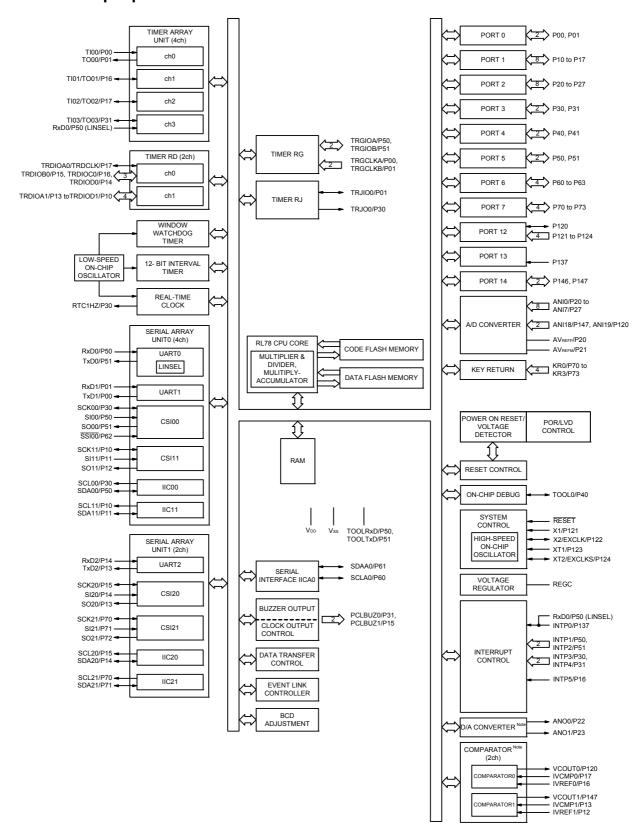
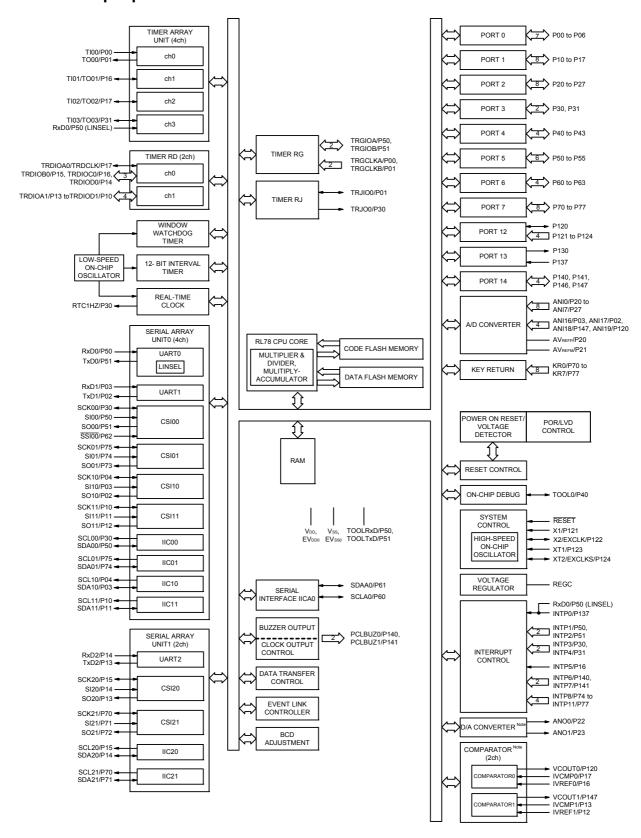


Welcome to **E-XFL.COM**


What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104ljafa-v0

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.8 64-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.6 Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

					(1/2				
		30-pin	32-pin	36-pin	40-pin				
	Item	R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)				
Code flash me	mory (KB)	16 to 64	16 to 64	16 to 64	16 to 64				
Data flash men	mory (KB)	4	4	4	4				
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note	2.5 to 5.5 Note				
Address space		1 MB							
Main system clock	High-speed system clock High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mo HS (high-speed main) mo LS (low-speed main) mo LV (low-voltage main) mo HS (high-speed main) mo HS (high-speed main) mo LS (low-speed main) mo	ation, external main syster de: 1 to 20 MHz (VDD = 2 de: 1 to 16 MHz (VDD = 1.8 de: 1 to 4 MHz (VDD = 1.8 de: 1 to 32 MHz (VDD = 1.6 de: 1 to 16 MHz (VDD = 2.6 de: 1 to 16 MHz (VDD = 1.8 de: 1 to 18 MHz (VDD = 1.8 de: 18 MHz (VDD = 1.8 d	.7 to 5.5 V), .4 to 5.5 V), .8 to 5.5 V), .6 to 5.5 V) .7 to 5.5 V), .4 to 5.5 V), to 5.5 V),					
		LV (low-voltage main) mo	de: 1 to 4 MHz (VDD = 1.6	to 5.5 V)	T				
Subsystem clo	ck		_		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz				
Low-speed on-	chip oscillator clock	15 kHz (TYP.): V _{DD} = 1.6 to 5.5 V							
General-purpo	se register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)							
Minimum instru	uction execution time	0.03125 μs (High-speed o	on-chip oscillator clock: file	= 32 MHz operation)					
		0.05 μs (High-speed syste	em clock: fmx = 20 MHz op	eration)					
		— 30.5 μs (Subsystem clock: fsub = 32.768 kHz operation)							
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	26	28	32	36				
	CMOS I/O	21	22	26	28				
	CMOS input	3	3	3	5				
	CMOS output	_	_	_	_				
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3				
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer f	RJ: 1 channel, Timer RD: 2	channels, Timer RG: 1 c	hannel)				
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
	12-bit interval timer	1 channel							
	Timer output	Timer outputs: 13 channel PWM outputs: 9 channels							
	RTC output		-		1 • 1 Hz (subsystem clock: fsue = 32.768 kHz)				

(Note is listed on the next page.)

(2/2)

			<u> </u>	<u> </u>						
		30-pin	32-pin	36-pin	40-pin					
ľ	tem	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)					
Clock output/buzzer	output	2	2	2	2					
		(Main system clock: fMA [40-pin products] • 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fMA • 256 Hz, 512 Hz, 1.024	6 kHz, 1.25 MHz, 2.5 MHz IN = 20 MHz operation) 6 kHz, 1.25 MHz, 2.5 MHz	z, 5 MHz, 10 MHz	:, 32.768 kHz					
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels					
D/A converter		1 channel	2 channels	1	I .					
Comparator		2 channels								
Serial interface		CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products] CSI: 1 channel/UART (I CSI: 1 channel/UART: 1	CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I ² C: 1 channel							
	I ² C bus	1 channel	1 channel	1 channel	1 channel					
Data transfer contro	ller (DTC)	30 sources		·L	31 sources					
Event link controller	(ELC)	Event input: 21 Event trigger output: 8	Event input: 21, Event trigger output: 9		Event input: 22 Event trigger output: 9					
Vectored interrupt	Internal	24	24	24	24					
sources	External	6	6	6	7					
Key interrupt		_	_	_	4					
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access								
Power-on-reset circu	uit	 Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C) 								
Voltage detector		1.63 V to 4.06 V (14 stag	es)							
On-chip debug func	tion	Provided								
Power supply voltag	e	`	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)							
Operating ambient to	emperature	$T_A = -40 \text{ to } +85^{\circ}\text{C} \text{ (A: Consumer applications, D: Industrial applications)},$ $T_A = -40 \text{ to } +105^{\circ}\text{C (G: Industrial applications)}$								

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to +85°C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications TA = -40 to +85°C

R5F104xxAxx

D: Industrial applications TA = -40 to +85°C

R5F104xxDxx

- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -10.0 mA	EVDD0 - 1.5			٧
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P111, P120, P130, P140 to P147	1.8 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EV _{DD0} < 1.8 V, IOH1 = -1.0 mA	EVDD0 - 0.5			٧
	VOH2	P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	VDD - 0.5			V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 20.0 mA			1.3	٧
	P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147 $4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$ $IOL1 = 8.5 \text{ mA}$ $2.7 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V},$ $IOL1 = 3.0 \text{ mA}$	0.7	٧				
			*			0.6	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, loL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $\text{IOL1} = 0.6 \text{ mA}$			0.4	٧
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 0.3 mA			0.4	٧
	VOL2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu\text{A}$			0.4	٧
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 5.0 mA			0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 3.0 mA			0.4	V
			1.8 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 2.0 mA			0.4	V
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 1.0 mA			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)

 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

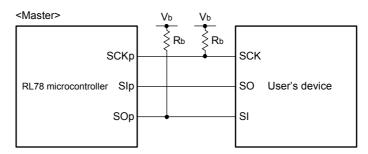
(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.9		mA
current		ing mode	mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.9		
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.5		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.5		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		6.0	11.2	mA
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		6.0	11.2	
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		5.5	10.6	
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.5	10.6	
				fHOCO = 48 MHz,	Normal	V _{DD} = 5.0 V		4.7	8.6	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.7	8.6	
				fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		4.4	8.2	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.4	8.2	
				fHOCO = 16 MHz,	Normal	V _{DD} = 5.0 V		3.3	5.9	
				fih = 16 MHz Note 3	operation	V _{DD} = 3.0 V		3.3	5.9	
			LS (low-speed main)	fHOCO = 8 MHz,	Normal	V _{DD} = 3.0 V		1.5	2.5	mA
			mode Note 5	fih = 8 MHz Note 3	operation	V _{DD} = 2.0 V		1.5	2.5	
			LV (low-voltage main)	fHOCO = 4 MHz,	Normal	V _{DD} = 3.0 V		1.5	2.1	mA
			mode Note 5	fiH = 4 MHz Note 3	operation	V _{DD} = 2.0 V		1.5	2.1	
			HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	mA
			mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.9	7.0	
				f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	
				V _{DD} = 3.0 V	operation	Resonator connection		3.9	7.0	
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.3	4.1	
				V _{DD} = 5.0 V	operation	Resonator connection		2.3	4.2	
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.3	4.1	
				V _{DD} = 3.0 V	operation	Resonator connection		2.3	4.2	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.4	2.4	mA
			mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.4	2.5	
				f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.4	2.4	
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.5	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.2		μА
			operation	TA = -40°C	operation	Resonator connection		5.2		
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7	
				T _A = +25°C	operation	Resonator connection		5.3	7.7	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.6	
				T _A = +50°C	operation	Resonator connection		5.5	10.6	1
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2	
				T _A = +70°C	operation	Resonator connection		6.0	13.2	1
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		6.8	17.5	
				T _A = +85°C	operation	Resonator connection		6.9	17.5	

(Notes and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode	,	LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	300		1150		1150		ns
			$ \begin{aligned} 2.7 & \ V \leq EV_{DDO} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	500		1150		1150		ns
			$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V Note}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1150		1150		1150		ns
SCKp high-level width	. •		0 V,	tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		tkcy1/2 - 170		tксү1/2 - 170		tксу1/2 - 170		ns
		1.8 V ≤ EVDD0 1.6 V ≤ Vb ≤ 2 Cb = 30 pF, Rb	0 V Note,	tkcy1/2 - 458		tkcy1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width	tKL1	4.0 V ≤ EVDD0 2.7 V ≤ Vb ≤ 4. Cb = 30 pF, Rb	0 V,	tксү1/2 - 12		tkcy1/2 - 50		tксү1/2 - 50		ns
		2.7 V ≤ EVDD0 2.3 V ≤ Vb ≤ 2 Cb = 30 pF, Rb	7 V,	tксү1/2 - 18		tkcy1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ EVDD0 1.6 V ≤ Vb ≤ 2 Cb = 30 pF, Rb	0 V Note,	tkcy1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

Note Use it with $EVDD0 \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

CSI mode connection diagram (during communication at different potential

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Cor	nditions	, ,	h-speed mode		r-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$	24 MHz < fmck	14/fмск		_		_		ns
Note 1		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fмcк ≤ 24 MHz	12/fмск		_		_		ns
			8 MHz < fмcк ≤ 20 MHz	10/fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$	24 MHz < fmck	20/fмск		_		_		ns
		$2.3~V \leq V_b \leq 2.7~V$	20 MHz < fмcк ≤ 24 MHz	16/fмск		_		_		ns
			16 MHz < fмcк ≤ 20 MHz	14/fмск		_		_		ns
			8 MHz < fмcк ≤ 16 MHz	12/fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	8/fмск		16/fмск		_		ns
			fмcк ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		1.8 V ≤ EVDD0 < 3.3 V,	24 MHz < fmck	48/fмск		_		_		ns
		1.6 V ≤ V _b ≤ 2.0 V Note 2	20 MHz < fмcк ≤ 24 MHz	36/fмск		_		_		ns
		Note 2	16 MHz < fмcк ≤ 20 MHz	32/fмск		_		_		ns
			8 MHz < fмcк ≤ 16 MHz	26/fмск		_		_		ns
			4 MHz < fмcк ≤ 8 MHz	16/fмск		16/fмск		_		ns
			fмcк ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tĸH2, tĸL2	4.0 V ≤ EVDD0 ≤ 5.5 V, 2	2.7 V ≤ V _b ≤ 4.0 V	tксү2/2 - 12		tkcy2/2 - 50		tксү2/2 - 50		ns
		2.7 V ≤ EVDD0 < 4.0 V, 2	$2.3~V \leq V_b \leq 2.7~V$	tксү2/2 - 18		tkcy2/2 - 50		tксү2/2 - 50		ns
		1.8 V ≤ EVDD0 < 3.3 V,	$1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V Note 2}$	tксү2/2 - 50		tkcy2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	tsık2	4.0 V ≤ EVDD0 ≤ 5.5 V, 2	$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		2.7 V ≤ EVDD0 < 4.0 V, 2	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		1.8 V ≤ EVDD0 < 3.3 V,	$1.6~\text{V} \leq \text{V}_\text{b} \leq 2.0~\text{V}~\text{Note}~2$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tkso2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, \Omega$ Cb = 30 pF, Rb = 1.4 k Ω			2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
output Note 5		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \Omega$ Cb = 30 pF, Rb = 2.7 k Ω			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		1.8 V ≤ EV _{DD0} < 3.3 V, C _b = 30 pF, Rv = 5.5 kΩ	$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V} \text{ Note 2},$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

 $(\textbf{Notes},\,\textbf{Caution},\, \text{and}\,\, \textbf{Remarks}$ are listed on the next page.)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed r	main)	LS (low-speed m	nain)	LV (low-voltage r mode	main)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DDO} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} &\text{Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, &R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV} \text{DD0} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	0	355	0	355	0	355	ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$\begin{split} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \stackrel{\text{Note 2}}{\sim}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{split}$	0	405	0	405	0	405	ns

Note 1. The value must also be equal to or less than fMCK/4.

Caution

Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. Use it with $EVDD0 \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	С	conditions	HS (high-sp	,	LS (low-sp mo	eed main) ode	,	ltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscL	Standard mode:	2.7 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
frequency		fc∟k ≥ 1 MHz	1.8 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.7 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.6 V ≤ EVDD0 ≤ 5.5 V	_	_	0	100	0	100	kHz
Setup time of	tsu: sta	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
restart condition		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.7		4.7		μs
Hold time Note 1	thd: STA	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.0		4.0		μs
Hold time when	tLOW	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.7		4.7		μs
Hold time when	thigh	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.0		4.0		μs

(Notes, Caution, and Remark are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{\textcircled{Q}}1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{\textcircled{Q}}1 \text{ MHz}$ to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)

 Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)

 Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Remark 4. fsub:

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.

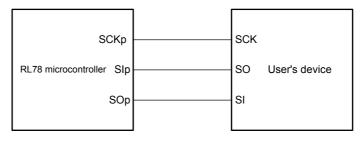
Subsystem clock frequency (XT1 clock oscillation frequency)

Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V} \text{@}1 \text{ MHz}$ to 32 MHz

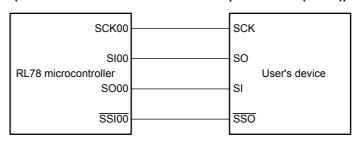
 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)

 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C


(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V) (2/2)

Parameter	Symbol	Conc	litions	HS (high-spee	d main) mode	Unit
					MAX.	
SSI00 setup time	tssik	DAPmn = 0	2.7 V ≤ EV _{DD0} ≤ 5.5 V	240		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	400		ns
		DAPmn = 1	2.7 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 240		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 400		ns
SSI00 hold time	tĸssı	DAPmn = 0	2.7 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 240		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 400		ns
		DAPmn = 1	2.7 V ≤ EVDD0 ≤ 5.5 V	240		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	400		ns


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Co	onditions	HS (high-speed	I main) mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcY1	tkcy1		600		ns
			$ 2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega $	1000		ns
			$ 2.4 \ V \leq EV_{DDO} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega $	2300		ns
SCKp high-level width tkH1		$ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V} \\ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 30 \text{ pF, Rb} = 1.4 \text{ H} $,	tксү1/2 - 150		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		tксү1/2 - 340		ns
		$ 2.4 \text{ V} \leq \text{EVddo} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq V_b \leq 2.0 \text{ V}, \\ C_b = 30 \text{ pF}, \text{Rb} = 5.5 \text{ k}\Omega $		tксү1/2 - 916		ns
SCKp low-level width	tKL1	$ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V} $,	tkcy1/2 - 24		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V} \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ H}$,	tkcy1/2 - 36		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \le V_b \le 2.0 \text{ V},$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ k}\Omega$		tkcy1/2 - 100		ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

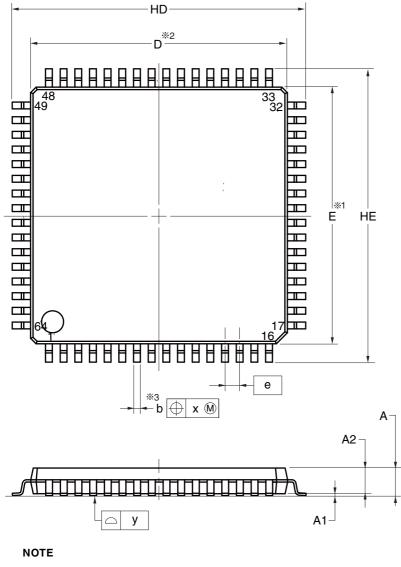
(Remarks are listed two pages after the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

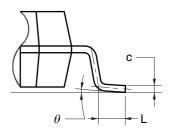
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/3)

Parameter	Symbol	Conditions	HS (high-spee	ed main) mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) Note	tsıkı	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	162		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	354		ns
		$2.4 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	958		ns
SIp hold time (from SCKp↑) Note	tksi1	$ 4.0 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 1.4 \text{ k}\Omega $	38		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	38		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	38		ns
Delay time from SCKp↓ to SOp output Note	tkso1	$4.0 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$		200	ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$		390	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega$		966	ns


Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the page after the next page.)

R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGGFP, R5F104LHDFP, R5F104LJGFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14x14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7

detail of lead end

(UNIT:mm

	(UNIT:mm)	
ITEM	DIMENSIONS	
D	14.00±0.10	
E	14.00±0.10	
HD	16.00±0.20	
HE	16.00±0.20	
Α	1.70 MAX.	
A1	0.10 ± 0.10	
A2	1.40	
b	$0.37^{+0.08}_{-0.05}$	
С	$0.125^{+0.05}_{-0.02}$	
L	$0.50 {\pm} 0.20$	
θ	0° to 8°	
е	0.80	
х	0.20	
У	0.10	

- 1.Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.