

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Ξ·ΧΕΙ

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104ldafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

10	n
1/1	21
12/	~ '

		30-pin	32-pin	36-pin	40-pin				
1	tem	R5F104Ax	R5F104Bx	R5F104Cx	R5F104Ex				
		(x = A, C to E)	(x = A, C to E)	(x = A, C to E)	(x = A, C to E)				
Clock output/buzzer	output	2	2	2	2				
		 [30-pin, 32-pin, 36-pin provide the second stress of the second	 [30-pin, 32-pin, 36-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) [40-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: faulty = 32 768 kHz operation) 						
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels				
Serial interface		 [30-pin, 32-pin products] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel [36-pin, 40-pin products] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 							
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer contro	ller (DTC)	28 sources			29 sources				
Event link controller	(ELC)	Event input: 19Event input: 20Event trigger output: 7Event trigger output: 7							
Vectored interrupt	Internal	24	24	24	24				
sources	External	6	6	6	7				
Key interrupt		_	_	—	4				
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 							
Power-on-reset circ	Jit	 Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C) 							
Voltage detector		1.63 V to 4.06 V (14 stag	es)						
On-chip debug func	tion	Provided							
Power supply voltag	е	VDD = 1.6 to 5.5 V (TA = - VDD = 2.4 to 5.5 V (TA = -	-40 to +85°C) -40 to +105°C)						
Operating ambient t	emperature	$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)							

Note

The illegal instruction is generated when instruction code $\ensuremath{\mathsf{FFH}}$ is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]
 Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

			(1/2)			
		80-pin	100-pin			
	Item	R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Code flash men	nory (KB)	96 to 256	96 to 256			
Data flash mem	ory (KB)	8	8			
RAM (KB)		12 to 24 Note	12 to 24 Note			
Address space		1 MB				
Main system	High-speed system	X1 (crystal/ceramic) oscillation, external main	system clock input (EXCLK)			
clock	clock	HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V),				
		HS (high-speed main) mode: 1 to 16 MHz (Vi	DD = 2.4 to 5.5 V),			
		LS (low-speed main) mode: 1 to 8 MHz (Vol	o = 1.8 to 5.5 V),			
		LV (low-voltage main) mode: 1 to 4 MHz (Vol	o = 1.6 to 5.5 V)			
	High-speed on-chip	HS (high-speed main) mode: 1 to 32 MHz (Vi	ac = 2.7 to 5.5 V),			
	oscillator clock (fiH)	HS (high-speed main) mode: 1 to 16 MHz (Vi	op = 2.4 to 5.5 V),			
		LS (low-speed main) mode: 1 to 8 MHz (Vol	o = 1.8 to 5.5 V),			
		LV (low-voltage main) mode: 1 to 4 MHz (Vol	o = 1.6 to 5.5 V)			
Subsystem cloc	k	XT1 (crystal) oscillation, external subsystem c	lock input (EXCLKS) 32.768 kHz			
Low-speed on-c	hip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V				
General-purpos	e register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)				
Minimum instruction execution time		0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)				
		30.5 μ s (Subsystem clock: fsub = 32.768 kHz	operation)			
Instruction set		Data transfer (8/16 bits)				
		Adder and subtractor/logical operation (8/16 bits)				
		• Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits)				
		• Multiplication and Accumulation (16 bits \times 16 bits + 32 bits)				
		Rotate, barrel shift, and bit manipulation (Se	t, reset, test, and Boolean operation), etc.			
I/O port	Total	74	92			
	CMOS I/O	64	82			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	4	4			
Timer	16-bit timer	12 channels				
		(TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)				
Watchdog timer		1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	1 channel				
	Timer output	Timer outputs: 18 channels				
		PWM outputs: 12 channels				
	RTC output	1				
		• 1 Hz (subsystem clock: fsub = 32.768 kHz)				

Note

In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

(2)2	١
(2/2)

		80-pin	100-pin				
It	tem	R5F104Mx	R5F104Px				
		(x = F to H, J)	(x = F to H, J)				
Clock output/buzz	er output	2	2				
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.4	5 MHz, 5 MHz, 10 MHz				
		(Main system clock: fмаin = 20 MHz operation	on)				
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz					
		(Subsystem clock: fs∪B = 32.768 kHz opera	tion)				
8/10-bit resolution	A/D converter	17 channels	20 channels				
D/A converter		2 channels	2 channels				
Comparator		2 channels	2 channels				
Serial interface		[80-pin, 100-pin products]					
		CSI: 2 channels/UART (UART supporting L	N-bus): 1 channel/simplified I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
	I ² C bus	2 channels	2 channels				
Data transfer cont	troller (DTC)	39 sources	39 sources				
Event link controll	er (ELC)	Event input: 26					
		Event trigger output: 9					
Vectored inter-	Internal	32	32				
rupt sources	External	13	13				
Key interrupt		8	8				
Reset		Reset by RESET pin					
		 Internal reset by watchdog timer 					
		 Internal reset by power-on-reset 					
		 Internal reset by voltage detector 					
		Internal reset by illegal instruction execution	Note				
		 Internal reset by RAM parity error 					
		Internal reset by illegal-memory access					
Power-on-reset ci	rcuit	• Power-on-reset: 1.51 ±0.04 V (TA = -40	to +85°C)				
		1.51 ±0.06 V (TA = -40	to +105°C)				
		• Power-down-reset: $1.50 \pm 0.04 \vee (T_{A} = -40)$	$10 + 85^{\circ}C$				
Voltago dotoctor		1.63 V to 4.06 V (14 stages)					
On-chip debug fu	nction	Provided					
Power supply yelt	200	$V_{DD} = 1.6 \text{ to } 5.5 \text{ V} (T_{A} = 40 \text{ to } \pm 85^{\circ} \text{ C})$					
	aye	$V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_A = -40 \text{ to } +0.5 \text{ C})$					
Operating ambien	it temperature	$T_{A} = -40$ to +85°C (A: Consumer applications	D: Industrial applications)				
		$T_A = -40$ to +105°C (G: Industrial applications)				

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVddo		EVddo	V
	Vih2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	1.5		EVDD0	V
	VIH3 P20 to P27, P150 to P156 VIH4 P60 to P63		0.7 Vdd		Vdd	V	
			0.7 EVDD0		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0.8 Vdd		Vdd	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2 P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55, P80, P81, P142, P143	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V	
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 1.6 V ≤ EVpp₀ < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5 P121 to P124, P137, EXCLK, EXCLKS, RESET					0.2 Vdd	V

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(3/5)

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C	;, 1.6 V ≤ EVDD0 ≤	$VDD \leq 5.5 V, VSS$	= EVSS0 = 0 V)(2/2)
--------------------	--------------------	-----------------------	---------------------

Parameter	Symbol		Conditions			MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	3.09	mA
Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.80	3.09	
	fHOCO = 32 MHz		fносо = 32 MHz,	VDD = 5.0 V		0.49	2.40		
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	2.40	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.40	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.40	
				fносо = 24 MHz,	VDD = 5.0 V		0.4	1.83	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.4	1.83	
				fносо = 16 MHz,	VDD = 5.0 V		0.37	1.38	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.37	1.38	
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		260	710	μΑ
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		260	710	
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	700	μΑ
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		420	700	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.55	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	1.74	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.55	
				VDD = 3.0 V	Resonator connection		0.40	1.74	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.19	0.86	
					Resonator connection		0.25	0.93	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	0.86	
				V _{DD} = 3.0 V			0.25	0.93	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	550	μΑ
			mode Note 7	VDD = 3.0 V	Resonator connection		140	590	
				fmx = 8 MHz Note 3,	Square wave input		95	550	
				VDD = 2.0 V	Resonator connection		140	590	
			Subsystem clock	fsub = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μΑ
			operation	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	
				fsub = 32.768 kHz Note 5,	Square wave input		0.30	0.57	
				TA = +25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz Note 5,	Square wave input		0.36	1.17	
				TA = +50°C	Resonator connection		0.59	1.36	
				fsub = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	
	fsu _B = 32.768 kHz ^{Note 5}	fsub = 32.768 kHz Note 5,	Square wave input		0.97	3.37			
				TA = +85°C	Resonator connection		1.16	3.56	
	IDD3	STOP mode	TA = -40°C				0.18	0.51	μA
	Note 6	Note 8	T _A = +25°C				0.24	0.51	
			T _A = +50°C				0.29	1.10	
			T _A = +70°C				0.41	1.90	
			TA = +85°C				0.90	3.30	

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions		HS (high-speed main) LS (I mode		LS (low-speed mode	LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	20 MHz < fмск	8/fмск		_		_		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	16 MHz < fмск	8/fмск		_		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	tкн2,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tĸcy2/2 - 7		tkcy2/2 - 7		tксү2/2 - 7		ns
IOW-IEVEI WIDTN	TKL2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 - 66		tkcy2/2 - 66		tkcy2/2 - 66		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		_		tkcy2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$				1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$				1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Note 4.** This value as an example is calculated when the conditions described in the "Conditions" column are met.
- Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $EV_{DD0} \ge V_b$.
- **Note 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate

sfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

1

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions		Conditions HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: STA	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
		$1.8~V \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	tвuғ	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8~V \leq EV_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

Operation of products rated "G: Industrial applications (TA = -40 to + $105^{\circ}C$)" at ambient operating temperatures above $85^{\circ}C$ differs from that of products rated "A: Consumer applications" and "D: Industrial applications" in the ways listed below.

Parameter	A: Consumer applications, D: Industrial applications	G: Industrial applications		
Operating ambient temperature	TA = -40 to +85°C	TA = -40 to +105°C		
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:		
Operating voltage range	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz to } 32 \text{ MHz}$	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz		
	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz		
	LS (low-speed main) mode:			
	1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz			
	LV (low-voltage main) mode:			
	1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz			
High-speed on-chip oscillator	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$:		
clock accuracy	±1.0% @ TA = -20 to +85°C	±2.0% @ TA = +85 to +105°C		
	±1.5% @ TA = -40 to -20°C	±1.0% @ TA = -20 to +85°C		
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5% @ TA = -40 to -20°C		
	±5.0% @ TA = -20 to +85°C			
	±5.5% @ TA = -40 to -20°C			
Serial array unit	UART	UART		
	CSI: fcLk/2 (16 Mbps supported), fcLk/4	CSI: fclk/4		
	Simplified I ² C communication	Simplified I ² C communication		
IICA	Standard mode	Standard mode		
	Fast mode	Fast mode		
	Fast mode plus			
Voltage detector	• Rising: 1.67 V to 4.06 V (14 stages)	• Rising: 2.61 V to 4.06 V (8 stages)		
	Falling: 1.63 V to 3.98 V (14 stages)	Falling: 2.55 V to 3.98 V (8 stages)		

Remark The electrical characteristics of products rated "G: Industrial applications (TA = -40 to + 105°C)" at ambient operating temperatures above 85°C differ from those of products rated "A: Consumer applications" and "D: Industrial applications". For details, refer to **3.1** to **3.10**.

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	4.36	mA
Note 1	Note 2		mode Note 7	fiн = 32 MHz Note 4	VDD = 3.0 V		0.80	4.36	
				fносо = 32 MHz,	VDD = 5.0 V		0.49	3.67	1
				fiн = 32 MHz Note 4	VDD = 3.0 V		0.49	3.67	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	3.42	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	3.42	
				fносо = 24 MHz,	VDD = 5.0 V		0.4	2.85	
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	2.85	
				fносо = 16 MHz,	VDD = 5.0 V		0.37	2.08	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	2.08	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	2.57	
			Subsystem clock operation	f _{MX} = 20 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.28	2.45	
					Resonator connection		0.40	2.57	-
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.19	1.28	
					Resonator connection		0.25	1.36	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.19	1.28	
					Resonator connection		0.25	1.36	
				fsub = 32.768 kHz Note 5, TA = -40°C fsub = 32.768 kHz Note 5, TA = +25°C fsub = 32.768 kHz Note 5, TA = +50°C fsub = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μΑ
					Resonator connection		0.44	0.76	
					Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
					Square wave input		0.36	1.17	
					Resonator connection		0.59	1.36	
					Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	
				fsue = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				TA = +85°C	Resonator connection		1.16	3.56	
				fsue = 32.768 kHz Note 5,	Square wave input		3.20	17.10	
	IDD3 Note 6			TA = +105°C	Resonator connection		3.40	17.50	
		6 STOP mode Note 8	TA = -40°C				0.18	0.51	μA
			TA = +25°C				0.24	0.51	
			TA = +50°C				0.29	1.10]
			TA = +70°C				0.41	1.90]
			TA = +85°C				0.90	3.30]
			T _A = +105°C				3.10	17.00	

$(T_{A} = -40 \text{ to})$	+105°C 24V	< FV אחס < V	n < 5 5 V Vss	= FVsso = 0	V)(2/2)
(1A = -40.00)	TIUD 0, 2.7 V		D ≤ J.J ¥, ¥33		, v)(<u>4</u> , <u>4</u>)

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

Supply voltage VDD [V]

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		Symbol Conditions HS (high-speed main) mode		peed main) ode	Unit
				MIN.	MAX.		
SCKp cycle time	t КСҮ1	tĸcy1 ≥ 4/fcLĸ	$2.7 \text{ V} \leq \text{Evdd0} \leq 5.5 \text{ V}$	250		ns	
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	500		ns	
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	tксү1/2 - 24		ns	
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	tксү1/2 - 36		ns	
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 76		ns	
SIp setup time (to SCKp↑) Note 1	tsıĸı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			ns	
		$2.7 V \le EV_{DD0} \le 5.5 V$ $2.4 V \le EV_{DD0} \le 5.5 V$		66		ns	
				113		ns	
SIp hold time (from SCKp [↑]) Note 2	tksii			38		ns	
Delay time from SCKp \downarrow to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4			50	ns	

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (simplified I²C mode)

|--|

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) mode		
			MIN.	MAX.		
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz	
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$		100 Note 1	kHz	
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns	
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	4600		ns	
Hold time when SCLr = "H"	tнigн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ \text{R}_b = 2.7 \ \text{k}\Omega \end{array}$	1200		ns	
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} \texttt{=} 100 \ pF, \ R_{b} \texttt{=} 3 \ k\Omega \end{array}$	4600		ns	
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ \text{R}_b = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns	
		$\label{eq:linear} \begin{split} 2.4 V &\leq E V_{DD0} \leq 5.5 \; V, \\ C_{b} &= 100 \; pF, \; R_{b} = 3 \; k \Omega \end{split}$	1/f _{MCK} + 580 Note 2		ns	
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ Cb = 50 pF, Rb = 2.7 k Ω	0	770	ns	
		$\begin{array}{l} 2.4 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$	0	1420	ns	

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

('TA = -40 to +105°C. 2.4 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V	V. Vss = EVss0 = EVss1 = 0 V
		,

Parameter	Symbol	Conditions		HS (high-spe	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,$	24 MHz < fмск	28/fмск		ns
		$2.7~V \leq V_b \leq 4.0~V$	$20 \text{ MHz} < \text{fmck} \leq 24 \text{ MHz}$	24/fмск		ns
			8 MHz < fмск \leq 20 MHz	20/fмск		ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$	24 MHz < fмск	40/fмск		ns
		$2.3~V \leq V_b \leq 2.7~V$	$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	32/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \leq 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fмск \leq 16 MHz	24/fмск		ns
			$4 \text{ MHz} < f_{MCK} \leq 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$\begin{array}{l} 2.4 \ V \leq E V_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$	24 MHz < fмск	96/fмск		ns
			$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	72/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \leq 20 \text{ MHz}$	64/fмск		ns
			8 MHz < fмск \leq 16 MHz	52/fмск		ns
			$4 \text{ MHz} < f_{MCK} \leq 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tĸн₂, tĸ∟₂	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.$	$7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}$	tkcy2/2 - 24		ns
width		$2.7 \; \text{V} \leq E \text{V}_{\text{DD0}} < 4.0 \; \text{V}, 2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}$		tkcy2/2 - 36		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V$		tксү2/2 - 100		ns
SIp setup time	tsik2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.$	$7~V \leq V_b \leq 4.0~V$	1/fмск + 40		ns
(to SCKp↑) Note 2		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2.$	$3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 40		ns
		$2.4 \ V \le E V_{DD0} < 3.3 \ V, \ 1.6 \ V \le V_b \le 2.0 \ V$		1/fмск + 60		ns
SIp hold time (from SCKp†) Note 3	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tкso2				2/fмск + 240	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \; 2. \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	$3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V},$		2/fмск + 428	ns
		$\begin{array}{l} \hline c_{b} = 30 \ \text{pr}, \ \text{Re} = 2.7 \ \text{Rs}^{2} \\ \hline 2.4 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \ 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V}, \\ \hline c_{b} = 30 \ \text{pF}, \ \text{Rv} = 5.5 \ \text{k}\Omega \end{array}$			2/fмск + 1146	ns

(Notes, Caution, and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

1	TA = -40 to $\pm 105^{\circ}$ 2.4 V < EVDD0 = EVDD1 < VDD < 5.5 V VSS = EVSS0 = EVSS1	- 0 \/)
1	$TA = -40 [0 + 103 C, 2.4 V \le EVDD0 = EVDD1 \le VDD \le 5.5 V, V33 = EV330 = EV331$	= 0 v)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed r	Unit	
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 340 Note 2		ns
			1/fmck + 760 Note 2		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 760 Note 2		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution $EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$		1.2	±5.0	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution $EV_{DD0} \le AV_{REFP} = V_{DD} \text{ Notes 3, 4}$	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution $EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI20		0		AVREFP and EVDD0	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD0 \leq VDD, the MAX. values a	are as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error:

Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20				EV _{DD0}	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		VBGR Note 3			V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			V _{TMPS25} Note 3		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

