

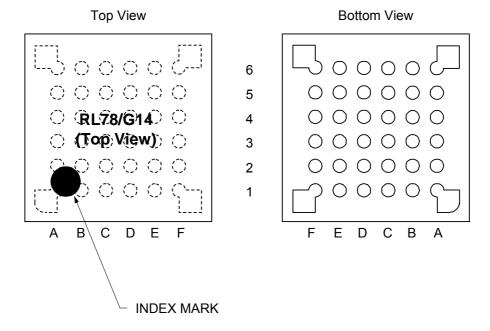
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104lcdfp-v0


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

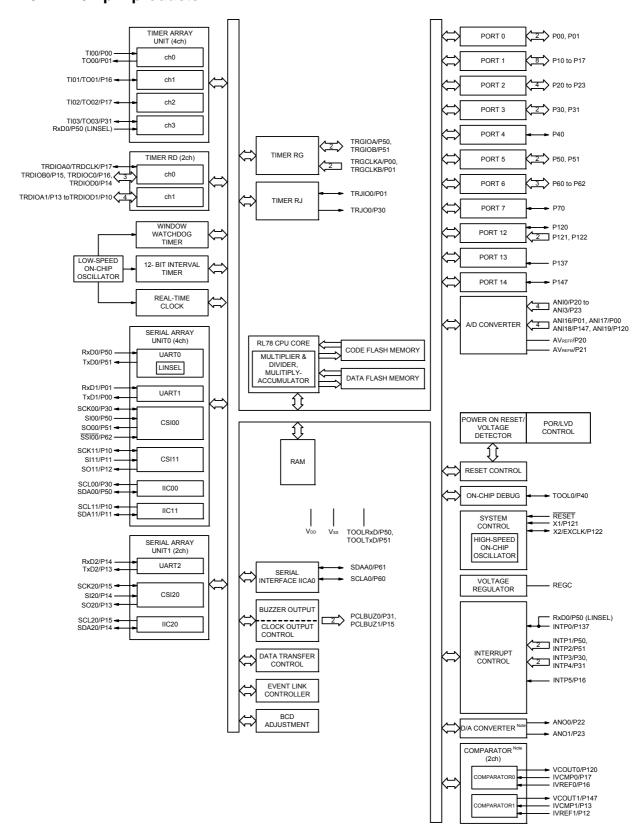
RL78/G14 1. OUTLINE

1.3.3 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	Α	В	С	D	E	F	
6	P60/SCLA0	VDD	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62/SSI00	P61/SDAA0	Vss	REGC	RESET	P120/ANI19/ VCOUT0 Note	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/TRDIOD0/ (SCLA0)	P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJIO0)	P00/TI00/TxD1/ TRGCLKA/ (TRJO0)	P01/TO00/ RxD1/TRGCLKB/ TRJIO0	4
3	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/TRGIOA/ (TRJO0)	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOB0/ (SDAA0)	P22/ANI2/ ANO0 Note	P20/ANI0/ AVREFP	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK00/SCL00/ TRJO0	P16/TI01/TO01/ INTP5/TRDIOC0/ IVREF0 Note/ (RXD0)	P12/SO11/ TRDIOB1/ IVREF1 Note	P11/SI11/ SDA11/ TRDIOC1	P24/ANI4	P23/ANI3/ ANO1 ^{Note}	2
1	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note/ (TXD0)	P13/TxD2/ SO20/TRDIOA1/ IVCMP1 Note	P10/SCK11/ SCL11/ TRDIOD1	P147/ANI18/ VCOUT1 Note	P25/ANI5	1
•	Δ	R	C.	n	F	F	

Note Mounted on the 96 KB or more code flash memory products.


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RL78/G14 1. OUTLINE

1.5.2 32-pin products

Note Mounted on the 96 KB or more code flash memory products.

RL78/G14 1. OUTLINE

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

		30-pin	32-pin	36-pin	40-pin				
ı	Item	R5F104Ax (x = F, G)	R5F104Bx $(x = F, G)$	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)				
Code flash mem	nory (KB)	96 to 128	96 to 128	96 to 128	96 to 192				
Data flash mem	ory (KB)	8	8	8	8				
RAM (KB)		12 to 16 Note	12 to 16 Note	12 to 16 Note	12 to 20 Note				
Address space		1 MB							
Main system clock	High-speed system clock High-speed on-chip oscillator clock (fiн)	HS (high-speed main) mo HS (high-speed main) mo LS (low-speed main) mod LV (low-voltage main) mod HS (high-speed main) mod HS (high-speed main) mod LS (low-speed main) mod	ation, external main system de: 1 to 20 MHz (VDD = 2 de: 1 to 16 MHz (VDD = 1.4 de: 1 to 4 MHz (VDD = 1.4 de: 1 to 32 MHz (VDD = 1.4 de: 1 to 32 MHz (VDD = 2 de: 1 to 16 MHz (VDD = 2 de: 1 to 16 MHz (VDD = 1.6 de: 1 to 4 MHz (7 to 5.5 V), .4 to 5.5 V), 3 to 5.5 V), 6 to 5.5 V), 7 to 5.5 V), 4 to 5.5 V),					
Subsystem cloc	k		_		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz				
Low-speed on-c	chip oscillator clock	15 kHz (TYP.): V _{DD} = 1.6 to 5.5 V							
General-purpose	e register	8 bits × 32 registers (8 bits	s × 8 registers × 4 banks)						
Minimum instruc	ction execution time	0.03125 μs (High-speed o	on-chip oscillator clock: fiн	= 32 MHz operation)					
		0.05 μs (High-speed syste	em clock: f _M x = 20 MHz op	eration)					
		— 30.5 μs (Subsystem clock: fsuβ = 32.768 kHz operation)							
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	26	28	32	36				
	CMOS I/O	21	22	26	28				
	CMOS input	3	3	3	5				
	CMOS output	_	_	_	_				
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3				
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer F	RJ: 1 channel, Timer RD: 2	channels, Timer RG: 1 cl	hannel)				
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
	12-bit interval timer	1 channel							
	Timer output	Timer outputs: 13 channe PWM outputs: 9 channels							
	RTC output		_		1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)				

(Note is listed on the next page.)

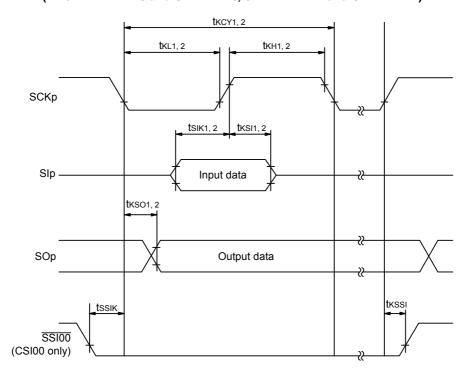
(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions						TYP.	MAX.	Unit	
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.6		mA	
current Note 1		ing mode	mode Note 5	f _{IH} = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.6			
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.3			
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.3			
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		5.4	10.2	mA	
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.4	10.2		
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		5.0	9.6		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.0	9.6		
				fHOCO = 48 MHz,	Normal	V _{DD} = 5.0 V		4.2	7.8		
			fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.2	7.8			
				fhoco = 24 MHz,	Normal	V _{DD} = 5.0 V		4.0	7.4		
		fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.0	7.4				
				fHOCO = 16 MHz,	Normal	V _{DD} = 5.0 V		3.0	5.3		
				fih = 16 MHz Note 3	operation	V _{DD} = 3.0 V		3.0	5.3		
			LS (low-speed main)	fHOCO = 8 MHz,	Normal	V _{DD} = 3.0 V		1.4	2.3	mA	
			mode Note 5	fih = 8 MHz Note 3	operation	V _{DD} = 2.0 V		1.4	2.3		
			LV (low-voltage main)	fHOCO = 4 MHz,	Normal	V _{DD} = 3.0 V		1.3	1.9	mA	
			mode Note 5 fin = 4 MHz	fih = 4 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	1.9		
			HS (high-speed main)	gh-speed main) f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.4	6.2	mA	
	mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.6	6.4				
				f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.4	6.2		
				V _{DD} = 3.0 V	V _{DD} = 3.0 V	operation	Resonator connection		3.6	6.4	
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.1	3.6		
				V _{DD} = 5.0 V	operation	Resonator connection		2.2	3.7		
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.1	3.6		
				V _{DD} = 3.0 V	operation	Resonator connection		2.2	3.7		
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	2.2	mA	
			mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.3		
				f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	2.2		
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.3		
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.1	μА	
			operation	TA = -40°C	operation	Resonator connection		4.9	7.1		
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.1		
			T _A = +25°C	operation	Resonator connection		4.9	7.1			
			fsuB = 32	fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.1	8.8	1	
		T _A = +50°C	operation	Resonator connection		5.1	8.8	1			
			Normal	Square wave input		5.5	10.5	1			
			operation	Resonator connection		5.5	10.5	1			
		fsuB = 32.768 kHz Note 4 Note	4 Normal	Square wave input		6.5	14.5	1			
			operation	Resonator connection		6.5	14.5	1]			

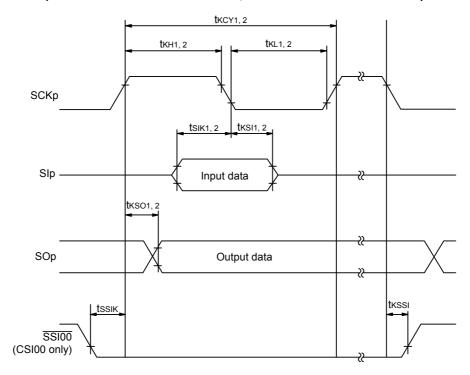
(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz


 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz


- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
 Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- $\textbf{Remark 1.} \ \ p: CSI \ number \ (p = 00, \, 01, \, 10, \, 11, \, 20, \, 21, \, 30, \, 31), \ m: \ Unit \ number \ (m = 0, \, 1), \\$
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 Note 1	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P64 to P67,	and -0.3 to V _{DD} +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vıз	P20 to P27, P121 to P124, P137,	-0.3 to V _{DD} +0.3 Note 2	V
		P150 to P156, EXCLK, EXCLKS, RESET		
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P60 to P67,	and -0.3 to V _{DD} +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P130, P140 to P147		
	Vo2	P20 to P27, P150 to P156	-0.3 to V _{DD} +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3	.,
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to V _{DD} +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

- Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
- Note 2. Must be 6.5 V or lower.
- **Note 3.** Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
- Remark 2. AVREF (+): + side reference voltage of the A/D converter.
- Remark 3. Vss: Reference voltage

3.3 DC Characteristics

3.3.1 Pin characteristics

 $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, VSS = EVSS0 = EVSS1 = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Dutput current, high Note 1 Іон	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	2.4 V ≤ EVDD0 ≤ 5.5 V			-3.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			-30.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EVDD0 < 4.0 V			-10.0	mA
		(When duty ≤ 70% Note 3)	2.4 V ≤ EVDD0 < 2.7 V			-5.0	mA
		P30, P31, P50 to P57, P64 to P67, P70 to P77	4.0 V ≤ EVDD0 ≤ 5.5 V			-30.0	mA
			2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
			2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
Іон2		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 ≤ 5.5 V			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	2.4 V ≤ VDD ≤ 5.5 V			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	2.4 V ≤ VDD ≤ 5.5 V			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IoH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IoH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Note 2. Do not exceed the total current value.

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.4		
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.1		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.1		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		5.1	9.3	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.1	9.3	
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		4.8	8.7	
				fiH = 32 MHz Note 3	operation	V _{DD} = 3.0 V		4.8	8.7	
			fносо = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	7.3		
			fiH = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.0	7.3		
				fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		3.8	6.7	
			fiH = 24 MHz Note 3	operation	V _{DD} = 3.0 V		3.8	6.7		
			fHOCO = 16 MHz,	Normal	V _{DD} = 5.0 V		2.8	4.9		
				fih = 16 MHz Note 3	operation	V _{DD} = 3.0 V		2.8	4.9	
		HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.3	5.7	mA	
	mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.4	5.8			
			f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.3	5.7		
			V _{DD} = 3.0 V	operation	Resonator connection		3.4	5.8		
				f _{MX} = 10 MHz Note 2, V _{DD} = 5.0 V	Normal	Square wave input		2.0	3.4	
					operation	Resonator connection		2.1	3.5	
				fmx = 10 MHz Note 2,	Normal operation	Square wave input		2.0	3.4	
				V _{DD} = 3.0 V		Resonator connection		2.1	3.5	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μΑ
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
				T _A = +25°C	operation	Resonator connection		4.7	6.1	
				fsuB = 32.768 kHz Note 4		Square wave input		4.8	6.7	
				T _A = +50°C	operation	Resonator connection		4.8	6.7	
			fsuB = 32.768 kHz Note 4		Square wave input		4.8	7.5		
		T _A = +70°C	operation	Resonator connection		4.8	7.5			
			fsuB = 32.768 kHz Note 4		Square wave input		5.4	8.9		
				T _A = +85°C	operation	Resonator connection		5.4	8.9]]
			1005 02.7 00 11.12	Normal	Square wave input		7.2	21.0		
				T _A = +105°C	operation	Resonator connection		7.3	21.1	

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

•		· · · · · · · · · · · · · · · · · · ·				
Parameter	Symbol	Conditions		HS (high-sր mo		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	2.7 V ≤ EVDD0 ≤ 5.5 V	250		ns
			2.4 V ≤ EV _{DD0} ≤ 5.5 V	500		ns
SCKp high-/low-level width	tkH1, tkL1	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tксү1/2 - 24		ns
		2.7 V ≤ EVDD0 :	2.7 V ≤ EV _{DD0} ≤ 5.5 V			ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1	tsıĸ1	4.0 V ≤ EV _{DD0} :	4.0 V ≤ EV _{DD0} ≤ 5.5 V			ns
		2.7 V ≤ EV _{DD0} :	2.7 V ≤ EV _{DD0} ≤ 5.5 V			ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		113		ns
SIp hold time (from SCKp↑) Note 2	tksıı			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note	4		50	ns
	- 1	-1				

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cond	ditions	HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	4.0 V ≤ EV _{DD0} ≤ 5.5 V	20 MHz < fmck	16/ƒмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	16 MHz < fмcк	16/fмск		ns
			fмcк ≤ 16 MHz			ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tkL2	4.0 V ≤ EVDD0 ≤ 5.5 V		tkcy2/2 - 14		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsık2	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 40		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 66	ns
			2.4 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 113	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

Parameter	Symbol		Conditions	HS (high-s	peed main) mode	Unit
				MIN.	MAX.	•
Transfer rate		reception	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$		f _{MCK} /12 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		f _{MCK} /12 Note 1	bps
	2.	Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		2.6	Mbps	
			$2.4 \text{ V} \le \text{EVddo} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$		f _{MCK} /12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V: MAX. } 1.3 \text{ Mbps}$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

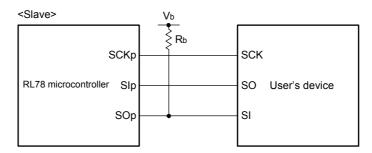
Note 5. The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} }{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} }$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 6. This value as an example is calculated when the conditions described in the "Conditions" column are met.


 Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

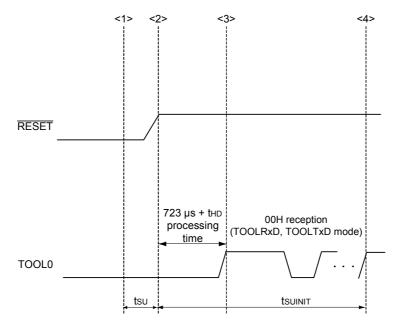
CSI mode connection diagram (during communication at different potential)

- Remark 1. R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


(1/2)

Parameter	Symbol	Conditions	HS (high-spe	eed main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fscL	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $		400 Note 1	kHz
		$\begin{split} 2.7 & \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \end{split}$		400 Note 1	kHz
		$\begin{aligned} 4.0 & \text{V} \leq \text{EVDD0} \leq 5.5 \text{ V}, \\ 2.7 & \text{V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 100 \text{ pF, } R_b = 2.8 \text{ k}\Omega \end{aligned}$		100 Note 1	kHz
		$\begin{split} 2.7 & \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{split}$		100 Note 1	kHz
		$\begin{array}{l} 2.4 \; V \leq EV_{DDO} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1200		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	1200		ns
		$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $	4600		ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	4600		ns
		$2.4 \text{ V} \leq \text{EVDD0} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}, \\ C_b = 100 \text{ pF, } R_b = 5.5 \text{ k}\Omega$	4650		ns
Hold time when SCLr = "H"	thigh	$\begin{array}{l} 4.0 \; V \leq EV_{DDO} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	620		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	500		ns
		$ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 100 \text{ pF, Rb} = 2.8 \text{ k}\Omega $	2700		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	2400		ns
		$\begin{array}{c} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		ns

3.10 Timing of Entry to Flash Memory Programming Modes

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thD	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
thd: How long to keep the TOOL0 pin at the low level from when the external resets end
(excluding the processing time of the firmware to control the flash memory)

R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB

R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB

R5F104LCGFB, R5F104LDGFB, R5F104LEGFB, R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB

	JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.)	[g]
	P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35	
	HD-		-		
	D	33		detail of le	ead end
	49	32		0	c A3
	64	17		→ L1 -	
	1	16		HD HE	10.00±0.20 12.00±0.20 12.00±0.20
-	ZD • b •	x (M) S	A¬	A A1 A2 A3	1.60 MAX. 0.10±0.05 1.40±0.05 0.25
Œ			A2 7	b	0.22±0.05 0.145 +0.055 0.50 0.60±0.15 1.00±0.20
<u>リ</u>	y s	 	A1 -	θ e x	3°+5° -3° 0.50

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

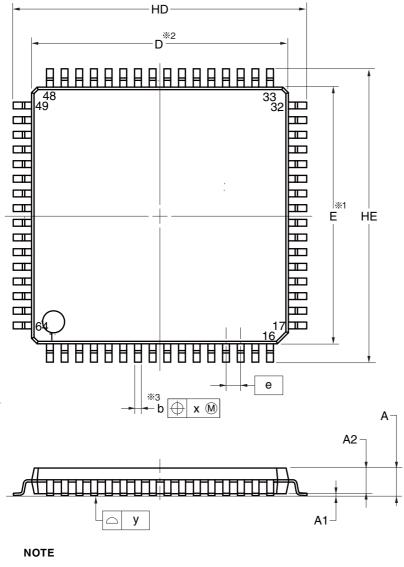
0.08

1.25

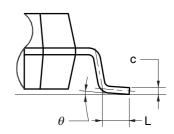
1.25

ZD

ZE


NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.


ZE

R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGGFP, R5F104LHDFP, R5F104LJGFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14x14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7

detail of lead end

(UNIT:mm

	(UNIT:mm)	
ITEM	TEM DIMENSIONS	
D	14.00±0.10	
E	14.00±0.10	
HD	16.00±0.20	
HE	16.00±0.20	
Α	1.70 MAX.	
A1	0.10 ± 0.10	
A2	1.40	
b	$0.37^{+0.08}_{-0.05}$	
С	$0.125^{+0.05}_{-0.02}$	
L	0.50 ± 0.20	
θ	0° to 8°	
е	0.80	
х	0.20	
У	0.10	

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

REVISION HISTORY	RL78/G14 Datasheet
------------------	--------------------

Rev.	Date	Description	
Nev.		Page	Summary
3.20	Jan 05, 2015	p.135, 137, 139, 141, 143, 145	Modification of specifications in 3.3.2 Supply current characteristics
		p.197	Modification of part number in 4.7 52-pin products
3.30	Aug 12, 2016	p.143, 145	Addition of maximum values in (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products of 3.3.2 Supply current characteristics

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.