

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-WFLGA
Supplier Device Package	64-FLGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104lfala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch) P15/PCLBUZ1/SCK20/SCL20/TRDIOB0/(SDAA0) P16/TI01/T001/INTP5/TRDIOC0/IVREF0 Nois/(RxD0) P14/RxD2/SI20/SDA20/TRDIOD0/(SCLA0) P11/SI11/SDA11/TRDIOC1 P12/SO11/TRDIOB1/IVREF1 Note P13/TxD2/SO20/TRDIOA1/IVCMP1 Note P10/SCK11/SCL11/TRDIOD1 24 23 22 21 20 19 18 17 P147/ANI18/VCOUT1 Note O ► P51/INTP2/SO00/TxD0/TOOLTxD/TRGIOB P23/ANI3/ANO1 Note O 26 15 P50/INTP1/SI00/RxD0/TOOLRxD/SDA00/TRGIOA/(TRJO0) P22/ANI2/ANO0 Note O 27 14 -O P30/INTP3/SCK00/SCL00/TRJO0 RL78/G14 P21/ANI1/AVREFM O 28 13 -O P70 (Top View) 29 12 P20/ANI0/AVREFP ○ ► P31/TI03/T003/INTP4/PCLBUZ0/(TRJI00)

11

10

4 5 6 7 8

P122/X2/EXCLK
P121/X1
REGC
Vss (Vs)

-○ P62/SSI00

►○ P61/SDAA0 ►○ P60/SCLA0

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

30

31

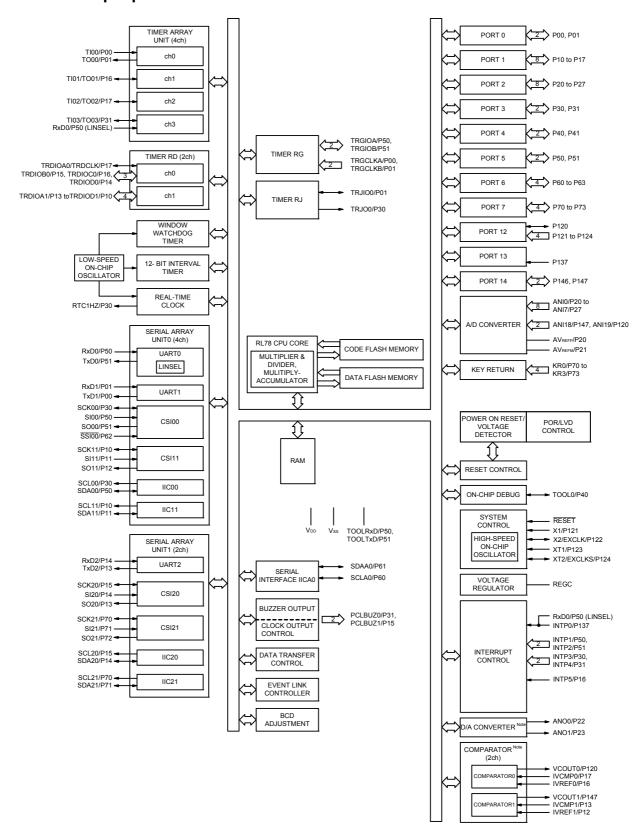
2 3

Remark 1. For pin identification, see 1.4 Pin Identification.

P01/ANI16/TO00/RxD1/TRGCLKB/TRJIO0 O

P00/ANI17/TI00/TxD1/TRGCLKA/(TRJO0) O-P120/ANI19/VCOUT0 Note O-

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).


1.4 Pin Identification

ANI0 to ANI14,: RxD0 to RxD3: Receive data Analog input ANI16 to ANI20 SCK00, SCK01, SCK10,: Serial clock input/output ANO0, ANO1: Analog output SCK11, SCK20, SCK21, AVREFM: A/D converter reference SCK30, SCK31 potential (- side) input SCLA0, SCLA1,: Serial clock input/output AVREFP: A/D converter reference SCL00, SCL01, SCL10, SCL11,: Serial clock output potential (+ side) input SCL20, SCL21, SCL30, EVDD0, EVDD1: SCI 31 Power supply for port EVsso, EVss1: Ground for port SDAA0, SDAA1, SDA00,: Serial data input/output EXCLK: External clock input SDA01, SDA10, SDA11, SDA20, SDA21, SDA30, (main system clock) EXCLKS: External clock input SDA31 (subsystem clock) SI00, SI01, SI10, SI11,: Serial data input INTP0 to INTP11: SI20, SI21, SI30, SI31 External interrupt input IVCMP0, IVCMP1: Comparator input SO00, SO01, SO10,: Serial data output IVREF0, IVREF1: Comparator reference input SO11, SO20, SO21, KR0 to KR7: SO30, SO31 Key return P00 to P06: Port 0 SSI00: Serial interface chip select input P10 to P17: Port 1 TI00 to TI03,: Timer input P20 to P27: Port 2 TI10 to TI13 P30, P31: Port 3 TO00 to TO03,: Timer output P40 to P47: Port 4 TO10 to TO13, TRJ00 P50 to P57: Port 5 TOOL0: Data input/output for tool P60 to P67: Port 6 TOOLRxD, TOOLTxD: Data input/output for external device P70 to P77: Port 7 TRDCLK, TRGCLKA,: Timer external input clock P80 to P87: Port 8 **TRGCLKB** P100 to P102: Port 10 TRDIOA0, TRDIOB0,: Timer input/output P110, P111: Port 11 TRDIOCO, TRDIODO, P120 to P124: Port 12 TRDIOA1, TRDIOB1, P130, P137: Port 13 TRDIOC1, TRDIOD1, P140 to P147: Port 14 TRGIOA, TRGIOB, TRJIO0 P150 to P156: Port 15 TxD0 to TxD3: Transmit data PCLBUZ0, PCLBUZ1: VCOUT0, VCOUT1: Comparator output Programmable clock output/buzzer output ADD. Power supply REGC: Vss: Ground Regulator capacitance RESET: X1, X2: Reset Crystal oscillator (main system clock) Real-time clock correction RTC1HZ: XT1. XT2: Crystal oscillator (subsystem clock)

clock

(1 Hz) output

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H R5F104xE (x = A to C, E to G, J, L): Start address FE900H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

		80-pin	100-pin				
	Item	R5F104Mx	R5F104Px				
		(x = F to H, J)	(x = F to H, J)				
Code flash me	emory (KB)	96 to 256	96 to 256				
Data flash me	mory (KB)	8	8				
RAM (KB)		12 to 24 ^{Note}	12 to 24 Note				
Address space	e	1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (V HS (high-speed main) mode: 1 to 16 MHz (V LS (low-speed main) mode: 1 to 8 MHz (VD LV (low-voltage main) mode: 1 to 4 MHz (VD	DD = 2.4 to 5.5 V), D = 1.8 to 5.5 V),				
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem of	lock input (EXCLKS) 32.768 kHz				
Low-speed on	n-chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)					
Minimum instr	ruction execution time	0.03125 μs (High-speed on-chip oscillator clo	ck: fiн = 32 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 M	IHz operation)				
		30.5 μs (Subsystem clock: fsub = 32.768 kHz	operation)				
Instruction set	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	74	92				
	CMOS I/O	64	82				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer	RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels					
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)					

Note

In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1 IOH1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			-55.0	mA
			2.7 V ≤ EV _{DD0} < 4.0 V			-10.0	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ EV _{DD0} < 2.7 V			-5.0	mA
			1.6 V ≤ EV _{DD0} < 1.8 V			-2.5	mA
		, , , , , , , , , , , , , , , , , , , ,	4.0 V ≤ EVDD0 ≤ 5.5 V			-80.0	mA
		P30, P31, P50 to P57,	2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110,	1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
		P111, P146, P147 (When duty ≤ 70% Note 3)	1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
	Іон2	Total of all pins (When duty ≤ 70% Note 3)	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 4	mA
		Per pin for P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	1.6 V ≤ VDD ≤ 5.5 V			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDDO, EVDD1, VDD pins to an output pin.

Note 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoH \times 0.7)/(n \times 0.01) <Example> Where n = 80% and IoH = -10.0 mA Total output current of pins = (-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Note 2. Do not exceed the total current value.

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

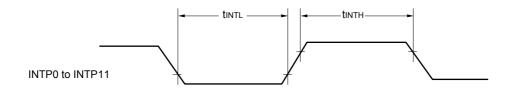
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.9		mA
current		ing mode	mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.9		
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.5		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.5		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		6.0	11.2	mA
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		6.0	11.2	
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		5.5	10.6	
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.5	10.6	
				fHOCO = 48 MHz,	Normal	V _{DD} = 5.0 V		4.7	8.6	
			fHOCO = 24 MHz	fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.7	8.6	
				fHOCO = 24 MHz, Norma	Normal	V _{DD} = 5.0 V		4.4	8.2	
			fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.4	8.2		
				fhoco = 16 MHz,	Normal	V _{DD} = 5.0 V		3.3	5.9	
				fih = 16 MHz Note 3	operation	V _{DD} = 3.0 V		3.3	5.9	
			LS (low-speed main)	fHOCO = 8 MHz,	Normal	V _{DD} = 3.0 V		1.5	2.5	mA
			mode Note 5	fih = 8 MHz Note 3	operation	V _{DD} = 2.0 V		1.5	2.5	
			LV (low-voltage main)	fHOCO = 4 MHz,	Normal	V _{DD} = 3.0 V		1.5	2.1	mA
	mode Note 5	fiH = 4 MHz Note 3	operation	V _{DD} = 2.0 V		1.5	2.1			
			HS (high-speed main)	, , ,	Normal	Square wave input		3.7	6.8	mA
			mode Note 5		operation	Resonator connection		3.9	7.0	
				f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	
				operation	Resonator connection		3.9	7.0		
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.3	4.1]
			V _{DD} = 5.0 V opera	operation	Resonator connection		2.3	4.2		
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.3	4.1	1
				V _{DD} = 3.0 V	operation	Resonator connection		2.3	4.2	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.4	2.4	mA
			mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.4	2.5	
				f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.4	2.4	
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.5	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.2		μА
			operation	TA = -40°C	operation	Resonator connection		5.2		
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7	
				T _A = +25°C	operation	Resonator connection		5.3	7.7	
			fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.6		
		T _A = +50°C	operation	Resonator connection		5.5	10.6			
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2			
		.005 02002	operation	Resonator connection		6.0	13.2	1		
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		6.8	17.5			
				T _A = +85°C	operation	Resonator connection		6.9	17.5	

(Notes and Remarks are listed on the next page.)

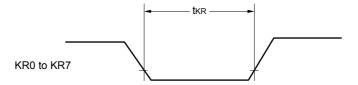
(4) Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

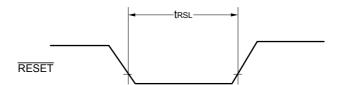
Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	IFIL Note 1				0.20		μΑ
RTC operating current	I _{RTC} Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operat- ing current	IT Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fi∟ = 15 kHz			0.22		μΑ
A/D converter operating current	I _{ADC} Notes 1, 6	When conversion at maximum speed	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μА
Temperature sensor operating current	ITMPS Note 1				75.0		μА
D/A converter operating current	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating cur-	ICMP Notes 1, 12, 13	V _{DD} = 5.0 V,	Window mode		12.5		μА
rent		Regulator output voltage = 2.1 V	Comparator high-speed mode		6.5		μΑ
			Comparator low-speed mode		1.7		μΑ
		V _{DD} = 5.0 V, Regulator output voltage = 1.8 V	Window mode		8.0		μΑ
			Comparator high-speed mode		4.0		μΑ
			Comparator low-speed mode		1.3		μΑ
LVD operating current	I _{LVD} Notes 1, 7				0.08		μΑ
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	
		CSI/UART operation			0.70	0.84	
		DTC operation			3.10		

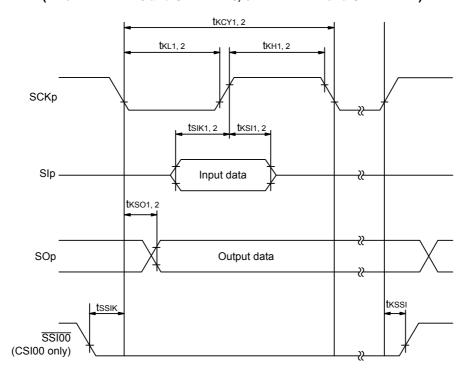

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

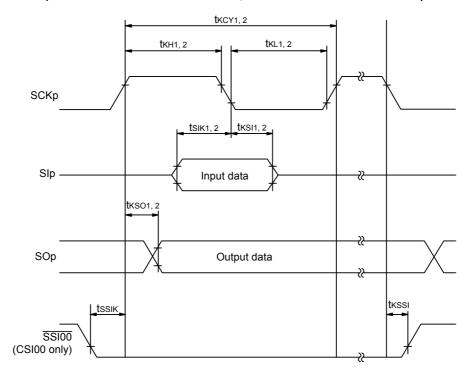
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


(2/2)

Items	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdil	TRDIOA0, TRDIOA1, TRDIOE TRDIOC0, TRDIOC1, TRDIO		3/fclk			ns
Timer RD forced cutoff signal	ttdsil	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level	tтgін,	TRGIOA, TRGIOB		2.5/fclk			ns
width, low-level width	ttgil						
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			16	MHz
TO10 to TO13, TRJI00, TRJ00,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRDIOA0, TRDIOA1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LS (low-speed main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LV (low-voltage main) mode	1.6 V ≤ EVDD0 ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
frequency			2.7 V ≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V ≤ EVDD0 < 2.7 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LS (low-speed main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-voltage main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	1.6 V ≤ EVDD0 ≤ 5.5 V	1			μs
Key interrupt input low-level	tkr	KR0 to KR7	1.8 V ≤ EVDD0 ≤ 5.5 V	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl			10			μs


Interrupt Request Input Timing


Key Interrupt Input Timing


RESET Input Timing

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

$$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, VSS = EVSS0 = EVSS1 = 0 \text{ V})$$

(2/2)

Parameter	Symbol Conditions			(high-speed main) LS (low mode		LS (low-speed main) mode		ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	23		110		110		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	33		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksı1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	10		10		10		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	10		10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		10		10		10	ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $		10		10		10	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
- Remark 3. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number

 (mn = 00))
- Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	٠. ٠	speed main) node	,	speed main) node	,	oltage main) node	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fscL	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} 4.0 \ & V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ & V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $		400 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &2.7 \; \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \; \text{V}, \\ &2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ &C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	1150		1550		1550		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1150		1550		1550		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	thigh	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	245		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	200		610		610		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega \end{aligned} $	675		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	600		610		610		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{aligned}$	610		610		610		ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	loL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			40.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EV _{DD0} < 4.0 V			15.0	mA
		(When duty ≤ 70% Note 3)	2.4 V ≤ EVDD0 < 2.7 V			9.0	mA
		Total of P05, P06, P10 to P17,	4.0 V ≤ EVDD0 ≤ 5.5 V			40.0	mA
		P30, P31, P50 to P57,	2.7 V ≤ EV _{DD0} < 4.0 V			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% Note 3)	2.4 V ≤ EVDD0 < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				80.0	mA
	lOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	2.4 V ≤ VDD ≤ 5.5 V			5.0	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
- Note 2. Do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IoL \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IoL = 10.0 mA Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is Ta = 25°C

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).

 The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- Note 8. Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- Note 11. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed m	ain) mode	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:DAT	$ 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1/fmck + 340 Note 2		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	1/fmck + 340 Note 2		ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 2.8 \text{ k}\Omega \end{aligned}$	1/fмск + 760 Note 2		ns
		$\begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	1/fmck + 760 Note 2		ns
		$\begin{aligned} 2.4 & \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ 1.6 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	0	770	ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	0	1420	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	0	1420	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	0	1215	ns

Note 1. The value must also be equal to or less than fmck/4.

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

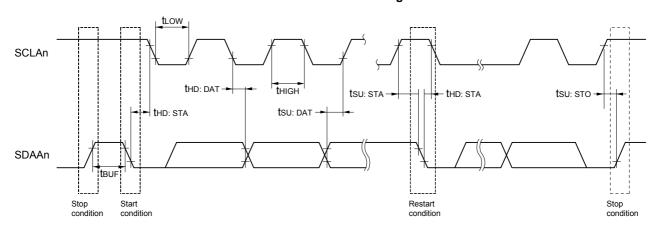
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

3.5.2 Serial interface IICA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS	6 (high-sp	eed main) r	mode	Unit
			Standar	rd mode	Fast	mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLk ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fcLκ ≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time Note 1	thd: sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLow		4.7		1.3		μs
Hold time when SCLA0 = "H"	thigh		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	tbuf		4.7		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

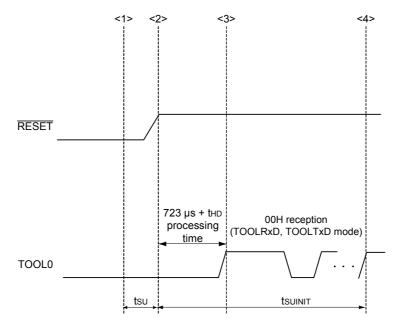

Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

IICA serial transfer timing



Remark n = 0, 1

3.10 Timing of Entry to Flash Memory Programming Modes

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thD	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
thd: How long to keep the TOOL0 pin at the low level from when the external resets end
(excluding the processing time of the firmware to control the flash memory)