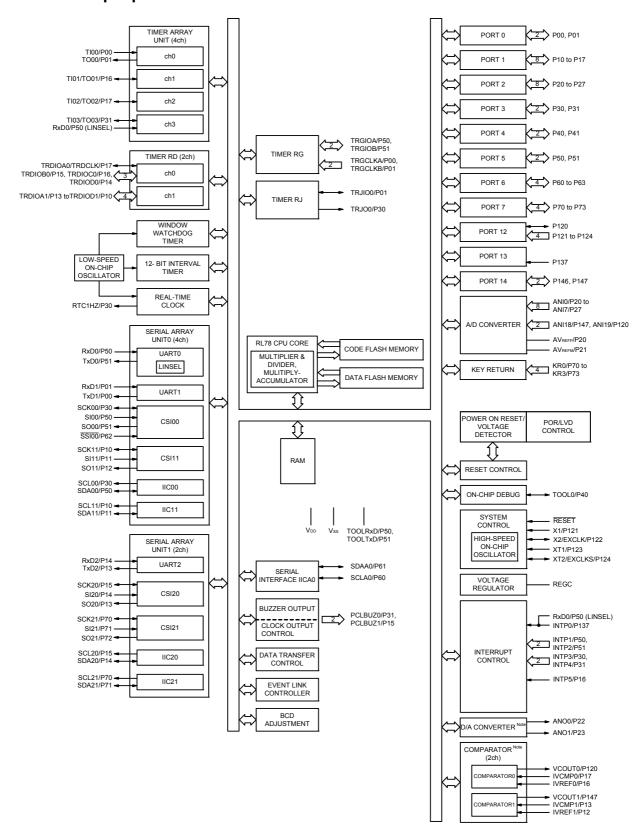


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104leafb-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G14 1. OUTLINE

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

RL78/G14 1. OUTLINE

(2/2)

			<u> </u>	<u> </u>					
		30-pin	32-pin	36-pin	40-pin				
ľ	tem	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)				
Clock output/buzzer	output	2	2	2	2				
		(Main system clock: fMA [40-pin products] • 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fMA • 256 Hz, 512 Hz, 1.024	6 kHz, 1.25 MHz, 2.5 MHz IN = 20 MHz operation) 6 kHz, 1.25 MHz, 2.5 MHz	z, 5 MHz, 10 MHz	:, 32.768 kHz				
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels				
D/A converter		1 channel	2 channels	1	I .				
Comparator		2 channels							
Serial interface		CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products] CSI: 1 channel/UART (I CSI: 1 channel/UART: 1	CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel						
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer contro	ller (DTC)	30 sources		·L	31 sources				
Event link controller	(ELC)	Event input: 21 Event trigger output: 8	Event input: 21, Ev	vent trigger output: 9	Event input: 22 Event trigger output: 9				
Vectored interrupt	Internal	24	24	24	24				
sources	External	6	6	6	7				
Key interrupt		_	_	_	4				
Reset		Reset by RESET pin Internal reset by watche Internal reset by power- Internal reset by voltage Internal reset by illegal Internal reset by RAM p Internal reset by illegal-	on-reset e detector instruction execution ^{Note} parity error						
Power-on-reset circu	uit	• Power-down-reset: 1.8	 Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C) 						
Voltage detector		1.63 V to 4.06 V (14 stag	1.63 V to 4.06 V (14 stages)						
On-chip debug func	tion	Provided							
Power supply voltag	e	V _{DD} = 1.6 to 5.5 V (T _A = - V _{DD} = 2.4 to 5.5 V (T _A = -	,						
Operating ambient to	emperature	$T_A = -40 \text{ to } +85^{\circ}\text{C (A: Co}$ $T_A = -40 \text{ to } +105^{\circ}\text{C (G: In}$	nsumer applications, D: In dustrial applications)	dustrial applications),					

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

RL78/G14 1. OUTLINE

(2/2)

					(2/2)			
		44-pin	48-pin	52-pin	64-pin			
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx			
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)			
Clock output/buz	zer output	2	2	2	2			
		(Main system clock: • 256 Hz, 512 Hz, 1.02	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 					
8/10-bit resolutio	n A/D converter	10 channels	10 channels	12 channels	12 channels			
D/A converter		2 channels		ı				
Comparator		2 channels						
Serial interface	120 1	CSI: 1 channel/UAR CSI: 2 channels/UAF [48-pin, 52-pin product CSI: 2 channels/UAF CSI: 1 channel/UAR CSI: 2 channels/UAF	T: 1 channel/simplified I RT: 1 channel/simplified I ts] RT (UART supporting LI T: 1 channel/simplified I RT: 1 channel/simplified RT (UART supporting LI RT: 1 channel/simplified	I ² C: 2 channels IN-bus): 1 channel/simp ² C: 1 channel I ² C: 2 channels IN-bus): 1 channel/simp I ² C: 2 channels I ² C: 2 channels	olified I ² C: 2 channels olified I ² C: 2 channels			
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer cor	troller (DTC)	31 sources	31 sources 32 sources 33 sources					
Event link contro	ller (ELC)	Event input: 22 Event trigger output: 9						
Vectored inter-	Internal	24	24	24	24			
rupt sources	External	7	10	12	13			
Key interrupt	1	4	6	8	8			
Power-on-reset of	circuit	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 						
Voltage detector		1.50 ±0.06 V (TA = -40 to +105°C) 1.63 V to 4.06 V (14 stages)						
On-chip debug fu	ınction	Provided						
Power supply vol		V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)						
Operating ambie	nt temperature		Consumer applications, : Industrial applications	, D: Industrial applicatio)	ns),			

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications TA = -40 to +85°C

R5F104xxAxx

D: Industrial applications TA = -40 to +85°C

R5F104xxDxx

- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			-55.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EV _{DD0} < 4.0 V			-10.0	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ EV _{DD0} < 2.7 V			-5.0	mA
		1.6 V ≤ EV _{DD0} < 1.8 V			-2.5	mA	
		P30, P31, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V			-80.0	mA
			2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110,	1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
		P111, P146, P147 (When duty ≤ 70% Note 3)	1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
		, ,	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	1.6 V ≤ VDD ≤ 5.5 V			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDDO, EVDD1, VDD pins to an output pin.

Note 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoH \times 0.7)/(n \times 0.01) <Example> Where n = 80% and IoH = -10.0 mA Total output current of pins = (-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Note 2. Do not exceed the total current value.

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

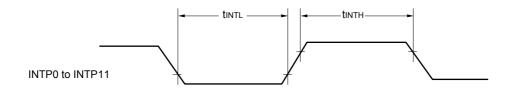
(4/5)

Items	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -10.0 mA	EVDD0 - 1.5			٧
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P111, P120, P130, P140 to P147	1.8 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EV _{DD0} < 1.8 V, IOH1 = -1.0 mA	EVDD0 - 0.5			٧
	VOH2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V},$ $\text{VDD} - 0.5$ $\text{IOH2} = -100 \mu\text{A}$	V			
Output voltage, low	P3	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 20.0 mA			1.3	٧
		P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 8.5 mA			0.7	٧
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, loL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $\text{IOL1} = 0.6 \text{ mA}$			0.4	٧
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 0.3 mA			0.4	٧
	VOL2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu\text{A}$			0.4	٧
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 5.0 mA			0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 3.0 mA			0.4	V
			1.8 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 2.0 mA			0.4	V
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 1.0 mA			0.4	V

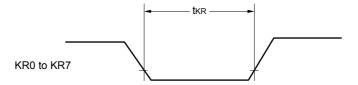
Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

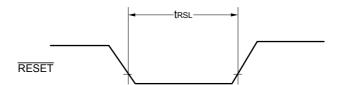
- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz


LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

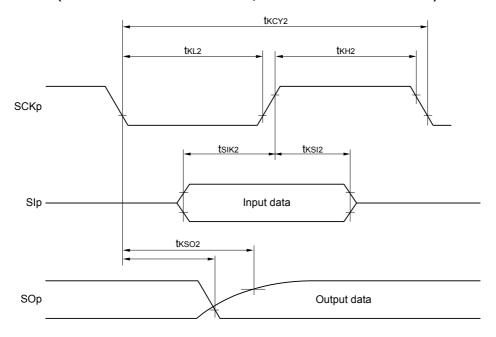
- Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $EVDD0 \ge V_b$.
- Note 6. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate

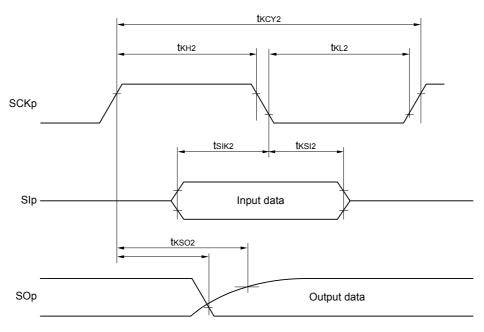
Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$


- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

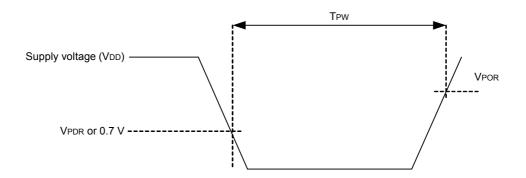
(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	٠. ٠	speed main) node	,	speed main) node	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fscL	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} &= 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} 4.0 & \ V \le EV_{DD0} \le 5.5 \ V, \\ 2.7 & \ V \le V_b \le 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $		400 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &2.7 \; \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \; \text{V}, \\ &2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ &C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	1150		1550		1550		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1150		1550		1550		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	thigh	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	245		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	200		610		610		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega \end{aligned} $	675		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	600		610		610		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{aligned}$	610		610		610		ns

2.6.4 Comparator

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EV _{DD0} - 1.4	V
	Ivcmp			-0.3		EV _{DD0} + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/μs	Comparator high-speed mode, standard mode			1.2	μs
		Comparator high-speed mode, window mode			2.0	μs	
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode	e, window mode		0.76 VDD		V
Low-electric-potential ref- erence voltage	VTW-	Comparator high-speed mode	e, window mode		0.24 VDD		V
Operation stabilization wait time	tсмр			100			μs
Internal reference voltage Note	VBGR	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ HS (h}$	nigh-speed main) mode	1.38	1.45	1.50	V


Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

2.6.5 POR circuit characteristics

$(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.47	1.51	1.55	V
	VPDR	Voltage threshold on VDD falling Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	Tpw		300			μs

- **Note 1.** However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{\textcircled{Q}}1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{\textcircled{Q}}1 \text{ MHz}$ to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)

 Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)

 Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

•		•		•			•
Items	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdil	·	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1				ns
Timer RD forced cutoff signal	ttdsil	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fcLK + 1			
Timer RG input high-level width, low-level width	tтgін, tтgіL	TRGIOA, TRGIOB		2.5/fcLK			ns
TO00 to TO03,	fто	HS (high-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
TO10 to TO13,			2.7 V ≤ EV _{DD0} < 4.0 V			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
frequency			2.7 V ≤ EVDD0 < 4.0 V			8	MHz
			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
Interrupt input high-level	tinth,	INTP0	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	2.4 V ≤ EVDD0 ≤ 5.5 V	1			μs
Key interrupt input low-level width	tkr	KR0 to KR7	2.4 V ≤ EVDD0 ≤ 5.5 V	250			ns
RESET low-level width	trsl			10			μs

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol		Conditions	HS (high-spe	ed main) mode	Unit
				MIN.	MAX.	
Transfer rate		transmission	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		Note 3	bps	
	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4	Mbps		
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Note 5	bps
		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF, } R_b = 5.5 \text{ k}\Omega,$ $V_b = 1.6 \text{ V}$		0.43 Note 6	Mbps	

Note 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when $4.0~\text{V} \le \text{EV}_{\text{DD0}} \le 5.5~\text{V}$ and $2.7~\text{V} \le \text{V}_{\text{b}} \le 4.0~\text{V}$

Maximum transfer rate =
$$\frac{1}{ \{ -C_b \times R_b \times \text{ln } (1 - \frac{2.2}{V_b}) \} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{ \left\{ -C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b} \right) \right\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b}\right)\}}{\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

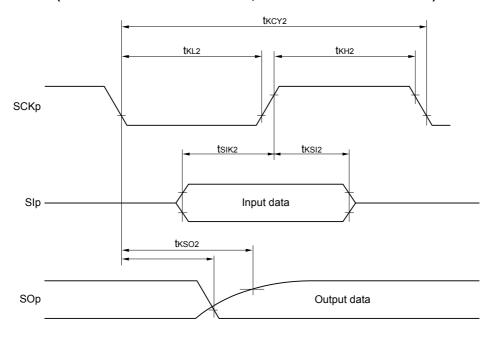
- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

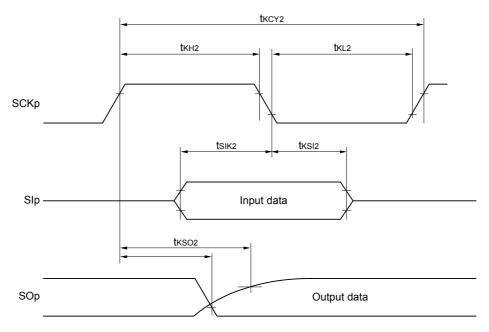
Note 5. The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} }{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits} }$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 6. This value as an example is calculated when the conditions described in the "Conditions" column are met.


 Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, VSS = EVSS1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±5.0	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.1875		39	μs
			$2.4 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	2.4 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	2.4 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	2.4 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	2.4 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

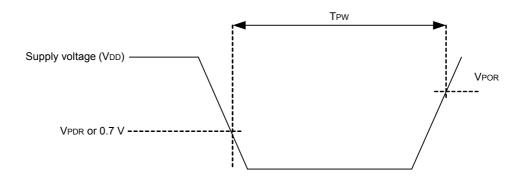
Note 4. When $AV_{REFP} < EV_{DD0} \le V_{DD}$, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VDD.

3.6.4 Comparator

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EVDD0 - 1.4	V
	Ivcmp			-0.3		EV _{DD0} + 0.3	V
Output delay		Comparator high-speed mode, standard mode			1.2	μs	
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode	e, window mode		0.76 VDD		V
Low-electric-potential ref- erence voltage	VTW-	Comparator high-speed mode	e, window mode		0.24 VDD		V
Operation stabilization wait time	tсмр			100			μs
Internal reference voltage Note	VBGR	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ HS (h}$	nigh-speed main) mode	1.38	1.45	1.50	٧


Note Not usable in sub-clock operation or STOP mode.

3.6.5 POR circuit characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.45	1.51	1.57	V
	VPDR	Voltage threshold on VDD falling Note 1	1.44	1.50	1.56	V
Minimum pulse width Note 2	Tpw		300			μs

- **Note 1.** However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.