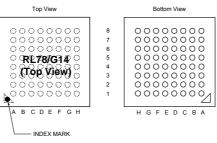


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104lcgfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)

	А	В	С	D	E	F	G	н	
8	EVDD0	EVsso	P121/X1	P122/X2/ EXCLK	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ VCOUT0 Note 1	8
7	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIO0	P00/TI00/ TRGCLKA/ (TRJO0)	P140/ PCLBUZ0/ INTP6	7
6	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	P77/KR7/ INTP11/(TXD2)	P31/TI03/ TO03/INTP4/ (PCLBUZ0)/ (TRJIO0)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVrefp	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	P16/TI01/ TO01/INTP5/ TRDIOC0/ IVREF0 Note 1/ (SI00)/(RXD0)	P21/ANI1/ AVrefm	P22/ANI2/ ANO0 Note 1	P23/ANI3/ ANO1 ^{Note 1}	4
3	P70/KR0/ SCK21/ SCL21	P73/KR3/ SO01	P74/KR4/ INTP8/SI01/ SDA01	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note 1/ (SO00)/(TXD0)	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note 1/ (INTP5)/ (TxD0_1) Note 2	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	P72/KR2/ SO21	P71/KR1/ SI21/SDA21	P06/(INTP11)/ (TRJIO0)	P14/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)	P11/SI11/ SDA11/ TRDIOC1/ (RxD0_1) Note 2	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJO0)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	P13/TxD2/ SO20/ TRDIOA1/ IVCMP1 Note 1	P10/SCK11/ SCL11/ TRDIOD1	P146	P147/ANI18/ VCOUT1 Note 1	1
	А	В	С	D	E	F	G	Н	

Note 1. Mounted on the 96 KB or more code flash memory products.

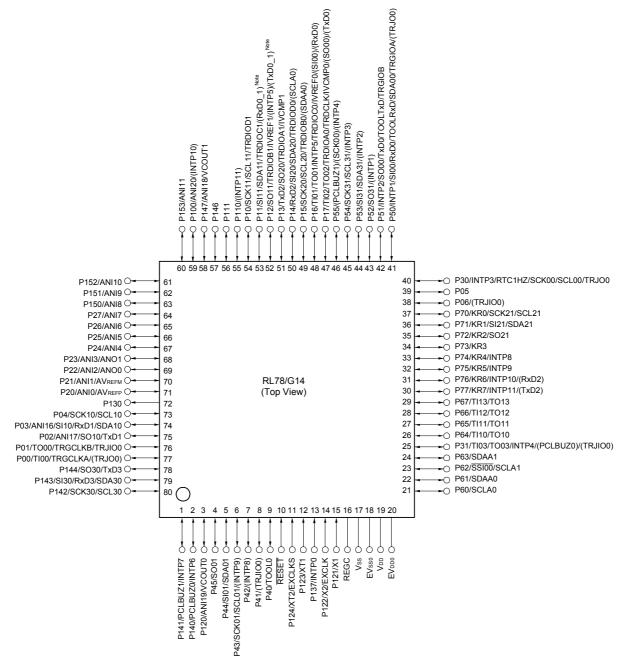
Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as VSS pin.

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.


Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

1.3.9 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 \times 12 mm, 0.5 mm pitch)

Note Mounted on the 384 KB or more code flash memory products.

- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the VSS and EVSS0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

1.6 Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

		30-pin	32-pin	36-pin	(1/2 40-pin				
	Item	R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)				
Code flash mer	mory (KB)	16 to 64	16 to 64	16 to 64	16 to 64				
Data flash merr		4	4	4	4				
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note				
Address space		1 MB	2.0 10 0.0	2.0 10 0.0	2.0 10 0.0				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)							
	High-speed on-chip oscillator clock (fi⊣)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)							
Subsystem cloc	ck		_		XT1 (crystal) oscillation external subsystem clock input (EXCLKS) 32.768 kHz				
Low-speed on-o	chip oscillator clock	15 kHz (TYP.): Vod = 1.6 to	o 5.5 V						
General-purpos	se register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)							
Minimum instru	ction execution time	$0.03125\mu s$ (High-speed on-chip oscillator clock: fiH = 32 MHz operation)							
		$0.05\mu s$ (High-speed system	m clock: f _{MX} = 20 MHz op	eration)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	26	28	32	36				
	CMOS I/O	21	22	26	28				
	CMOS input	3	3	3	5				
	CMOS output	_	_	—	-				
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3				
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer R	J: 1 channel, Timer RD: 2	channels, Timer RG: 1 c	hannel)				
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
	12-bit interval timer	1 channel							
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels	5						
	RTC output		_		1 • 1 Hz (subsystem clock: fsu = 32.768 kHz)				

(Note is listed on the next page.)

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

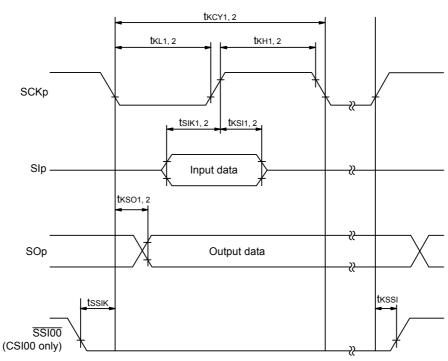
HS (high-speed main) mode:	$2.7~V \leq V_{DD} \leq 5.5~V@1~MHz$ to 32 MHz
	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz
LV (low-voltage main) mode:	1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.) Remark 3. file:
- High-speed on-chip oscillator clock frequency (32 MHz max.) Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

R01DS0053EJ0330 Rev. 3.30 Aug 12, 2016

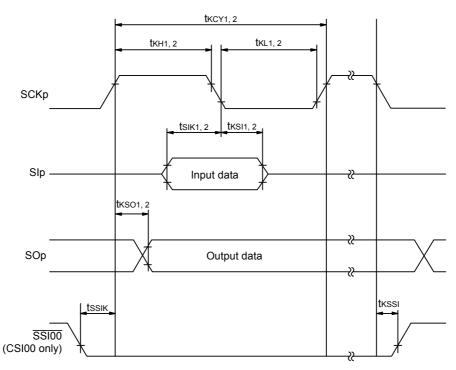
- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$


2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz


- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter	Symbol	Conditions	HS (high-speed r mode	main)	LS (low-speed n mode	nain)	LV (low-voltage r mode	main)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 85 Note 2		1/fмск + 145 Note 2		1/fmck + 145 Note 2		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{ Rb} = 3 \text{ k}\Omega \end{array}$	1/fмск + 145 Note 2		1/fмск + 145 Note 2		1/fmck + 145 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_b \mbox{ = 100 pF}, \mbox{ R}_b \mbox{ = 5 } \end{array}$	1/fмск + 230 Note 2		1/fмск + 230 Note 2		1/fMCK + 230 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1/fмск + 290 Note 2		1/fмск + 290 Note 2		1/fMCK + 290 Note 2		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b \mbox{ = 100 pF, } R_b \mbox{ = 5 } k\Omega \end{array}$	_		1/fмск + 290 Note 2		1/fMCK + 290 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 3 \mbox{ k}\Omega \end{array}$	0	355	0	355	0	355	ns
		$\label{eq:linear} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{DD0} < 2.7 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{DD0} < 1.8 \mbox{ V}, \\ C_b = 100 \mbox{ pF}, \mbox{ R}_b = 5 \mbox{ k}\Omega \end{array}$	0	405	0	405	0	405	ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_b \mbox{ = 100 pF, } R_b \mbox{ = 5 } k\Omega \end{array}$	_		0	405	0	405	ns

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol		Conditions H		-speed main) node	•	-speed main) mode	•	oltage main) node	Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 kΩ, V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 kΩ, V_b = 2.3 V		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

1

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

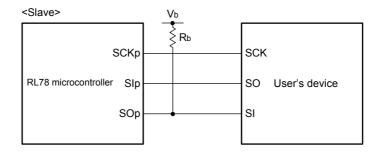
Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{|V_b|})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V


Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 30- to 52-pin products)/EVoD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: Internal reference voltage,	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.5625		39	μs
		and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			/ _{BGR} Note	5	V
	Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed				MPS25 Not	ie 5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as follows.										
	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.									
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.									
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.									
Note 4.	Values when the conversion time is set to 57 μs	(min.) and 95 µs (max.).									

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

RL78/G14

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

	-					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V, HS (high-speed main) mode)

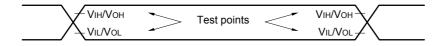
2.6.3 D/A converter characteristics

(TA = -40 to +85°C, 1.6 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

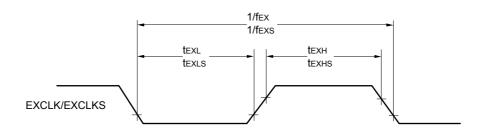
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$1.8~V \le V \text{DD} \le 5.5~V$			±2.5	LSB
		Rload = 8 M Ω	$1.8~V \le V_{DD} \le 5.5~V$			±2.5	LSB
Settling time	t SET	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$1.6~V \leq V_{DD} < 2.7~V$			6	μs

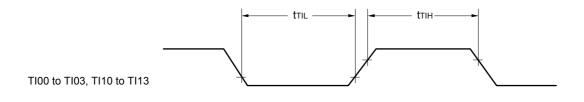
3.4 AC Characteristics

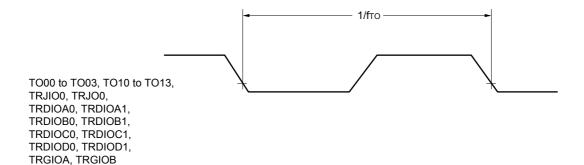
Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	-	HS (high-speed main) mode	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)				$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clock (fsub) operation		$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self- program- ming mode	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
			mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
External system clock fEx		$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$			24			ns
input high-level width,	t EXL	$\frac{1}{2.4 \text{ V}} \le \text{VDD} \le 1$	2.7 V		30			ns
low-level width	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$	100			ns
				$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV\text{DD0} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EVdd0} < 2.7 \text{ V}$	120			ns


(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

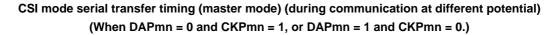

RemarkfMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel
number (n = 0 to 3))

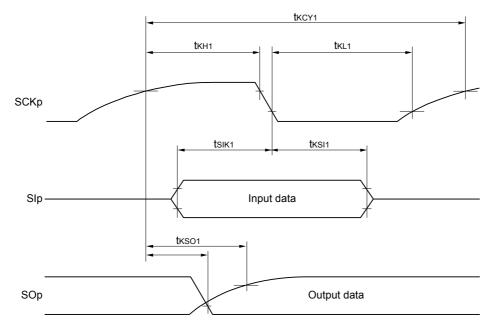

AC Timing Test Points



External System Clock Timing

TI/TO Timing





CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES	RES		8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	tCONV 10-bit resolution Target ANI pin: ANI16		$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI20	•	0		AVREFP and EVDD0	V

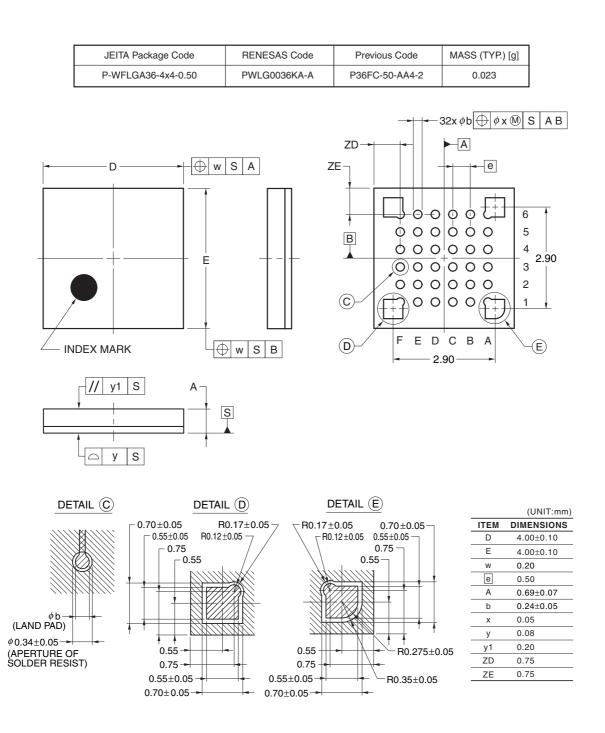
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ± 1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD0 \leq VDD, the MAX. values a	ire as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

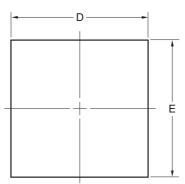

Zero-scale error/Full-scale error:

Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

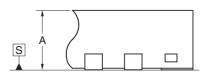
4.3 36-pin products

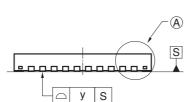
R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA

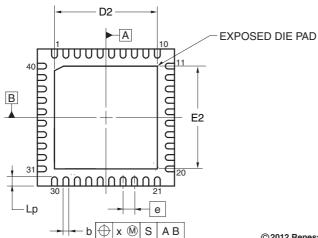
©2012 Renesas Electronics Corporation. All rights reserved.


4.4 40-pin products

R5F104EAANA, R5F104ECANA, R5F104EDANA, R5F104EEANA, R5F104EFANA, R5F104EGANA, R5F104EHANA

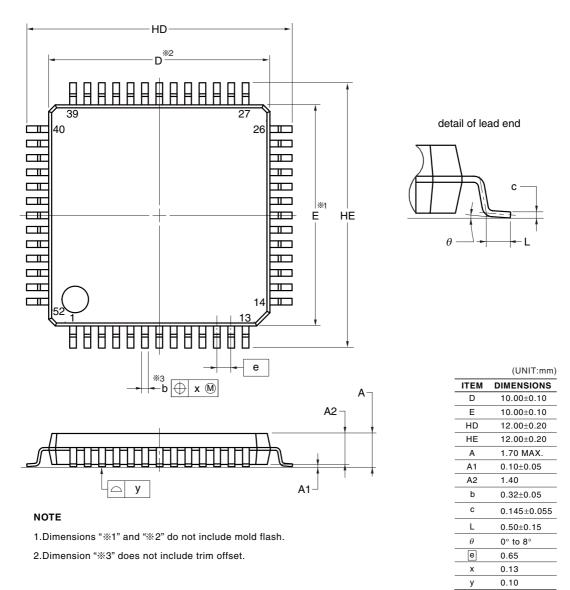

R5F104EADNA, R5F104ECDNA, R5F104EDDNA, R5F104EEDNA, R5F104EFDNA, R5F104EGDNA, R5F104EHDNA


R5F104EAGNA, R5F104ECGNA, R5F104EDGNA, R5F104EEGNA, R5F104EFGNA, R5F104EGGNA, R5F104EHGNA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN40-6x6-0.50	PWQN0040KC-A	P40K8-50-4B4-4	0.09

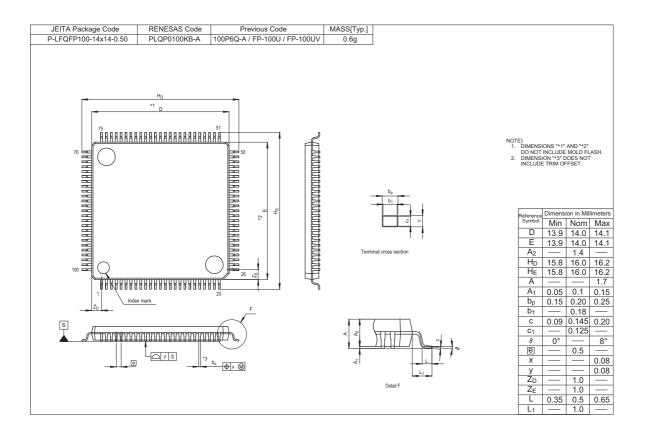
Referance	Dimension in Millimeters					
Symbol	Min	Nom	Max			
D	5.95	6.00	6.05			
E	5.95	6.00	6.05			
А	0.70	0.75	0.80			
b	0.18	0.25	0.30			
е		0.50	—			
Lp	0.30	0.40	0.50			
x		—	0.05			
У			0.05			

ITEM		D2			E2		
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	А	4.45	4.50	4.55	4.45	4.50	4.55


©2012 Renesas Electronics Corporation. All rights reserved.

4.7 52-pin products

R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F104PKAFB, R5F104PLAFB R5F104PKGFB, R5F104PLGFB

