHz, 10 MH; on) 96 kHz, 8.192 kHz, 16.				
8/10-bit resolution	n A/D converter	10 channels	10 channels	12 channels	12 channels			
D/A converter		2 channels		1				
Comparator		2 channels						
Serial interface		 CSI: 1 channel/UAR CSI: 2 channels/UAF [48-pin, 52-pin product CSI: 2 channels/UAF CSI: 1 channel/UAR CSI: 2 channels/UAF [64-pin products] CSI: 2 channels/UAF 	RT: 1 channel/simplified ts] RT (UART supporting L T: 1 channel/simplified RT: 1 channel/simplified RT (UART supporting L RT: 1 channel/simplified	I ² C: 1 channel II ² C: 2 channels IN-bus): 1 channel/sim I ² C: 1 channel II ² C: 2 channels IN-bus): 1 channel/sim II ² C: 2 channels	plified I ² C: 2 channels plified I ² C: 2 channels			
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer con	troller (DTC)	31 sources	32 sources		33 sources			
Event link control	ller (ELC)	Event input: 22 Event trigger output: 9						
Vectored inter-	Internal	24	24	24	24			
rupt sources	External	7	10	12	13			
Key interrupt		4	6	8	8			
Reset Power-on-reset circuit		 Internal reset by wat Internal reset by pow Internal reset by volt Internal reset by illeg Internal reset by illeg Internal reset by illeg Power-on-reset: 						
		1.51 ±0.06 V (TA = -40 to +105°C) • Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C)						
Voltage detector		1.63 V to 4.06 V (14 st	ages)					
On-chip debug fu		Provided	101 0700					
Power supply vol	tage	VDD = 1.6 to 5.5 V (TA VDD = 2.4 to 5.5 V (TA						
Operating ambie	nt temperature		Consumer applications : Industrial applications		ons),			


Note

The illegal instruction is generated when instruction code FFH is executed.


Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.


- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

```
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)
```

Parameter	Symbol	Conditions			peed main) ode	• •	beed main) bde	LV (low-voltage main) mode		Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fsc∟	Standard mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency		$f_{CLK} \geq 1 \ MHz$	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	-	_	0	100	0	100	kHz
Setup time of	tsu: sta	$2.7 V \leq EV_{DD0} \leq 3$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4.7		4.7		μs
restart condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.7 V \le EV_{DD0} \le 3$	4.7		4.7		4.7		μs	
		$1.6 V \le EV_{DD0} \le 8$	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_	4.7		4.7		μs
Hold time Note 1	thd: STA	$2.7 V \leq EV_{DD0} \leq 3$	4.0		4.0		4.0		μs	
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	4.0		4.0		4.0		μs	
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	4.0		4.0		4.0		μs	
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		-	_	4.0		4.0		μs
Hold time when	t∟ow	$2.7 V \leq EV_{DD0} \leq 3$	$2.7~V \leq EV_{DD0} \leq 5.5~V$			4.7		4.7		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$			4.7		4.7		μs
		$1.6 V \le EV_{DD0} \le 8$	5.5 V	-	_	4.7		4.7		μs
Hold time when	tніgн	$2.7 V \leq EV_{DD0} \leq 8$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.0		4.0		μs

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\text{and}} \ensuremath{\textit{Remark}}$ are listed on the next page.)

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVREFP}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±5.0	LSB
		$EVDD0 \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI20	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error Notes 1, 2 Ezs 10-bit resolution		10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V$ Note 5			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 When AVREFP < EVDD0 ≤ VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.20%FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F104xxGxx

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.
- Caution 4. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Remark When RL78/G14 is used in the range of T_A = -40 to +85°C, see 2. ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C).

3.3 DC Characteristics

3.3.1 Pin characteristics

$(Ta = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = EVss1 = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-3.0 Note 2	mA
		P102, P120, P130, P140 to P145 (When duty < 70% Note 3)	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57,	$4.0~V \le EV_{DD0} \le 5.5~V$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
	Іон2	Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-60.0	mA
		Per pin for P20 to P27, P150 to P156	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~V \le V \text{DD} \le 5.5~V$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

IA = -40 t0 + 105 °C, 2.4 V		$\mathbf{P} = \mathbf{EVDD1} \leq \mathbf{VDD} \leq 5.5 \ \mathbf{V}, \ \mathbf{VSS} = \mathbf{EVDD1}$	EVSS0 = EVSS1 = 0 V)		-	-	(2/5)
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1 Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147					8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		(When duty $\leq 70\%$ Note 3)	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			20.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				80.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following

expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01) <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4		
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	9.3	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	9.3	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.7	
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.7	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.0	7.3	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	7.3	
			fносо = 24 MHz, fiн = 24 MHz ^{Note 3}	Normal	VDD = 5.0 V		3.8	6.7		
				operation	VDD = 3.0 V		3.8	6.7		
			fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.9		
			fiH = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.9		
	HS (high-spee	HS (high-speed main)	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.3	5.7	mA	
		mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.4	5.8		
			f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.3	5.7		
				VDD = 3.0 V	operation	Resonator connection		3.4	5.8	
				f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal	Square wave input		2.0	3.4	
					operation	Resonator connection		2.1	3.5	
				f _{MX} = 10 MHz Note 2,	Normal operation	Square wave input		2.0	3.4	
				VDD = 3.0 V		Resonator connection		2.1	3.5	1
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA
			operation	Ta = -40°C	operation	Resonator connection		4.7	6.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
				TA = +25°C	operation	Resonator connection		4.7	6.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	
				TA = +50°C	operation	Resonator connection		4.8	6.7	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5	
				TA = +70°C	operation	Resonator connection		4.8	7.5	1
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	1
				TA = +85°C	operation	Resonator connection		5.4	8.9	1
			fr	fsue = 32.768 kHz Note 4	Normal	Square wave input		7.2	21.0	1
				operation	Resonator connection		7.3	21.1	1	

(Notes and Remarks are listed on the next page.)

		°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)							(2/2
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Uni
Supply cur- ent ^{Note 1}	IDD2 Note 2	HALT mode	HS (high-speed main) mode Note 7	fносо = 64 MHz, fiн = 32 MHz ^{Note 4}	$V_{DD} = 5.0 V$		0.79	4.86	mA
SIIC			mode		V _{DD} = 3.0 V		0.79	4.86	-
				fносо = 32 MHz, fн = 32 MHz ^{Note 4}	VDD = 5.0 V		0.49	4.17	-
					V _{DD} = 3.0 V		0.49	4.17	-
				fносо = 48 MHz, fн = 24 MHz ^{Note 4}	VDD = 5.0 V		0.62	3.82	-
					V _{DD} = 3.0 V		0.62	3.82	-
				fносо = 24 MHz, fн = 24 MHz ^{Note 4}	VDD = 5.0 V		0.4	3.25	-
					VDD = 3.0 V		0.4	3.25	-
				fHoco = 16 MHz,	VDD = 5.0 V		0.38	2.28	-
				fi⊢ = 16 MHz ^{Note 4}	VDD = 3.0 V		0.38	2.28	<u> </u>
			HS (high-speed main)	ed main) f _{MX} = 20 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.30	2.65	m/
		mode Note 7		Resonator connection		0.40	2.77	_	
			$f_{MX} = 20 \text{ MHz} \text{ Note } 3,$	Square wave input		0.30	2.65	_	
			VDD = 3.0 V	Resonator connection		0.40	2.77	_	
			$f_{MX} = 10 \text{ MHz} \text{ Note 3},$	Square wave input		0.20	1.36		
				VDD = 5.0 V	Resonator connection		0.25	1.46	
		$f_{MX} = 10 \text{ MHz} \text{ Note } 3,$	Square wave input		0.20	1.36	4		
				VDD = 3.0 V	Resonator connection		0.25	1.46	
			Subsystem clock oper-	fsue = 32.768 kHz Note 5,	Square wave input		0.28	0.66	μ/
		ation	ation	Ta = -40°C fsub = 32.768 kHz ^{Note 5} ,	Resonator connection		0.47	0.85	
					Square wave input		0.34	0.66	
				TA = +25°C	Resonator connection		0.53	0.85	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.37	2.35	
				TA = +50°C	Resonator connection		0.56	2.54	
				fsue = 32.768 kHz Note 5,	Square wave input		0.61	4.08	
				TA = +70°C	Resonator connection		0.80	4.27	1
				fsue = 32.768 kHz Note 5,	Square wave input		1.55	8.09	1
				TA = +85°C	Resonator connection		1.74	8.28	1
				fsue = 32.768 kHz Note 5,	Square wave input		6.00	51.00	1
				TA = +105°C	Resonator connection		6.00	51.00	1
	Idd3	STOP mode	TA = -40°C				0.19	0.57	μ/
	Note 6	Note 8	TA = +25°C				0.25	0.57	1
			TA = +50°C				0.33	2.26	-
			TA = +70°C				0.52	3.99	1
			TA = +85°C				1.46	8.00	1
			T _A = +105°C				5.50	50.00	1

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

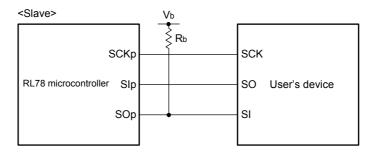
(Notes and Remarks are listed on the next page.)

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz


Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

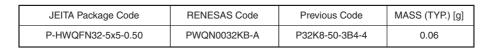
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

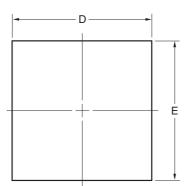
3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

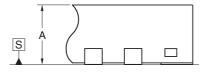
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

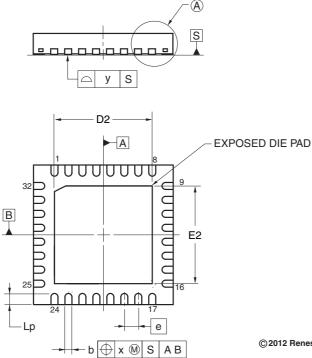
(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics

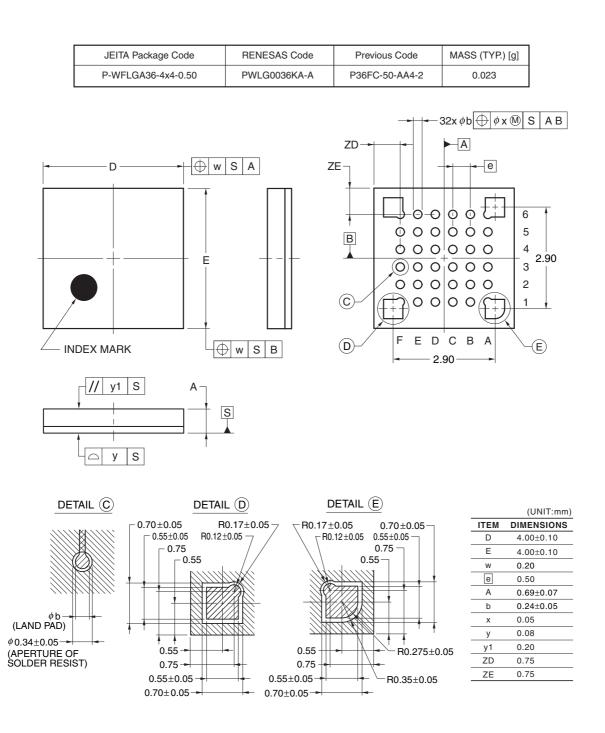

(TA = -40 to +105°C, 2.4 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)


Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		Rload = 8 MΩ	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V\text{DD} \leq 5.5~V$			3	μs
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs


4.2 32-pin products


R5F104BAANA, R5F104BCANA, R5F104BDANA, R5F104BEANA, R5F104BFANA, R5F104BGANA R5F104BADNA, R5F104BCDNA, R5F104BDDNA, R5F104BEDNA, R5F104BFDNA, R5F104BGDNA R5F104BAGNA, R5F104BCGNA, R5F104BDGNA, R5F104BEGNA, R5F104BFGNA, R5F104BGGNA

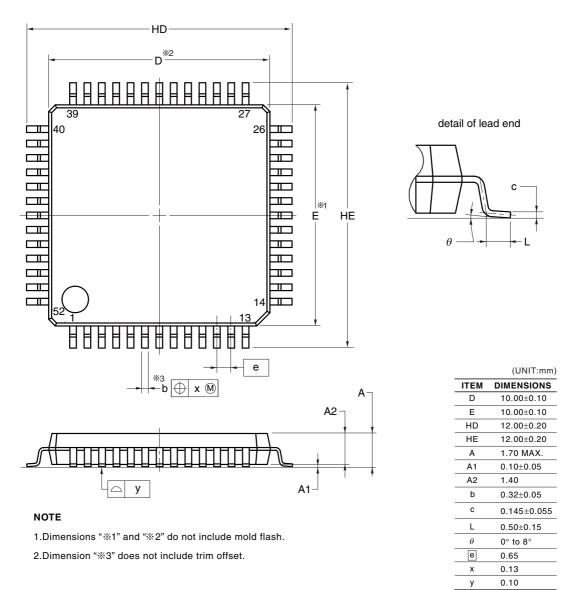
Referance	Dimension in Millimeters				
Symbol	Min	Nom	Max		
D	4.95	5.00	5.05		
E	4.95	5.00	5.05		
A	0.70	0.75	0.80		
b	0.18	0.25	0.30		
е		0.50			
Lp	0.30	0.40	0.50		
х			0.05		
у			0.05		


ITEM		D2			E2		
	MIN	NOM	MAX	MIN	NOM	MAX	
EXPOSED DIE PAD VARIATIONS	A	3.45	3.50	3.55	3.45	3.50	3.55

©2012 Renesas Electronics Corporation. All rights reserved.

4.3 36-pin products

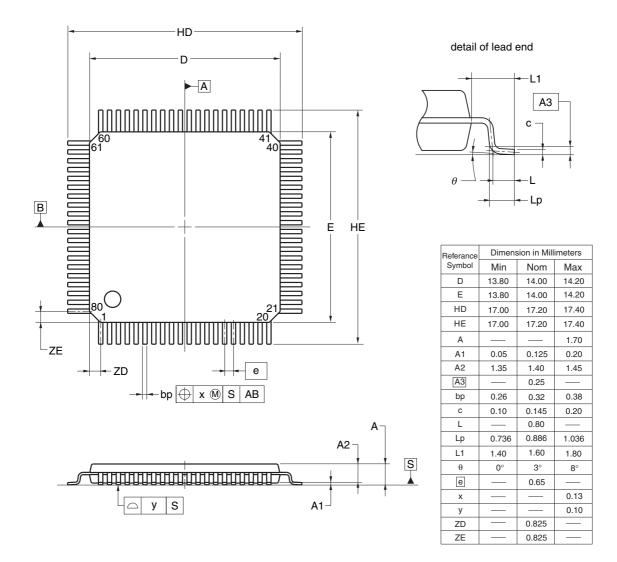
R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA


©2012 Renesas Electronics Corporation. All rights reserved.

4.7 52-pin products

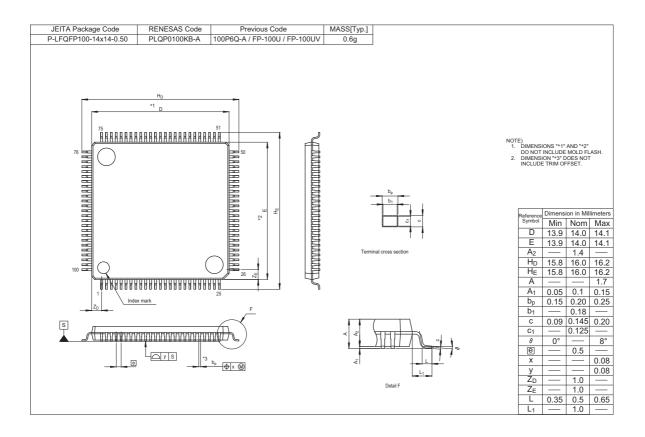
R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3



© 2012 Renesas Electronics Corporation. All rights reserved.

R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA R5F104MFGFA, R5F104MGGFA, R5F104MHGFA, R5F104MJGFA R5F104MKAFA, R5F104MLAFA R5F104MKGFA, R5F104MLGFA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F104PKAFB, R5F104PLAFB R5F104PKGFB, R5F104PLGFB

