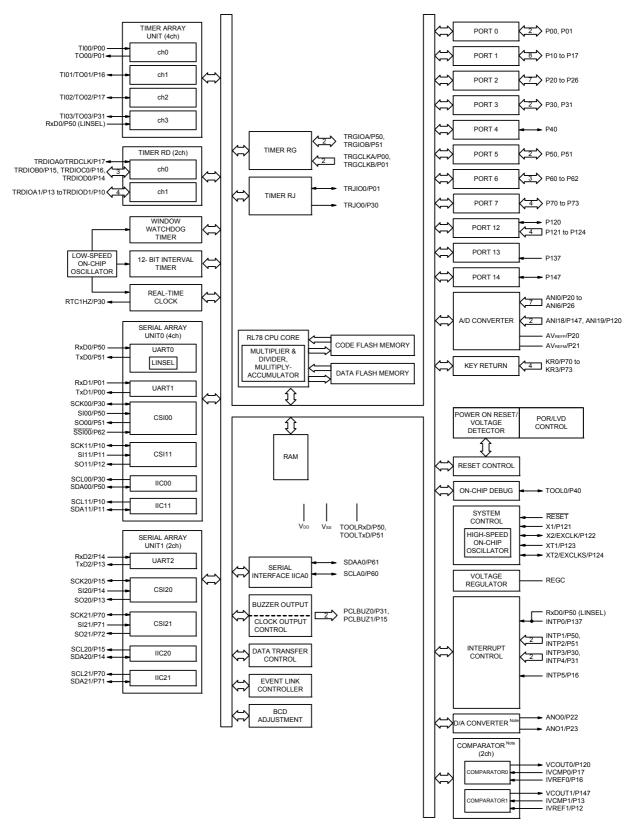


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104jjgfa-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5.4 40-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

10	$\langle \mathbf{n} \rangle$
12	121
14	~ /

					(2/2			
		30-pin	32-pin	36-pin	40-pin			
Item		R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)			
Clock output/buzzer	output	2	2	2	2			
		 [30-pin, 32-pin, 36-pin pro 2.44 kHz, 4.88 kHz, 9.74 (Main system clock: fMAI [40-pin products] 2.44 kHz, 4.88 kHz, 9.74 (Main system clock: fMAI 256 Hz, 512 Hz, 1.024 k (Subsystem clock: fsubsystem clock: fsub	 δ kHz, 1.25 MHz, 2.5 MHz N = 20 MHz operation) δ kHz, 1.25 MHz, 2.5 MHz N = 20 MHz operation) KHz, 2.048 kHz, 4.096 kHz 		32.768 kHz			
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels			
Serial interface		CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products]	channel/simplified I ² C: 1 channel/simplified I ² C: 1 JART supporting LIN-bus) channel/simplified I ² C: 1	channel : 1 channel/simplified I ² C: channel				
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer contro	ller (DTC)	28 sources	28 sources 29 sources					
Event link controller	(ELC)	Event input: 19 Event trigger output: 7						
Vectored interrupt	Internal	24	24	24	24			
sources	External	6	6	6	7			
Key interrupt				_	4			
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-reset circuit		 Power-on-reset: 1.51 ±0.04 V (T_A = -40 to +85°C) 1.51 ±0.06 V (T_A = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (T_A = -40 to +85°C) 1.50 ±0.06 V (T_A = -40 to +105°C) 						
Voltage detector		1.63 V to 4.06 V (14 stages)						
On-chip debug funct	lion	Provided						
Power supply voltage		```	V_{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V_{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)					
Operating ambient temperature		$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)						

Note

The illegal instruction is generated when instruction code $\ensuremath{\mathsf{FFH}}$ is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

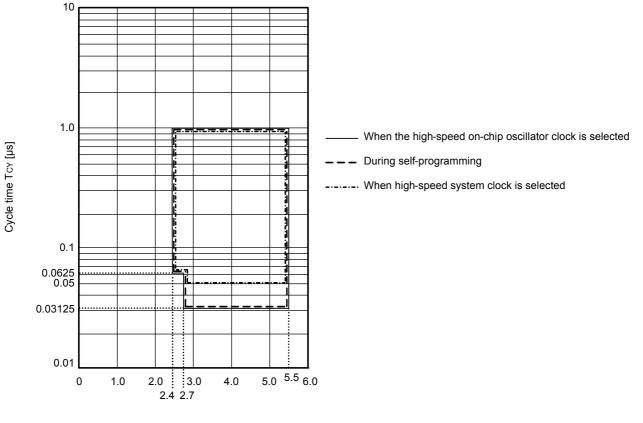
 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz


LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

(2/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		speed main) ode		peed main) ode	•	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1			100		100		100	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		195		195		195	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $		483		483		483	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(3/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		peed main) ode	· · ·	peed main) ode		ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıĸı		44		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	44		110		110		ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V} \ \text{Note} \ ^2, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 1}	tksi1		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 1}	tkso1			25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ ^{\text{Note 2}}, \\ & \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 5.5 \ \text{k}\Omega \end{split} $		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(**Remarks** are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$		1.2	±7.0	LSB
			$1.6~V \leq V_{DD} \leq 5.5~V~Note~3$		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI20	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	Ezs 10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			1.6 V \leq VDD \leq 5.5 V Note 3			±0.85	%FSR
Full-scale error Notes 1, 2	Efs	FS 10-bit resolution 1.8	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			1.6 V \leq VDD \leq 5.5 V Note 3			±0.85	%FSR
Integral linearity error Note 1	ILE	E 10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3			±6.5	LSB
Differential linearity error	DLE	10-bit resolution	$1.8~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			±2.0	LSB
Note 1			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20				EV _{DD0}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)			/ _{BGR} Note	4	V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	node)	Vī	MPS25 Not	te 4	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

Parameter	Symbol				MIN.	TYP.	MAX.	Uni	
Supply current IDD2 H Note 1 Note 2	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	4.36	m/
		mode Note 7	fiн = 32 MHz Note 4	VDD = 3.0 V		0.80	4.36		
			fносо = 32 MHz,	VDD = 5.0 V		0.49	3.67		
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	3.67	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	3.42	
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.62	3.42	
				fносо = 24 MHz,	VDD = 5.0 V		0.4	2.85	
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	2.85	
				fносо = 16 MHz,	VDD = 5.0 V		0.37	2.08	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	2.08	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	m
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	2.57	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	-
				VDD = 3.0 V	Resonator connection		0.40	2.57	
			f _{MX} = 10 MHz Note 3,	Square wave input		0.19	1.28	1	
				VDD = 5.0 V	Resonator connection		0.25	1.36	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.28	
				VDD = 3.0 V	Resonator connection		0.25	1.36	
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μ
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsue = 32.768 kHz Note 5,	Square wave input		0.30	0.57	
				TA = +25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz Note 5,	Square wave input		0.36	1.17	
				TA = +50°C	Resonator connection		0.59	1.36	
				fsue = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	
				fsue = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				TA = +85°C	Resonator connection		1.16	3.56	
				fsue = 32.768 kHz Note 5,	Square wave input		3.20	17.10	
				TA = +105°C	Resonator connection		3.40	17.50	
	STOP mode	TA = -40°C	·	·		0.18	0.51	μ	
	Note 6	ote 6 Note 8	TA = +25°C				0.24	0.51	
		TA = +50°C				0.29	1.10		
			TA = +70°C				0.41	1.90	
			T _A = +85°C				0.90	3.30	
			T _A = +105°C			1	3.10	17.00	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} < \text{EV}_{DD0} < 0.4 \text{ V}$	\leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)(2/2)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

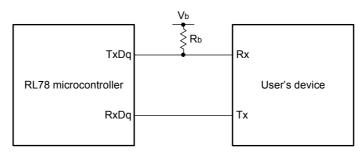
3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)		clock (fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsuв) operation	$2.4~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \le V_{DD} \le 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V \text{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}\text{DD} \leq 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V \text{DD} \leq$	5.5 V		24			ns
input high-level width,	t EXL	$2.4~V \leq V \text{DD} \leq$	2.7 V		30			ns
low-level width	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$	100			ns
				$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV\text{DD0} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EVdd0} < 2.7 \text{ V}$	120			ns

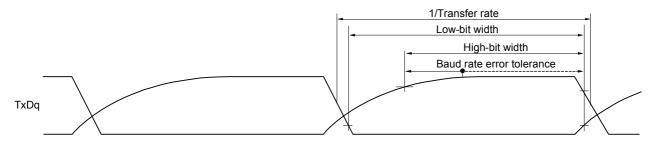
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

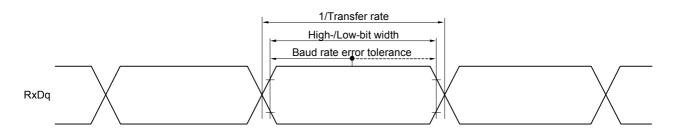
NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

RemarkfMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel
number (n = 0 to 3))



Interrupt Request Input Timing INTPO to INTP11 Key Interrupt Input Timing KR0 to KR7 RESET Input Timing


RESET

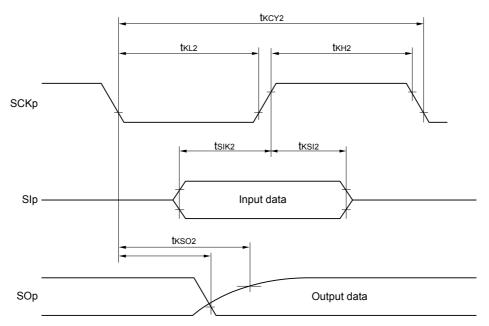


UART mode connection diagram (during communication at different potential)

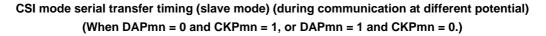
UART mode bit width (during communication at different potential) (reference)

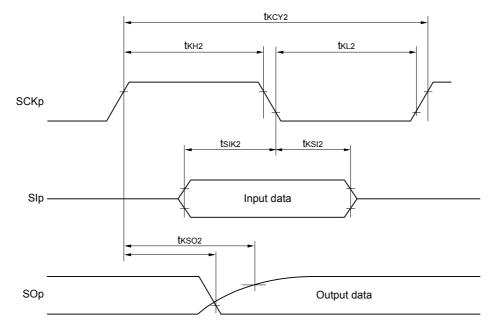
Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage


Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI20	•	0		AVREFP and EVDD0	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ± 1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD0 \leq VDD, the MAX. values a	are as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error:

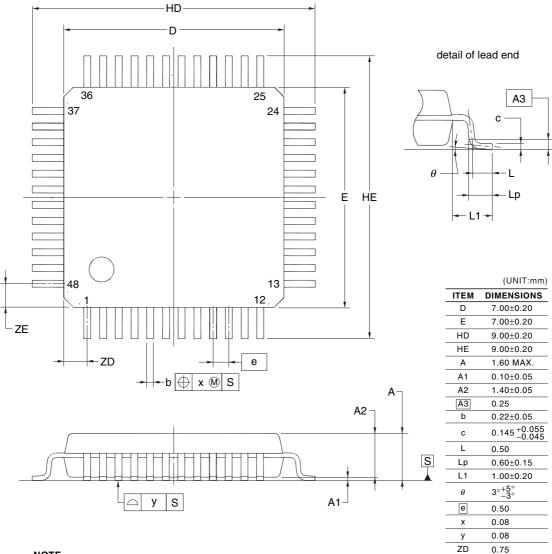
Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

3.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V
threshold			Falling edge	3.83	3.98	4.13	V
		VLVD1	Rising edge	3.60	3.75	3.90	V
			Falling edge	3.53	3.67	3.81	V
		VLVD2	Rising edge	3.01	3.13	3.25	V
			Falling edge	2.94	3.06	3.18	V
		Vlvd3	Rising edge	2.90	3.02	3.14	V
			Falling edge	2.85	2.96	3.07	V
		VLVD4	Rising edge	2.81	2.92	3.03	V
			Falling edge	2.75	2.86	2.97	V
		Vlvd5	Rising edge	2.70	2.81	2.92	V
			Falling edge	2.64	2.75	2.86	V
		VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V
		VLVD7	Rising edge	2.51	2.61	2.71	V
			Falling edge	2.45	2.55	2.65	V
Minimum pulse width		tlw		300			μs
Detection delay time						300	μs


4.6 48-pin products

R5F104GAAFB, R5F104GCAFB, R5F104GDAFB, R5F104GEAFB, R5F104GFAFB, R5F104GGAFB, R5F104GHAFB, R5F104GJAFB

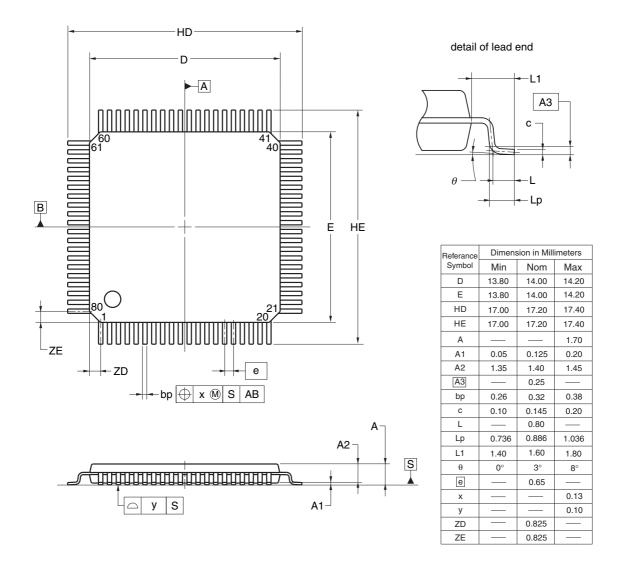
R5F104GADFB, R5F104GCDFB, R5F104GDDFB, R5F104GEDFB, R5F104GFDFB, R5F104GGDFB, R5F104GHDFB, R5F104GJDFB

R5F104GAGFB, R5F104GCGFB, R5F104GDGFB, R5F104GEGFB, R5F104GFGFB, R5F104GGGFB, R5F104GHGFB, R5F104GJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.



ZE

0.75

R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA R5F104MFGFA, R5F104MGGFA, R5F104MHGFA, R5F104MJGFA R5F104MKAFA, R5F104MLAFA R5F104MKGFA, R5F104MLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

© 2012 Renesas Electronics Corporation. All rights reserved.

