



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 38                                                                              |
| Program Memory Size        | 128KB (128K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 8K x 8                                                                          |
| RAM Size                   | 16К х 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 12x8/10b; D/A 2x8b                                                          |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 52-LQFP                                                                         |
| Supplier Device Package    | 52-LQFP (10x10)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104jgafa-v0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.5.6 48-pin products



**Note** Mounted on the 96 KB or more code flash memory products.



# 2. ELECTRICAL SPECIFICATIONS (TA = -40 to $+85^{\circ}$ C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications  $T_A = -40$  to  $+85^{\circ}C$ 

R5F104xxAxx

- D: Industrial applications TA = -40 to +85°C R5F104xxDxx
- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.



- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
   Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
  - HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$  to 32 MHz
    - 2.4 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 16 MHz
  - LS (low-speed main) mode:  $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$  to 8 MHz
  - LV (low-voltage main) mode:  $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\textcircled{O}}1 \text{ MHz}$  to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C



#### (2) I<sup>2</sup>C fast mode

#### (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

| Parameter                       | Symbol   | C                                         | Conditions                                                     |     | Conditions HS (high-spectrum) mode |      | h-speed<br>mode | LS (lov<br>main) | /-speed<br>mode | LV (low-voltage main) mode |  | Unit |
|---------------------------------|----------|-------------------------------------------|----------------------------------------------------------------|-----|------------------------------------|------|-----------------|------------------|-----------------|----------------------------|--|------|
|                                 |          |                                           |                                                                |     | MAX.                               | MIN. | MAX.            | MIN.             | MAX.            |                            |  |      |
| SCLA0 clock frequency           | fsc∟     | Fast mode:                                | $2.7~V \leq EV_{DD0} \leq 5.5~V$                               | 0   | 400                                | 0    | 400             | 0                | 400             | kHz                        |  |      |
|                                 |          | fc∟k ≥ 3.5 MHz                            | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ | 0   | 400                                | 0    | 400             | 0                | 400             | kHz                        |  |      |
| Setup time of restart condi-    | tsu: STA | $2.7~V \leq EV_{DD0} \leq$                | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ |     |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
| tion                            |          | $1.8 \text{ V} \leq EV_{DD0} \leq$        | 5.5 V                                                          | 0.6 |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
| Hold time Note 1                | thd: STA | $2.7~V \leq EV_{DD0} \leq$                | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ |     |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
|                                 |          | $1.8 \text{ V} \leq EV_{DD0} \leq$        | 5.5 V                                                          | 0.6 |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
| Hold time when SCLA0 = "L" tLow |          | $2.7~V \leq EV_{DD0} \leq 5.5~V$          |                                                                | 1.3 |                                    | 1.3  |                 | 1.3              |                 | μs                         |  |      |
|                                 |          | $1.8 \text{ V} \leq EV_{DD0} \leq$        | $1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$        |     |                                    | 1.3  |                 | 1.3              |                 | μs                         |  |      |
| Hold time when SCLA0 = "H"      | tніgн    | $2.7~V \leq EV_{DD0} \leq$                | 5.5 V                                                          | 0.6 |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
|                                 |          | $1.8~V \leq EV_{DD0} \leq$                | 5.5 V                                                          | 0.6 |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
| Data setup time (reception)     | tsu: dat | $2.7~V \leq EV_{DD0} \leq$                | 5.5 V                                                          | 100 |                                    | 100  |                 | 100              |                 | ns                         |  |      |
|                                 |          | $1.8~V \leq EV_{DD0} \leq$                | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ |     |                                    | 100  |                 | 100              |                 | ns                         |  |      |
| Data hold time (transmission)   | thd: dat | $2.7~V \leq EV_{DD0} \leq$                | 5.5 V                                                          | 0   | 0.9                                | 0    | 0.9             | 0                | 0.9             | μs                         |  |      |
| Note 2                          |          | $1.8 \text{ V} \leq EV_{\text{DD0}} \leq$ | 5.5 V                                                          | 0   | 0.9                                | 0    | 0.9             | 0                | 0.9             | μs                         |  |      |
| Setup time of stop condition    | tsu: sto | $2.7~V \leq EV_{\text{DD0}} \leq$         | 5.5 V                                                          | 0.6 |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
|                                 |          | $1.8 \text{ V} \leq EV_{DD0} \leq$        | 5.5 V                                                          | 0.6 |                                    | 0.6  |                 | 0.6              |                 | μs                         |  |      |
| Bus-free time                   | tвuғ     | $2.7 \text{ V} \leq EV_{DD0} \leq$        | 5.5 V                                                          | 1.3 |                                    | 1.3  |                 | 1.3              |                 | μs                         |  |      |
|                                 |          | $1.8~V \leq EV_{\text{DD0}} \leq$         | 5.5 V                                                          | 1.3 |                                    | 1.3  |                 | 1.3              |                 | μs                         |  |      |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C<sub>b</sub> (communication line capacitance) and the value of R<sub>b</sub> (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode:  $C_b$  = 320 pF,  $R_b$  = 1.1 k $\Omega$ 



(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +85°C, 2.4 V  $\leq$  VDD  $\leq$  5.5 V, 1.6 V  $\leq$  EVDD = EVDD1  $\leq$  VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR <sup>Note 3</sup>, Reference voltage (-) = AVREFM = 0 V <sup>Note 4</sup>, HS (high-speed main) mode)

| Parameter                           | Symbol | Conditions       |                                | MIN. | TYP. | MAX.        | Unit  |
|-------------------------------------|--------|------------------|--------------------------------|------|------|-------------|-------|
| Resolution                          | RES    |                  |                                | 8    |      |             | bit   |
| Conversion time                     | tCONV  | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ | 17   |      | 39          | μs    |
| Zero-scale error Notes 1, 2         | Ezs    | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±0.60       | % FSR |
| Integral linearity error Note 1     | ILE    | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±2.0        | LSB   |
| Differential linearity error Note 1 | DLE    | 8-bit resolution | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±1.0        | LSB   |
| Analog input voltage                | Vain   |                  |                                | 0    |      | VBGR Note 3 | V     |

**Note 1.** Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.



### (2) Interrupt & Reset Mode

### (TA = -40 to +85°C, VPDR $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V)

| Parameter         | Symbol |        | Condi                                         | tions                        | MIN. | TYP. | MAX. | Unit |
|-------------------|--------|--------|-----------------------------------------------|------------------------------|------|------|------|------|
| Voltage detection | VLVDA0 | VPOC2, | VPOC1, VPOC0 = 0, 0, 0, fal                   | ling reset voltage           | 1.60 | 1.63 | 1.66 | V    |
| threshold         | VLVDA1 |        | LVIS1, LVIS0 = 1, 0                           | Rising release reset voltage | 1.74 | 1.77 | 1.81 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 1.70 | 1.73 | 1.77 | V    |
|                   | VLVDA2 |        | LVIS1, LVIS0 = 0, 1                           | Rising release reset voltage | 1.84 | 1.88 | 1.91 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 1.80 | 1.84 | 1.87 | V    |
|                   | VLVDA3 |        | LVIS1, LVIS0 = 0, 0                           | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|                   | VLVDB0 | VPOC2, | VPOC1, VPOC0 = 0, 0, 1, fal                   | ling reset voltage           | 1.80 | 1.84 | 1.87 | V    |
| VL<br>VL<br>VL    | VLVDB1 |        | LVIS1, LVIS0 = 1, 0                           | Rising release reset voltage | 1.94 | 1.98 | 2.02 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 1.90 | 1.94 | 1.98 | V    |
|                   | VLVDB2 | VLVDB2 | LVIS1, LVIS0 = 0, 1                           | Rising release reset voltage | 2.05 | 2.09 | 2.13 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 2.00 | 2.04 | 2.08 | V    |
|                   | VLVDB3 |        | LVIS1, LVIS0 = 0, 0                           | Rising release reset voltage | 3.07 | 3.13 | 3.19 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 3.00 | 3.06 | 3.12 | V    |
|                   | VLVDC0 | VPOC2, | VPOC1, VPOC0 = 0, 1, 0, falling reset voltage |                              | 2.40 | 2.45 | 2.50 | V    |
|                   | VLVDC1 | 1 [    | LVIS1, LVIS0 = 1, 0                           | Rising release reset voltage | 2.56 | 2.61 | 2.66 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 2.50 | 2.55 | 2.60 | V    |
|                   | VLVDC2 |        | LVIS1, LVIS0 = 0, 1                           | Rising release reset voltage | 2.66 | 2.71 | 2.76 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 2.60 | 2.65 | 2.70 | V    |
|                   | VLVDC3 |        | LVIS1, LVIS0 = 0, 0                           | Rising release reset voltage | 3.68 | 3.75 | 3.82 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 3.60 | 3.67 | 3.74 | V    |
|                   | VLVDD0 | VPOC2, | VPOC1, VPOC0 = 0, 1, 1, fal                   | ling reset voltage           | 2.70 | 2.75 | 2.81 | V    |
|                   | VLVDD1 |        | LVIS1, LVIS0 = 1, 0                           | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|                   | VLVDD2 |        | LVIS1, LVIS0 = 0, 1                           | Rising release reset voltage | 2.96 | 3.02 | 3.08 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 2.90 | 2.96 | 3.02 | V    |
|                   | VLVDD3 | 1      | LVIS1, LVIS0 = 0, 0                           | Rising release reset voltage | 3.98 | 4.06 | 4.14 | V    |
|                   |        |        |                                               | Falling interrupt voltage    | 3.90 | 3.98 | 4.06 | V    |

# 2.6.7 Power supply voltage rising slope characteristics

### (TA = -40 to +85°C, Vss = 0 V)

| Parameter                         | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|------------|------|------|------|------|
| Power supply voltage rising slope | SVDD   |            |      |      | 54   | V/ms |

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.



#### 2.7 **RAM Data Retention Characteristics**

| (TA = -40 to +85°C, Vss = 0V) |        |            |           |      |      |      |
|-------------------------------|--------|------------|-----------|------|------|------|
| Parameter                     | Symbol | Conditions | MIN.      | TYP. | MAX. | Unit |
| Data retention supply voltage | VDDDR  |            | 1.46 Note |      | 5.5  | V    |

The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset Note is effected, but RAM data is not retained when a POR reset is effected.



#### 2.8 **Flash Memory Programming Characteristics**

| $(1A = -40 tO + 60 C, 1.6 V \le VDD \le 0.5 V, VSS = 0 V$ | $(T_A = -40 \text{ to } +85^{\circ}\text{C}.)$ | $1.8 \text{ V} \leq \text{VDD} \leq 5.5$ | V. Vss = $0$ V) |
|-----------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------|
|-----------------------------------------------------------|------------------------------------------------|------------------------------------------|-----------------|

| Parameter                                      | Symbol | Conditions                         | MIN.    | TYP.      | MAX. | Unit  |
|------------------------------------------------|--------|------------------------------------|---------|-----------|------|-------|
| System clock frequency                         | fclk   | $1.8~V \leq V_{DD} \leq 5.5~V$     | 1       |           | 32   | MHz   |
| Number of code flash rewrites<br>Notes 1, 2, 3 | Cerwr  | Retained for 20 years<br>Ta = 85°C | 1,000   |           |      | Times |
| Number of data flash rewrites<br>Notes 1, 2, 3 |        | Retained for 1 year<br>TA = 25°C   |         | 1,000,000 |      |       |
|                                                |        | Retained for 5 years<br>TA = 85°C  | 100,000 |           |      |       |
|                                                |        | Retained for 20 years<br>TA = 85°C | 10,000  |           |      |       |

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

#### 2.9 **Dedicated Flash Memory Programmer Communication (UART)**

#### (TA = -40 to +85°C, 1.8 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

| Parameter     | Symbol | Conditions                | MIN.    | TYP. | MAX.      | Unit |
|---------------|--------|---------------------------|---------|------|-----------|------|
| Transfer rate |        | During serial programming | 115,200 |      | 1,000,000 | bps  |



Operation of products rated "G: Industrial applications (TA = -40 to +  $105^{\circ}C$ )" at ambient operating temperatures above  $85^{\circ}C$  differs from that of products rated "A: Consumer applications" and "D: Industrial applications" in the ways listed below.

| Parameter                     | A: Consumer applications, D: Industrial applications                                    | G: Industrial applications                                                               |
|-------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Operating ambient temperature | TA = -40 to +85°C                                                                       | TA = -40 to +105°C                                                                       |
| Operating mode                | HS (high-speed main) mode:                                                              | HS (high-speed main) mode only:                                                          |
| Operating voltage range       | $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 32 \text{ MHz}$ | $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to $32 \text{ MHz}$ |
|                               | 2.4 V $\leq$ VDD $\leq$ 5.5 V@1 MHz to 16 MHz                                           | 2.4 V $\leq$ VDD $\leq$ 5.5 V@1 MHz to 16 MHz                                            |
|                               | LS (low-speed main) mode:                                                               |                                                                                          |
|                               | 1.8 V $\leq$ VDD $\leq$ 5.5 V@1 MHz to 8 MHz                                            |                                                                                          |
|                               | LV (low-voltage main) mode:                                                             |                                                                                          |
|                               | 1.6 V $\leq$ VDD $\leq$ 5.5 V@1 MHz to 4 MHz                                            |                                                                                          |
| High-speed on-chip oscillator | $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ :                            | $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$ :                           |
| clock accuracy                | ±1.0% @ TA = -20 to +85°C                                                               | ±2.0% @ TA = +85 to +105°C                                                               |
|                               | ±1.5% @ TA = -40 to -20°C                                                               | ±1.0% @ TA = -20 to +85°C                                                                |
|                               | $1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$ :                              | ±1.5% @ TA = -40 to -20°C                                                                |
|                               | ±5.0% @ TA = -20 to +85°C                                                               |                                                                                          |
|                               | ±5.5% @ TA = -40 to -20°C                                                               |                                                                                          |
| Serial array unit             | UART                                                                                    | UART                                                                                     |
|                               | CSI: fcLk/2 (16 Mbps supported), fcLk/4                                                 | CSI: fclk/4                                                                              |
|                               | Simplified I <sup>2</sup> C communication                                               | Simplified I <sup>2</sup> C communication                                                |
| IICA                          | Standard mode                                                                           | Standard mode                                                                            |
|                               | Fast mode                                                                               | Fast mode                                                                                |
|                               | Fast mode plus                                                                          |                                                                                          |
| Voltage detector              | • Rising: 1.67 V to 4.06 V (14 stages)                                                  | • Rising: 2.61 V to 4.06 V (8 stages)                                                    |
|                               | Falling: 1.63 V to 3.98 V (14 stages)                                                   | • Falling: 2.55 V to 3.98 V (8 stages)                                                   |

**Remark** The electrical characteristics of products rated "G: Industrial applications (TA = -40 to + 105°C)" at ambient operating temperatures above 85°C differ from those of products rated "A: Consumer applications" and "D: Industrial applications". For details, refer to **3.1** to **3.10**.



- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$  to 32 MHz
  - 2.4 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C



- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.<br/>HS (high-speed main) mode:  $2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
  - 2.4 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C



#### Parameter Symbo Conditions MIN. TYP. MAX. fносо = 64 MHz, $V_{DD} = 5.0 V$ 2.6 Supply DD1 Operat-HS (high-speed main) Basic current ing mode mode Note 5 fill = 32 MHz Note 3 operation VDD = 3.0 V 2.6 Note 1 fносо = 32 MHz. Basic VDD = 5.0 V 2.3 fiH = 32 MHz Note 3 operation VDD = 3.0 V 2.3 fносо = 64 MHz, VDD = 5.0 V HS (high-speed main) Normal 5.4 10.9 mode Note 5 fiH = 32 MHz Note 3 operation $V_{DD} = 3.0 V$ 54 10.9 VDD = 5.0 V 10.3 fносо = 32 MHz. Normal 5.0 fin = 32 MHz Note 3 operation VDD = 3.0 V 10.3 5.0 VDD = 5.0 V fHOCO = 48 MHz. 42 82 Normal fiH = 24 MHz Note 3 operation VDD = 3.0 V 4.2 8.2 fносо = 24 MHz, Normal VDD = 5.0 V 4.0 7.8 fill = 24 MHz Note 3 operation VDD = 3.0 V 40 78 fносо = 16 MHz, Normal VDD = 5.0 V 3.0 5.6 fin = 16 MHz Note 3 operation VDD = 3.0 V 3.0 5.6 HS (high-speed main) 3.4 f<sub>MX</sub> = 20 MHz Note 2 Normal Square wave input 6.6 mode Note 5 VDD = 5.0 V operation Resonator connection 3.6 6.7 f<sub>MX</sub> = 20 MHz Note 2, Normal Square wave input 34 6.6 operation $V_{DD} = 3.0 V$ Resonator connection 3.6 6.7 fmx = 10 MHz Note 2, 2.1 3.9 Normal Square wave input VDD = 5.0 V operation Resonator connection 22 4.0 f<sub>MX</sub> = 10 MHz Note 2. Normal Square wave input 2.1 3.9 VDD = 3.0 V operation Resonator connection 2.2 4.0 fsub = 32.768 kHz Note 4 49 71 Subsystem clock Normal Square wave input operation operation $T_A = -40^{\circ}C$ Resonator connection 4.9 7.1 fsub = 32.768 kHz Note 4 Normal Square wave input 4.9 7.1 $T_A = +25^{\circ}C$ operation 4.9 7.1 Resonator connection Normal 5.1 8.8 fsub = 32.768 kHz Note 4 Square wave input $T_A = +50^{\circ}C$ operation 8.8 Resonator connection 5.1 10.5 fsub = 32.768 kHz Note 4 Square wave input 5.5 Normal TA = +70°C operation Resonator connection 5.5 10.5 fsub = 32.768 kHz Note 4 Normal 6.5 14.5 Square wave input TA = +85°C operation 6.5 14.5 Resonator connection

fsub = 32.768 kHz Note 4

 $T_{A} = +105^{\circ}C$ 

Normal

operation

Square wave input

Resonator connection

### (2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

#### (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes and Remarks are listed on the next page.)

Unit

mΑ

mΑ

mΑ

μA

13.0

13.0

58.0

58.0

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C



# 3.4 AC Characteristics

| Items                                        | Symbol          |                            | Conditions           |                                                            | MIN.        | TYP. | MAX. | Unit |
|----------------------------------------------|-----------------|----------------------------|----------------------|------------------------------------------------------------|-------------|------|------|------|
| Instruction cycle (min-                      | Тсү             | Main system                | HS (high-speed main) | $2.7~V \leq V_{DD} \leq 5.5~V$                             | 0.03125     |      | 1    | μs   |
| imum instruction exe-<br>cution time)        |                 | clock (fmain)<br>operation | mode                 | $2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$         | 0.0625      |      | 1    | μs   |
|                                              |                 | Subsystem clo              | ock (fsub) operation | $2.4~V \leq V_{DD} \leq 5.5~V$                             | 28.5        | 30.5 | 31.3 | μs   |
|                                              |                 | In the self-               | HS (high-speed main) | $2.7~V \leq V_{DD} \leq 5.5~V$                             | 0.03125     |      | 1    | μs   |
|                                              |                 | program-<br>ming mode      | mode                 | $2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$         | 0.0625      |      | 1    | μs   |
| External system clock                        | fEX             | $2.7~V \leq V_{DD} \leq$   | 5.5 V                |                                                            | 1.0         |      | 20.0 | MHz  |
| frequency                                    |                 | $2.4~V \leq V_{DD} \leq$   | 2.7 V                |                                                            | 1.0         |      | 16.0 | MHz  |
|                                              | fexs            |                            |                      |                                                            | 32          |      | 35   | kHz  |
| External system clock                        | texн,           | $2.7~V \leq V_{DD} \leq$   | 5.5 V                |                                                            | 24          |      |      | ns   |
| input high-level width,                      | texl            | $2.4~V \leq V_{DD} \leq$   | 2.7 V                |                                                            | 30          |      |      | ns   |
| low-level width                              | texhs,<br>texls |                            |                      |                                                            | 13.7        |      |      | μs   |
| TI00 to TI03, TI10 to                        | tтін, tті∟      |                            |                      |                                                            | 1/fмск + 10 |      |      | ns   |
| TI13 input high-level width, low-level width |                 |                            |                      |                                                            | Note        |      |      |      |
| Timer RJ input cycle                         | fc              | TRJIO                      |                      | $2.7~V \leq EV \text{DD0} \leq 5.5~V$                      | 100         |      |      | ns   |
|                                              |                 |                            |                      | $2.4~V \leq EV_{DD0} < 2.7~V$                              | 300         |      |      | ns   |
| Timer RJ input high-                         | tтjiн,          | TRJIO                      |                      | $2.7~V \leq EV \text{DD0} \leq 5.5~V$                      | 40          |      |      | ns   |
| level width, low-level width                 | t⊤ji∟           |                            |                      | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$ | 120         |      |      | ns   |

#### (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V  $\leq EVDD0 < 2.7$  V: MIN. 125 ns

 Remark
 fmck: Timer array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))



| (                                                |                 |                                                     |                                                              | -,         |      |      | (    |
|--------------------------------------------------|-----------------|-----------------------------------------------------|--------------------------------------------------------------|------------|------|------|------|
| Items                                            | Symbol          | Conditio                                            | ons                                                          | MIN.       | TYP. | MAX. | Unit |
| Timer RD input high-level width, low-level width | ttdih,<br>ttdi∟ | TRDIOA0, TRDIOA1, TRDIOE<br>TRDIOC0, TRDIOC1, TRDIO | 30, TRDIOB1,<br>D0, TRDIOD1                                  | 3/fclk     |      |      | ns   |
| Timer RD forced cutoff signal                    | <b>t</b> TDSIL  | P130/INTP0                                          | $2MHz < fclk \le 32 MHz$                                     | 1          |      |      | μs   |
| input low-level width                            |                 |                                                     | fclk ≤ 2 MHz                                                 | 1/fclк + 1 |      |      |      |
| Timer RG input high-level                        | tтgiн,          | TRGIOA, TRGIOB                                      | TRGIOA, TRGIOB                                               |            |      |      | ns   |
| width, low-level width                           | t⊤GIL           |                                                     |                                                              |            |      |      |      |
| TO00 to TO03,                                    | fто             | HS (high-speed main) mode                           | $4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$                      |            |      | 16   | MHz  |
| TO10 to TO13,                                    |                 |                                                     | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$   |            |      | 8    | MHz  |
| TRJIO0, TRJO0,                                   |                 |                                                     | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$   |            |      | 4    | MHz  |
|                                                  |                 |                                                     |                                                              |            |      |      |      |
| TRDIOC0, TRDIOC1,                                |                 |                                                     |                                                              |            |      |      |      |
| TRDIOD0, TRDIOD1,                                |                 |                                                     |                                                              |            |      |      |      |
| TRGIOA, TRGIOB                                   |                 |                                                     |                                                              |            |      |      |      |
| output frequency                                 |                 |                                                     |                                                              |            |      |      |      |
| PCLBUZ0, PCLBUZ1 output                          | <b>f</b> PCL    | HS (high-speed main) mode                           | $4.0~V \leq EV_{DD0} \leq 5.5~V$                             |            |      | 16   | MHz  |
| frequency                                        |                 |                                                     | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$   |            |      | 8    | MHz  |
|                                                  |                 |                                                     | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$   |            |      | 4    | MHz  |
| Interrupt input high-level                       | tinth,          | INTP0                                               | $2.4~V \leq V \text{DD} \leq 5.5~V$                          | 1          |      |      | μs   |
| width, low-level width                           | tintl           | INTP1 to INTP11                                     | $2.4~V \leq EV_{DD0} \leq 5.5~V$                             | 1          |      |      | μs   |
| Key interrupt input low-level width              | tĸĸ             | KR0 to KR7                                          | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ | 250        |      |      | ns   |
| RESET low-level width                            | trsl            |                                                     |                                                              | 10         |      |      | μs   |

#### (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)





#### CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

# 3.5.2 Serial interface IICA

#### (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

| Parameter                            | Symbol       | Conditions                  | HS (high-speed main) mode |      |           | Unit |     |
|--------------------------------------|--------------|-----------------------------|---------------------------|------|-----------|------|-----|
|                                      |              |                             | Standard mode             |      | Fast mode |      |     |
|                                      |              |                             | MIN.                      | MAX. | MIN.      | MAX. |     |
| SCLA0 clock frequency                | fscl         | Fast mode: fc∟ĸ ≥ 3.5 MHz   | _                         | —    | 0         | 400  | kHz |
|                                      |              | Standard mode: fc∟k ≥ 1 MHz | 0                         | 100  | _         | —    | kHz |
| Setup time of restart condition      | tsu: sta     |                             | 4.7                       |      | 0.6       |      | μs  |
| Hold time Note 1                     | thd: STA     |                             | 4.0                       |      | 0.6       |      | μs  |
| Hold time when SCLA0 = "L"           | t∟ow         |                             | 4.7                       |      | 1.3       |      | μs  |
| Hold time when SCLA0 = "H"           | tніgн        |                             | 4.0                       |      | 0.6       |      | μs  |
| Data setup time (reception)          | tsu: dat     |                             | 250                       |      | 100       |      | ns  |
| Data hold time (transmission) Note 2 | thd: dat     |                             | 0                         | 3.45 | 0         | 0.9  | μs  |
| Setup time of stop condition         | tsu: sto     |                             | 4.0                       |      | 0.6       |      | μs  |
| Bus-free time                        | <b>t</b> BUF |                             | 4.7                       |      | 1.3       |      | μs  |

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

**Remark** The maximum value of C<sub>b</sub> (communication line capacitance) and the value of R<sub>b</sub> (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$ 

#### **IICA** serial transfer timing



**Remark** n = 0, 1



R5F104GAANA, R5F104GCANA, R5F104GDANA, R5F104GEANA, R5F104GFANA, R5F104GGANA, R5F104GHANA, R5F104GJANA

R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GEDNA, R5F104GFDNA, R5F104GGDNA, R5F104GJDNA, R5F104GJDNA

R5F104GAGNA, R5F104GCGNA, R5F104GDGNA, R5F104GEGNA, R5F104GFGNA, R5F104GGGNA,

R5F104GHGNA, R5F104GJGNA

R5F104GKANA, R5F104GLANA

R5F104GKGNA, R5F104GLGNA



©2012 Renesas Electronics Corporation. All rights reserved.



R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB

R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB

R5F104LCGFB, R5F104LDGFB, R5F104LEGFB, R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB

| JEITA Package Code   | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|----------------------|--------------|----------------|-----------------|
| P-LFQFP64-10x10-0.50 | PLQP0064KF-A | P64GB-50-UEU-2 | 0.35            |



Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.



R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

| JEITA Package Code  | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|---------------------|--------------|----------------|-----------------|
| P-LQFP64-14x14-0.80 | PLQP0064GA-A | P64GC-80-GBW-1 | 0.7             |



© 2012 Renesas Electronics Corporation. All rights reserved.



#### R5F104MKAFB, R5F104MLAFB R5F104MKGFB, R5F104MLGFB



