

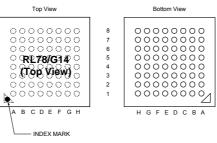
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Ξ·ΧΕΙ

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104lggfb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)

	А	В	С	D	E	F	G	н	
8	EVDD0	EVsso	P121/X1	P122/X2/ EXCLK	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ VCOUT0 Note 1	8
7	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIO0	P00/TI00/ TRGCLKA/ (TRJO0)	P140/ PCLBUZ0/ INTP6	7
6	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	P77/KR7/ INTP11/(TXD2)	P31/TI03/ TO03/INTP4/ (PCLBUZ0)/ (TRJIO0)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVrefp	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	P16/TI01/ TO01/INTP5/ TRDIOC0/ IVREF0 Note 1/ (SI00)/(RXD0)	P21/ANI1/ AVrefm	P22/ANI2/ ANO0 Note 1	P23/ANI3/ ANO1 ^{Note 1}	4
3	P70/KR0/ SCK21/ SCL21	P73/KR3/ SO01	P74/KR4/ INTP8/SI01/ SDA01	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note 1/ (SO00)/(TXD0)	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note 1/ (INTP5)/ (TxD0_1) Note 2	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	P72/KR2/ SO21	P71/KR1/ SI21/SDA21	P06/(INTP11)/ (TRJIO0)	P14/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)	P11/SI11/ SDA11/ TRDIOC1/ (RxD0_1) Note 2	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJO0)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	P13/TxD2/ SO20/ TRDIOA1/ IVCMP1 Note 1	P10/SCK11/ SCL11/ TRDIOD1	P146	P147/ANI18/ VCOUT1 Note 1	1
	А	В	С	D	E	F	G	Н	

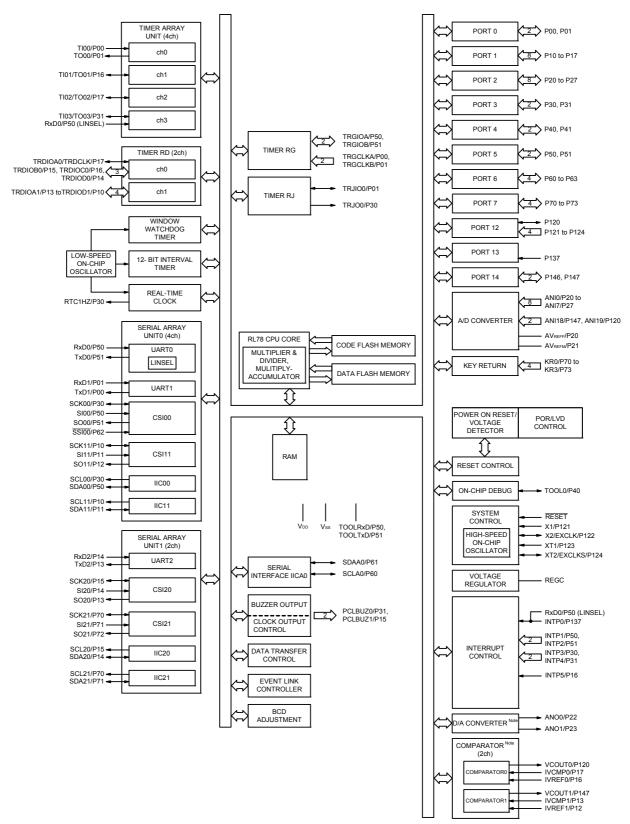
Note 1. Mounted on the 96 KB or more code flash memory products.

Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as VSS pin.

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$


Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

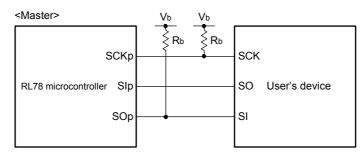
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Un
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.6		m/
urrent		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.6		
ote 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.3		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.3		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.4	10.2	m/
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.4	10.2	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.0	9.6	
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.0	9.6	1
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.2	7.8	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.2	7.8	1
				fносо = 24 MHz,	Normal	VDD = 5.0 V		4.0	7.4	1
			fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	7.4	1	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.0	5.3	
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		3.0	5.3	1
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.4	2.3	n
			mode Note 5	fiH = 8 MHz Note 3	operation	VDD = 2.0 V		1.4	2.3	1
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.3	1.9	n
		mode Note 5	fiH = 4 MHz Note 3	operation	VDD = 2.0 V		1.3	1.9	1	
		HS (high-speed main) mode Note 5	······ _ • ···· · _ ,	Normal	Square wave input		3.4	6.2	r	
				operation	Resonator connection		3.6	6.4]	
				f _{MX} = 20 MHz ^{Note 2} , V _{DD} = 3.0 V	Normal	Square wave input		3.4	6.2	1
					operation	Resonator connection		3.6	6.4	-
			LS (low-speed main)	f _{MX} = 10 MHz ^{Note 2} , V _{DD} = 5.0 V	Normal operation	Square wave input		2.1	3.6	
						Resonator connection		2.2	3.7	
				f _{MX} = 10 MHz Note 2,	Normal operation	Square wave input		2.1	3.6	
				VDD = 3.0 V		Resonator connection		2.2	3.7	
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.2	2.2	r
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.2	2.3	1
				f _{MX} = 8 MHz Note 2.	Normal	Square wave input		1.2	2.2	1
				$V_{DD} = 2.0 V$	operation	Resonator connection		1.2	2.3	-
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.1	ŀ
			operation	$T_A = -40^{\circ}C$	operation	Resonator connection		4.9	7.1	1
				fsug = 32.768 kHz Note 4	Normal	Square wave input		4.9	7.1	-
				$T_A = +25^{\circ}C$	operation	Resonator connection		4.9	7.1	-
			fsub = 32.768 kHz Note 4	Normal	Square wave input		5.1	8.8	-	
			$T_A = +50^{\circ}C$	operation	Resonator connection		5.1	8.8	-	
				fsug = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.5	-
				$T_A = +70^{\circ}C$	operation	Resonator connection		5.5	10.5	_
				Normal	Square wave input		6.5	14.5	-	
			fsub = 32.768 kHz ^{Note 4} T _A = +85°C	operation	Resonator connection		6.5	14.5	-	

(Notes and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode		LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t КСҮ1	rı tκcγı≥4/fclκ		300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
				1150		1150		1150		ns
SCKp high-level width	tkH1			tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$\label{eq:linear} \begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.7 V,	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
	$\frac{C_{b} - 30 \text{ pr}}{1.8 \text{ V} \le \text{EV}\text{p}}$ 1.8 V $\le \text{EV}\text{p}$ 1.6 V $\le \text{V}\text{b} \le$ C _b = 30 pF,		0 V ^{Note} ,	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

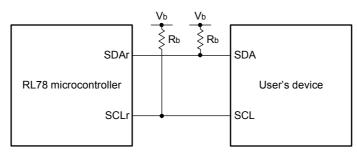

Note Use it with $EVDD0 \ge Vb$.

(Remarks are listed two pages after the next page.)

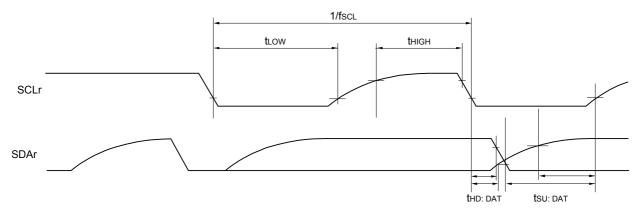
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.



Parameter	Symbol	Conditions		-speed main) node		speed main) 10de		oltage main) 10de	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
				400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$		300 Note 1		300 Note 1 300 Note 1	kHz		
Hold time when SCLr = "L"	t∟ow		475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
			1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$ \begin{split} & 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V \; \mbox{Note 2}, \\ & C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{split} $	1550		1550		1550		ns
Hold time when SCLr = "H"	tнıgн	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	245		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$\label{eq:VD0} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note} \ 2, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	610		610		610		ns


(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l²C mode) (TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions		peed main) ode	LS (low-speed main) mode			ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	—			250		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
Note 2		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	_		0	3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \le EV_{DD0} \le 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	C	Conditions	· · ·	h-speed mode	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Hold time Note 1	1 thd: sta		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq$	$2.7~V \leq EV_{DD0} \leq 5.5~V$			1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{DD0} \leq 5.5~V$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	100		100		1.3 1.3 0.6 0.6 100 100 00 0.9 0 0.9	ns	
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

Operation of products rated "G: Industrial applications (TA = -40 to + $105^{\circ}C$)" at ambient operating temperatures above $85^{\circ}C$ differs from that of products rated "A: Consumer applications" and "D: Industrial applications" in the ways listed below.

Parameter	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	TA = -40 to +85°C	TA = -40 to +105°C
Operating mode Operating voltage range	HS (high-speed main) mode: 2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz LS (low-speed main) mode:	HS (high-speed main) mode only: 2.7 V \leq V _{DD} \leq 5.5 V@1 MHz to 32 MHz 2.4 V \leq V _{DD} \leq 5.5 V@1 MHz to 16 MHz
	1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz	
High-speed on-chip oscillator clock accuracy	$\begin{array}{l} 1.8 \ V \leq V DD \leq 5.5 \ V; \\ \pm 1.0\% \ @ \ TA = -20 \ to +85^{\circ}C \\ \pm 1.5\% \ @ \ TA = -40 \ to -20^{\circ}C \\ 1.6 \ V \leq V DD < 1.8 \ V; \\ \pm 5.0\% \ @ \ TA = -20 \ to +85^{\circ}C \\ \pm 5.5\% \ @ \ TA = -40 \ to -20^{\circ}C \end{array}$	2.4 V \leq VDD \leq 5.5 V: $\pm 2.0\%$ @ TA = +85 to +105°C $\pm 1.0\%$ @ TA = -20 to +85°C $\pm 1.5\%$ @ TA = -40 to -20°C
Serial array unit	UART CSI: fcLk/2 (16 Mbps supported), fcLk/4 Simplified I ² C communication	UART CSI: fcLk/4 Simplified I ² C communication
lica	Standard mode Fast mode Fast mode plus	Standard mode Fast mode
Voltage detector	 Rising: 1.67 V to 4.06 V (14 stages) Falling: 1.63 V to 3.98 V (14 stages) 	Rising: 2.61 V to 4.06 V (8 stages) Falling: 2.55 V to 3.98 V (8 stages)

Remark The electrical characteristics of products rated "G: Industrial applications (TA = -40 to + 105°C)" at ambient operating temperatures above 85°C differ from those of products rated "A: Consumer applications" and "D: Industrial applications". For details, refer to **3.1** to **3.10**.

<R>

	1	°C, 2.4 V ≤ I	$EVDD0 = EVDD1 \leq V$	-	550 = EV551 = 0V		T	(2/2	
Parameter	Symbol		i	Conditions	-	MIN.	TYP.	MAX.	Unit
Supply cur- rent ^{Note 1}	IDD2 Note 2	HALT mode	HS (high-speed main)	fHOCO = 64 MHz,	VDD = 5.0 V		0.93	5.16	mA
rent Note 1	NOLE 2		mode Note 7	fiн = 32 MHz Note 4	VDD = 3.0 V		0.93	5.16	_
				fHOCO = 32 MHz,	VDD = 5.0 V		0.5	4.47	_
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.5	4.47	
				fносо = 48 MHz,	VDD = 5.0 V		0.72	4.08	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	4.08	
				fносо = 24 MHz,	VDD = 5.0 V		0.42	3.51	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.42	3.51	
				fносо = 16 MHz,	VDD = 5.0 V		0.39	2.38	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.39	2.38	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	
				VDD = 3.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	1.46	
				VDD = 5.0 V	Resonator connection		0.26	1.57	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.46	
				VDD = 3.0 V	Resonator connection		0.26	1.57	
	fsue = 32.768 kHz Note 5,	Square wave input		0.31	0.76	μA			
			ation	$T_A = -40^{\circ}C$	Resonator connection		0.50	0.95	
				fsub = 32.768 kHz ^{Note 5} , TA = +25°C	Square wave input		0.38	0.76	
					Resonator connection		0.57	0.95	-
				fsue = 32.768 kHz Note 5,	Square wave input		0.47	3.59	
				TA = +50°C	Resonator connection		0.70	3.78	
				fsue = 32.768 kHz Note 5,	Square wave input		0.80	6.20	
				TA = +70°C	Resonator connection		1.00	6.39	
				fsue = 32.768 kHz Note 5,	Square wave input		1.65	10.56	
				TA = +85°C	Resonator connection		1.84	10.75	
				fsue = 32.768 kHz Note 5,	Square wave input		8.00	65.7	
				TA = +105°C	Resonator connection		8.00	65.7	
	IDD3	STOP mode	TA = -40°C				0.19	0.63	μA
	Note 6	Note 8	T _A = +25°C				0.30	0.63	1
			TA = +50°C				0.41	3.47	1
			T _A = +70°C				0.80	6.08	1
			TA = +85°C				1.53	10.44	1
			T _A = +105°C				6.50	67.14	1

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Condit	tions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operat- ing current	ITMPS Note 1				75.0		μA
D/A converter operating cur- rent	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating cur-	I _{CMP} Notes 1, 12, 13	³ V _{DD} = 5.0 V, Regulator output voltage = 2.1 V	Window mode		12.5		μA
rent			Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		VDD = 5.0 V,	Window mode		8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μA
LVD operating current	ILVD Notes 1, 7		·		0.08		μA
Self-programming operat- ing current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.

Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

$(1A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$						(2/2)	
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdін, tтdі∟	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1		3/fclк			ns
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	$2MHz < f_{CLK} \le 32 MHz$	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclк + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB		2.5/fclk			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
Interrupt input high-level	tinth,	INTP0	$2.4~V \leq V_{DD} \leq 5.5~V$	1			μs
width, low-level width	t INTL	INTP1 to INTP11	$2.4~V \leq EV_{DD0} \leq 5.5~V$	1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl			10			μs

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter Symbol		Conditions		HS (high-speed main) mode		
					MAX.	
Transfer rate		$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1	bps	
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4	Mbps
			$2.4 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps
		Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 6	Mbps	

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

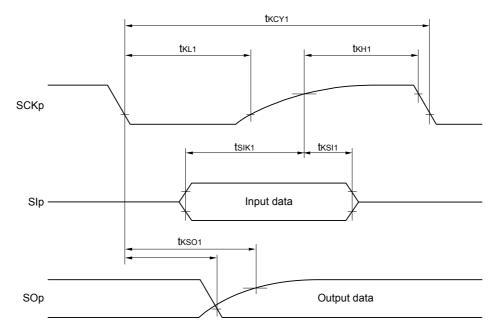
- Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

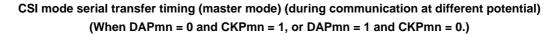
Maximum transfer rate = -

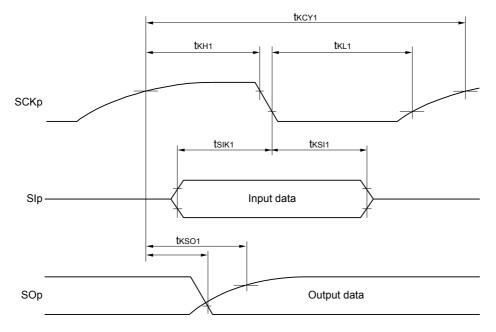
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1


al value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$

Baud rate error (theoretical value) =


* This value is the theoretical value of the relative difference between the transmission and reception sides


Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

RENESAS

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI20	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	tCONV	10-bit resolution Target pin: ANI2 to ANI14	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output volt- age (HS (high-speed main) mode)	$3.6~V \le V_{DD} \le 5.5~V$	2.375		39	μs
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq AV_{REFP} \leq 5.5~V$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le AV_{REFP} \le 5.5~V$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4		V	
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		VTMPS25 Note 4		V	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

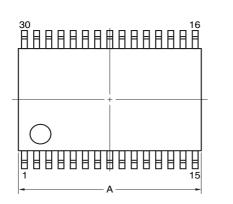
 Note 3.
 When AVREFP < VDD, the MAX. values are as follows.</th>

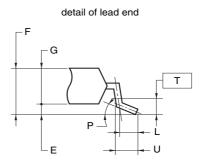
 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

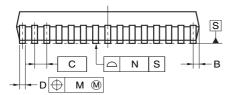
 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

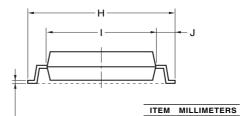



4. PACKAGE DRAWINGS


4.1 30-pin products

R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP R5F104AAGSP, R5F104ACGSP, R5F104ADGSP, R5F104AEGSP, R5F104AFGSP, R5F104AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



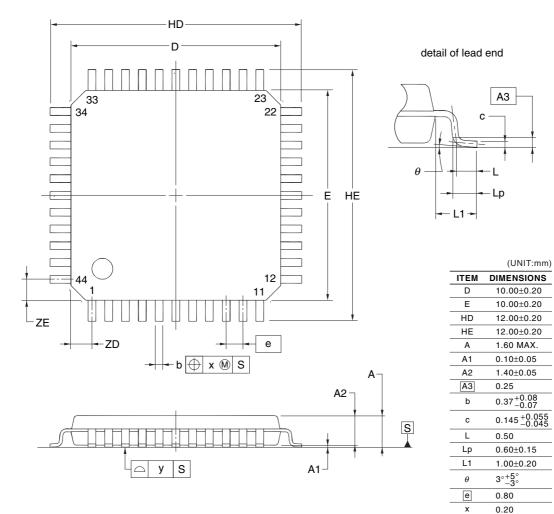
NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

·κ

A 9.85±0.15 в 0.45 MAX С 0.65 (T.P.) $0.24_{-0.07}^{+0.08}$ D F 0.1±0.05 F 1.3±0.1 G 1.2 8.1±0.2 Н 6.1±0.2 I 1.0±0.2 J 0.17±0.03 κ L 0.5 0.13 Μ Ν 0.10 Р 3°+5° 0.25 т 0.6±0.15 U

©2012 Renesas Electronics Corporation. All rights reserved.


4.5 44-pin products

R5F104FAAFP, R5F104FCAFP, R5F104FDAFP, R5F104FEAFP, R5F104FFAFP, R5F104FGAFP, R5F104FHAFP, R5F104FJAFP

R5F104FADFP, R5F104FCDFP, R5F104FDDFP, R5F104FEDFP, R5F104FFDFP, R5F104FGDFP, R5F104FHDFP, R5F104FJDFP

R5F104FAGFP, R5F104FCGFP, R5F104FDGFP, R5F104FEGFP, R5F104FFGFP, R5F104FGGFP, R5F104FJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP44-10x10-0.80	PLQP0044GC-A	P44GB-80-UES-2	0.36

ΝΟΤΕ

Each lead centerline is located within 0.20 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

0.10

1.00

1.00

у

ZD

ZE

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong roug Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141