

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104lcdfb-30

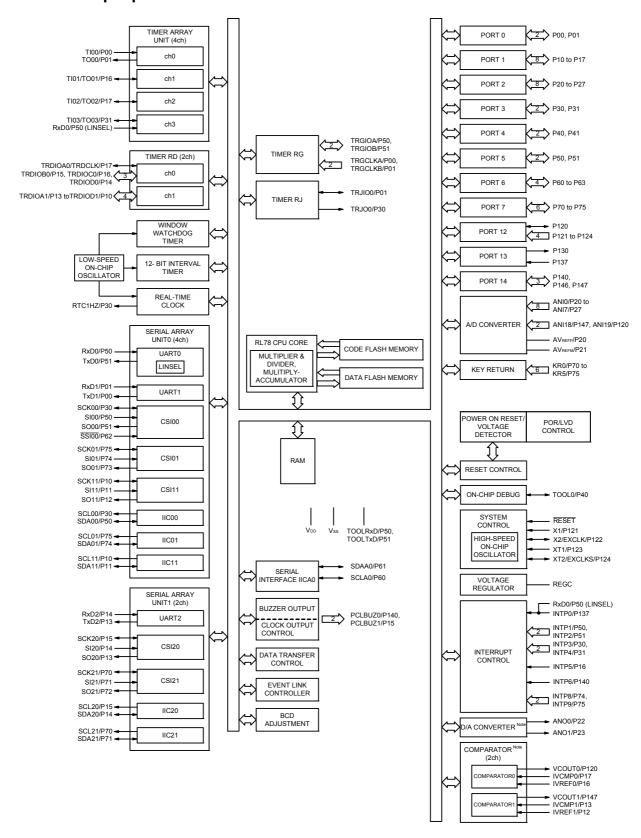
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 36-pin products

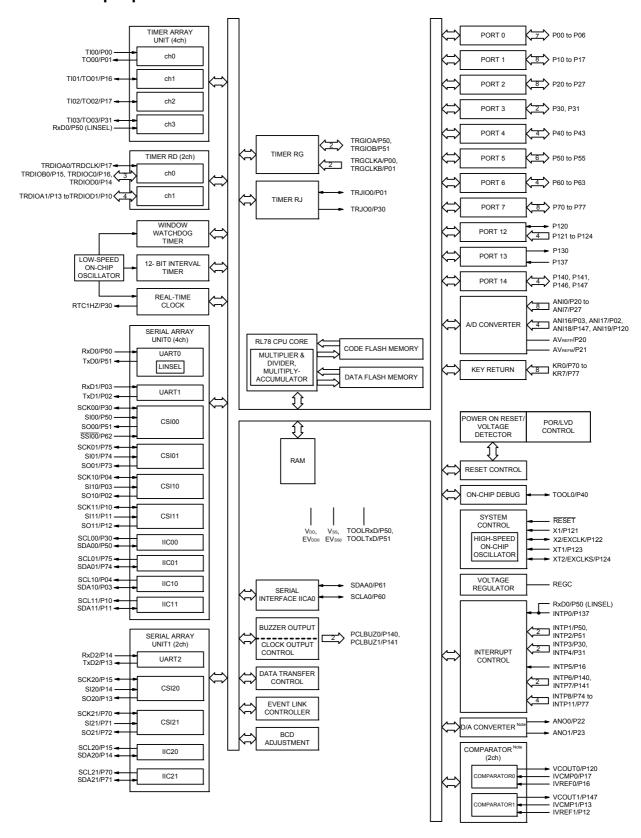
• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	Α	В	С	D	E	F	
6	P60/SCLA0	VDD	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62/SSI00	P61/SDAA0	Vss	REGC	RESET	P120/ANI19/ VCOUT0 Note	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/TRDIOD0/ (SCLA0)	P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJIO0)	P00/TI00/TxD1/ TRGCLKA/ (TRJO0)	P01/TO00/ RxD1/TRGCLKB/ TRJIO0	4
3	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/TRGIOA/ (TRJO0)	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOB0/ (SDAA0)	P22/ANI2/ ANO0 Note	P20/ANI0/ AVREFP	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK00/SCL00/ TRJO0	P16/TI01/TO01/ INTP5/TRDIOC0/ IVREF0 Note/ (RXD0)	P12/SO11/ TRDIOB1/ IVREF1 Note	P11/SI11/ SDA11/ TRDIOC1	P24/ANI4	P23/ANI3/ ANO1 ^{Note}	2
1	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note/ (TXD0)	P13/TxD2/ SO20/TRDIOA1/ IVCMP1 Note	P10/SCK11/ SCL11/ TRDIOD1	P147/ANI18/ VCOUT1 Note	P25/ANI5	1
•	Δ	R	C.	n	F	F	


Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.


Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.6 **48-pin products**

Note Mounted on the 96 KB or more code flash memory products.

1.5.8 64-pin products

Note Mounted on the 96 KB or more code flash memory products.

(2/2)

					(2/2)			
		44-pin	48-pin	52-pin	64-pin			
1	tem	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx			
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)			
Clock output/buzz	zer output	2	2	2	2			
		• 2.44 kHz, 4.88 kHz,	9.76 kHz, 1.25 MHz, 2.5	5 MHz, 5 MHz, 10 MHz	:			
		(Main system clock:	fmain = 20 MHz operation	on)				
			24 kHz, 2.048 kHz, 4.09		384 kHz, 32.768 kHz			
		(Subsystem clock: fs	:uв = 32.768 kHz operat	tion)	1			
8/10-bit resolution	n A/D converter	10 channels	10 channels	12 channels	12 channels			
Serial interface		[44-pin products]						
			T (UART supporting LIN		ified I ² C: 1 channel			
			T: 1 channel/simplified I					
			RT: 1 channel/simplified	I ² C: 2 channels				
		[48-pin, 52-pin product	-	NI buo). 1 obsersal/simm	olified 120, 0 sharped			
			RT (UART supporting LI T: 1 channel/simplified I		illed 140: 2 channels			
			r: 1 channel/simplified i					
		[64-pin products]	хт. т спаппелзипринес	I-O. Z GIAIIIEIS				
			RT (UART supporting LI	N-bus): 1 channel/simr	olified I ² C: 2 channels			
			RT: 1 channel/simplified					
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels						
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer con	troller (DTC)	29 sources	30 sources	<u>L</u>	31 sources			
Event link control	ler (ELC)	Event input: 20						
		Event trigger output: 7						
Vectored inter-	Internal	24	24	24	24			
rupt sources	External	7	10	12	13			
Key interrupt		4	6	8	8			
Reset		Reset by RESET pin		1	•			
		Internal reset by water						
		Internal reset by pow	er-on-reset					
		Internal reset by volta	-					
			al instruction execution	Note				
		Internal reset by RAM	. ,					
		Internal reset by illeg						
Power-on-reset c	ircuit		1.51 ±0.04 V (TA = -40 1.51 ±0.06 V (TA = -40					
			1.50 ±0.06 V (TA = -40	•				
			1.50 ±0.06 V (TA = -40	,				
Voltage detector		1.63 V to 4.06 V (14 stages)						
On-chip debug fu	nction	Provided						
Power supply vol		V _{DD} = 1.6 to 5.5 V (T _A	= -40 to +85°C)					
	5	V _{DD} = 2.4 to 5.5 V (T _A	,					
Operating ambier	nt temperature	T _A = -40 to +85°C (A:	Consumer applications	, D: Industrial application	ons),			
, 3:	,		: Industrial applications		,,			
		1		•				

 $\textbf{Note} \qquad \quad \text{The illegal instruction is generated when instruction code FFH is executed.}$

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

[48-pin, 64-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

		48-pin	64-pin				
I	tem	R5F104Gx	R5F104Lx				
		(x = K, L)	(x = K, L)				
Code flash memory	(KB)	384 to 512	384 to 512				
Data flash memory (KB)	8	8				
RAM (KB)		32 to 48 Note	32 to 48 Note				
Address space		1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
Subsystem clock	•	XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz					
Low-speed on-chip	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpose rec	gister	8 bits × 32 registers (8 bits × 8 registers × 4	banks)				
Minimum instruction	execution time	0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)					
		0.05 μs (High-speed system clock: fмx = 2	0 MHz operation)				
		30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8 Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits > 16 bits) Rotate, barrel shift, and bit manipulation etc. 	oits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 < 16 bits + 32 bits)				
I/O port	Total	44	58				
	CMOS I/O	34	48				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Tir	ner RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels					
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kH					

(Note is listed on the next page.)

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

2.2.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	C	conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fı⊢			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	-1.0		+1.0	%
accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5.0		+5.0	%
		-40 to -20°C	1.8 V ≤ VDD < 5.5 V	-1.5		+1.5	%
			1.6 V ≤ VDD < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

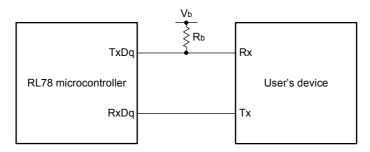
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(3/5)

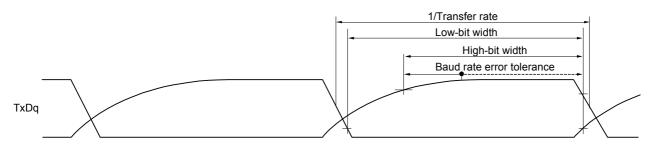
Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EV _{DD0}	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EV _{DD0}	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	1.5		EV _{DD0}	V
	VIH3	P20 to P27, P150 to P156	0.7 Vdd		VDD	V	
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		V	
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156	1	0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 Vdd	V

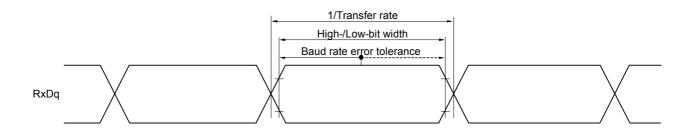
Caution The maximum value of ViH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products $(TA = -40 \text{ to } +85^{\circ}\text{C}, \ 1.6 \text{ V} \leq \text{EVDD0} = \text{EVDD1} \leq \text{VDD} \leq 5.5 \text{ V}, \ \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

(2/2)


Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fHOCO = 64 MHz,	V _{DD} = 5.0 V		0.79	3.32	mA
rent Note 1	Note 2		mode Note 7	fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.79	3.32	
				fHOCO = 32 MHz,	V _{DD} = 5.0 V		0.49	2.63	
				fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.49	2.63	
				fHOCO = 48 MHz,	V _{DD} = 5.0 V		0.62	2.57	
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.62	2.57	
				fHOCO = 24 MHz,	V _{DD} = 5.0 V		0.4	2.00	
				fih = 24 MHz Note 4	V _{DD} = 3.0 V		0.4	2.00	
				fHOCO = 16 MHz,	V _{DD} = 5.0 V		0.38	1.49	
				fih = 16 MHz Note 4	V _{DD} = 3.0 V		0.38	1.49	
			LS (low-speed main)	fhoco = 8 MHz,	V _{DD} = 3.0 V		250	800	μА
			mode Note 7	fiH = 8 MHz Note 4	V _{DD} = 2.0 V		250	800	
			LV (low-voltage main)	fHOCO = 4 MHz,	V _{DD} = 3.0 V		420	755	μА
			mode Note 7	fiH = 4 MHz Note 4	V _{DD} = 2.0 V		420	755	
			HS (high-speed main)	f _{MX} = 20 MHz Note 3,	Square wave input		0.30	1.63	mA
			mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.40	1.85	
				f _{MX} = 20 MHz Note 3,	Square wave input		0.30	1.63	
				V _{DD} = 3.0 V	Resonator connection		0.40	1.85	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.20	0.89	
				V _{DD} = 5.0 V	Resonator connection		0.25	0.97	
				fmx = 10 MHz Note 3,	Square wave input		0.20	0.89	
				V _{DD} = 3.0 V	Resonator connection		0.25	0.97	
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz Note 3,	Square wave input		110	580	μΑ
				V _{DD} = 3.0 V	Resonator connection		140	630	
				f _{MX} = 8 MHz Note 3,	Square wave input		110	580	
				V _{DD} = 2.0 V	Resonator connection		140	630	
			Subsystem clock oper-	fsuB = 32.768 kHz Note 5,	Square wave input		0.28	0.66	μΑ
			ation	TA = -40°C	Resonator connection		0.47	0.85	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.34	0.66	
				TA = +25°C	Resonator connection		0.53	0.85	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.37	2.35	
				TA = +50°C	Resonator connection		0.56	2.54	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.61	4.08	
				TA = +70°C	Resonator connection		0.80	4.27	
				fsuB = 32.768 kHz Note 5,	Square wave input		1.55	8.09	
				T _A = +85°C	Resonator connection		1.74	8.28	1
	IDD3 STOP mode T _A = -40°C	TA = -40°C	•	•		0.19	0.57	μΑ	
	Note 6	Note 8	T _A = +25°C				0.25	0.57	1
			T _A = +50°C				0.33	2.26	1
			T _A = +70°C				0.52	3.99	1
			T _A = +85°C				1.46	8.00	1


(Notes and Remarks are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance,
 - Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode	,	LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	300		1150		1150		ns
			$ \begin{aligned} 2.7 & \ V \leq E V_{DDO} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	500		1150		1150		ns
			$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V Note}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1150		1150		1150 tkcy1/2 - 75		ns
SCKp high-level width	tкнı	$4.0 \text{ V} \le \text{EVDD0}$ $2.7 \text{ V} \le \text{Vb} \le 4$ $C_b = 30 \text{ pF}, \text{Rb}$	0 V,	tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}}$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2$ $C_{\text{b}} = 30 \text{ pF}, \text{ Rb}$	7 V,	tkcy1/2 - 170		tксү1/2 - 170		tkcy1/2 - 170	ns	
		1.8 V ≤ EVDD0 1.6 V ≤ Vb ≤ 2 Cb = 30 pF, Rb	0 V Note,	tkcy1/2 - 458		tkcy1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width	tKL1	4.0 V ≤ EVDD0 2.7 V ≤ Vb ≤ 4. Cb = 30 pF, Rb	0 V,	tксү1/2 - 12		tkcy1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		tксү1/2 - 18		tkcy1/2 - 50		tксү1/2 - 50		ns
		1.8 V \leq EV _{DDO} $<$ 3.3 V, 1.6 V \leq V _b \leq 2.0 V Note, C _b = 30 pF, R _b = 5.5 kΩ		tkcy1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

Note Use it with $EVDD0 \ge V_b$.

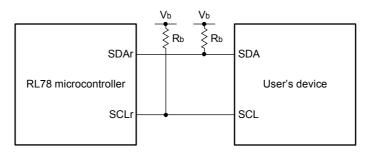
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

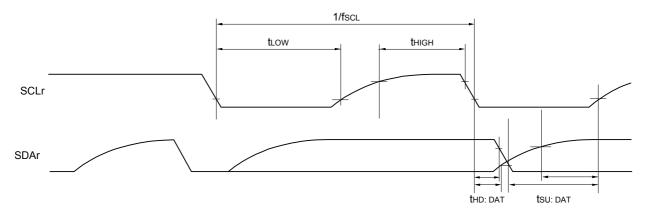
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$ (2/3)

Parameter	Symbol	Conditions	, ,	speed main)	,	peed main) ode	,	oltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸı	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	81		479		479		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $	177		479		479		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V Note 2}, \\ C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $	19		19		19		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $	19		19		19		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	19		19		19		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $		100		100		100	ns
				195		195		195	ns
		$\begin{array}{c} 1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ \text{Cb} = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{array}$		483		483		483	ns


Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the page after the next page.)

Note 2. Use it with $EV_{DD0} \ge V_b$.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

Remark 1. $Rb[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V		1.2	±5.0	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39 95 ±0.35 % ±0.60 %	μs
			1.6 V ≤ VDD ≤ 5.5 V	57			μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±5.0 ±8.5 39 39 39 95 ±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		and	V

- Note 1. Excludes quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **Note 3.** When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

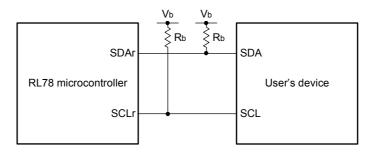
Note 4. When AVREFP \leq EVDD0 \leq VDD, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VDD.

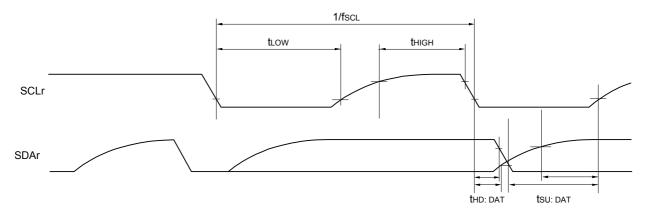
Note 5. When the conversion time is set to 57 μs (min.) and 95 μs (max.).

3.4 AC Characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Tcy	Main system	HS (high-speed main)	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	0.03125		1	μs
imum instruction exe- cution time)		clock (fmain) operation	mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
		Subsystem clo	ock (fsub) operation	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	0.03125		1	μs
		program- ming mode	mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
External system clock	fex	2.7 V ≤ V _{DD} ≤	5.5 V		1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} ≤	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texH,	2.7 V ≤ V _{DD} ≤	5.5 V		24			ns
input high-level width,	texL	2.4 V ≤ V _{DD} ≤	2.7 V		30			ns
low-level width	texhs,				13.7		μs	
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttih, ttil				1/fMCK + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	100			ns
				2.4 V ≤ EVDD0 < 2.7 V	300			ns
Timer RJ input high-	tтлін,	TRJIO		2.7 V ≤ EVDD0 ≤ 5.5 V	40			ns
level width, low-level width	t⊤JIL			2.4 V ≤ EVDD0 < 2.7 V	120			ns

Note The following conditions are required for low voltage interface when EVDD0 < VDD $2.4 \text{ V} \le \text{EVDD0} < 2.7 \text{ V}$: MIN. 125 ns


Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

Simplified I²C mode connection diagram (during communication at different potential)

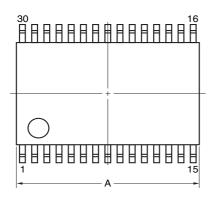
Simplified I²C mode serial transfer timing (during communication at different potential)

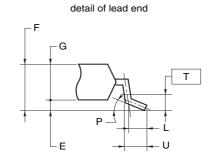
Remark 1. $R_b[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance, $V_b[V]$: Communication line voltage

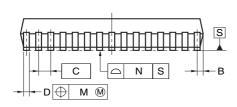
Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

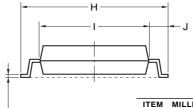

n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)


4. PACKAGE DRAWINGS


4.1 30-pin products

R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGGSP, R5F104ACGSP, R5F104

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS
Α	9.85±0.15
В	0.45 MAX.
С	0.65 (T.P.)
D	$0.24^{+0.08}_{-0.07}$
Е	0.1±0.05
F	1.3±0.1
G	1.2
Н	8.1±0.2
I	6.1±0.2
J	1.0±0.2
K	0.17±0.03
L	0.5
М	0.13
N	0.10
Р	3°+5°
Т	0.25
U	0.6±0.15

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB

R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB

R5F104LCGFB, R5F104LDGFB, R5F104LEGFB, R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB

	JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.)	[g]
	P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35	
	HD-		-		
	D	33		detail of le	ead end
	49	32		0	c A3
	64	17		→ L1 -	
	1	16		HD HE	10.00±0.20 12.00±0.20 12.00±0.20
-	ZD • b •	x (M) S	A¬	A A1 A2 A3	1.60 MAX. 0.10±0.05 1.40±0.05 0.25
Œ			A2 7	b c L Lp L1	0.22±0.05 0.145 +0.055 0.50 0.60±0.15 1.00±0.20
<u>リ</u>	y s	 	A1	θ e x	3°+5° -3° 0.50

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

0.08

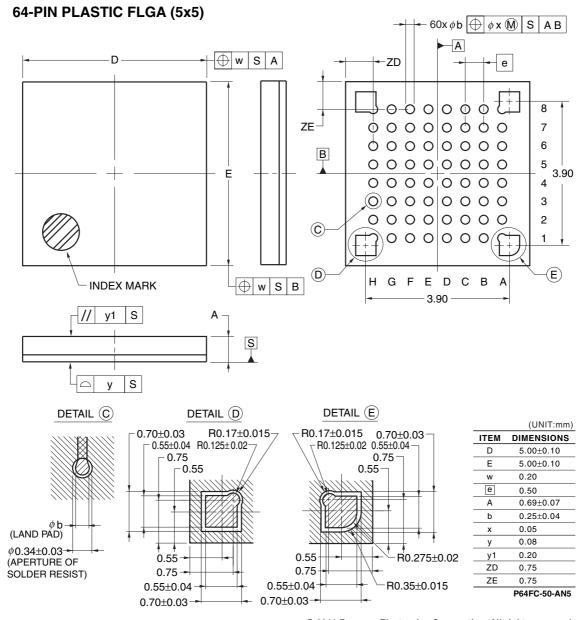
1.25

1.25

ZD

ZE

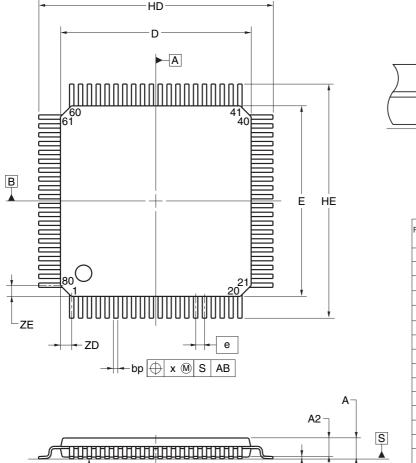
NOTE

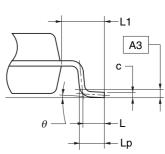

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

ZE

RL78/G14 4. PACKAGE DRAWINGS

R5F104LCALA, R5F104LDALA, R5F104LEALA, R5F104LFALA, R5F104LGALA, R5F104LHALA, R5F104LJALA R5F104LKALA, R5F104LLALA


R5F104LCGLA,R5F104LDGLA, R5F104LEGLA, R5F104LFGLA, R5F104LGGLA, R5F104LHGLA, R5F104LHGLA, R5F104LLGLA


 $\ensuremath{\mathbb{O}}$ 2011 Renesas Electronics Corporation. All rights reserved.

R5F104MFAFA, R5F104MGAFA, R5F104MHAFA, R5F104MJAFA R5F104MFDFA, R5F104MGDFA, R5F104MHDFA, R5F104MJDFA R5F104MFGFA, R5F104MGGFA, R5F104MHGFA, R5F104MJGFA R5F104MKAFA, R5F104MLAFA R5F104MKGFA, R5F104MLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP80-14x14-0.65	PLQP0080JB-E	P80GC-65-UBT-2	0.69

y S

detail of lead end

Referance	Dimension in Millimeters			
Symbol	Min	Nom	Max	
D	13.80	14.00	14.20	
Е	13.80	14.00	14.20	
HD	17.00	17.20	17.40	
HE	17.00	17.20	17.40	
Α			1.70	
A1	0.05	0.125	0.20	
A2	1.35	1.40	1.45	
A3		0.25		
bp	0.26	0.32	0.38	
С	0.10	0.145	0.20	
L		0.80		
Lp	0.736	0.886	1.036	
L1	1.40	1.60	1.80	
θ	0°	3°	8°	
е		0.65		
х			0.13	
у			0.10	
ZD	_	0.825		
ZE		0.825		

© 2012 Renesas Electronics Corporation. All rights reserved.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141