

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

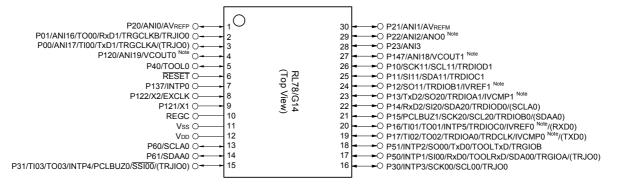
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 12x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LFQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104ljafb-x0


Email: info@E-XFL.COM

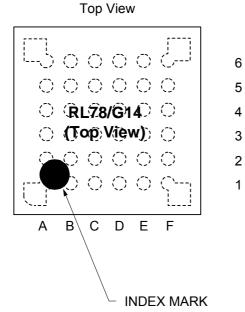
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

1.3.1 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}\text{)}.$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

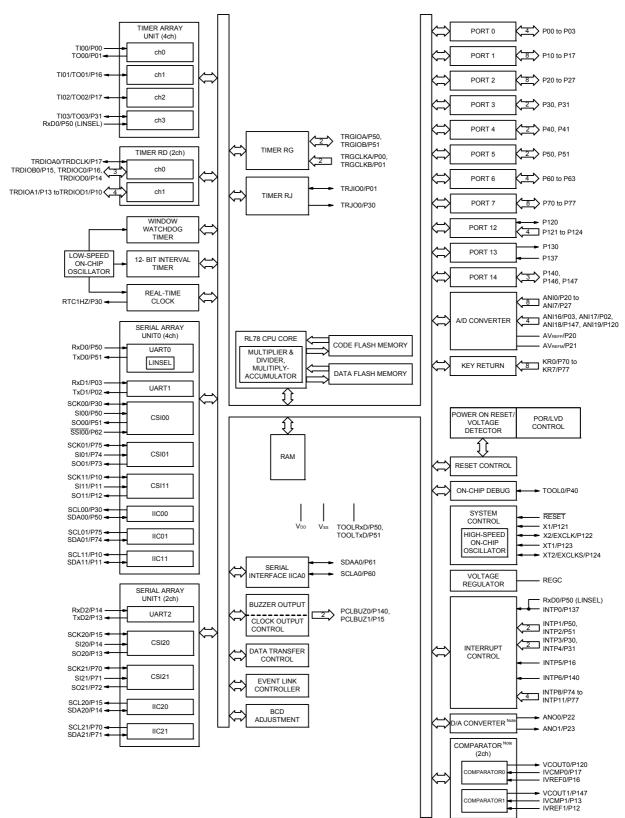
1.3.3 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

Bottom View										
	0	0	0	0						
0	0	0	0	0	0					
0	0	Ο	0	0	0					
0	Ο	0	Ο	Ο	0					
0	Ο	0	Ο	Ο	0					
	0	0	0	0	\square					
F	Е	D	С	В	А					

	А	В	С	D	Е	F	
6	P60/SCLA0	Vdd	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62/SSI00	P61/SDAA0	Vss	REGC	RESET	P120/ANI19/ VCOUT0 Note	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/TRDIOD0/ (SCLA0)	P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJIO0)	P00/TI00/TxD1/ TRGCLKA/ (TRJO0)	P01/TO00/ RxD1/TRGCLKB/ TRJIO0	4
3	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/TRGIOA/ (TRJO0)	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOB0/ (SDAA0)	P22/ANI2/ ANO0 ^{Note}	P20/ANI0/ AVREFP	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK00/SCL00/ TRJO0	P16/TI01/TO01/ INTP5/TRDIOC0/ IVREF0 ^{Note} / (RXD0)	P12/SO11/ TRDIOB1/ IVREF1 ^{Note}	P11/SI11/ SDA11/ TRDIOC1	P24/ANI4	P23/ANI3/ ANO1 ^{Note}	2
1	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note/ (TXD0)	P13/TxD2/ SO20/TRDIOA1/ IVCMP1 ^{Note}	P10/SCK11/ SCL11/ TRDIOD1	P147/ANI18/ VCOUT1 Note	P25/ANI5	1
	A	B	С	D	E	F	

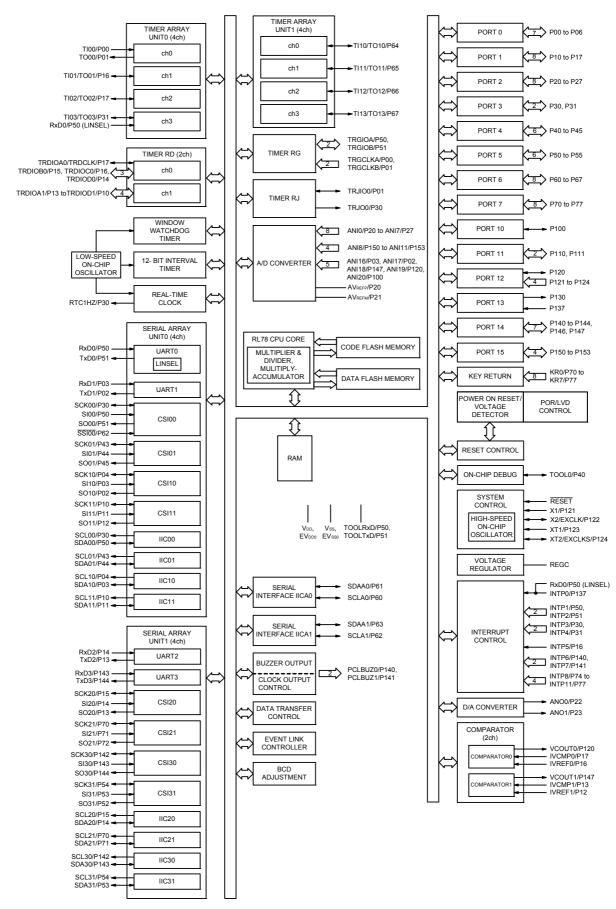
Note Mounted on the 96 KB or more code flash memory products.


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS


1.5.7 52-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.9 80-pin products

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(PIORU, 1) are set to				(1/2)
		30-pin	32-pin	36-pin	40-pin
	Item	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)
Code flash mer	mory (KB)	96 to 128	96 to 128	96 to 128	96 to 192
Data flash men	nory (KB)	8	8	8	8
RAM (KB)		12 to 16 Note	12 to 16 Note	12 to 16 Note	12 to 20 Note
Address space		1 MB			
Main system clock	High-speed system clock	HS (high-speed main) mo HS (high-speed main) mo LS (low-speed main) mod	ation, external main system de: 1 to 20 MHz (Vpp = 2 de: 1 to 16 MHz (Vpp = 2 e: 1 to 8 MHz (Vpp = 1. de: 1 to 4 MHz (Vpp = 1.	2.7 to 5.5 V), 2.4 to 5.5 V), 3 to 5.5 V),	
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mod	de: 1 to 32 MHz (VDD = 2 de: 1 to 16 MHz (VDD = 2 e: 1 to 8 MHz (VDD = 1.6 de: 1 to 4 MHz (VDD = 1.6	.4 to 5.5 V), 8 to 5.5 V),	
Subsystem clo	ck		_		XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1.6	to 5.5 V		
General-purpos	se register	8 bits \times 32 registers (8 bits	s \times 8 registers \times 4 banks)		
Minimum instru	iction execution time	$0.03125\mu s$ (High-speed of	on-chip oscillator clock: fін	= 32 MHz operation)	
		0.05 µs (High-speed syste	em clock: fmx = 20 MHz op	eration)	
			_		30.5 μs (Subsystem clock: fsue = 32.768 kHz operation)
Instruction set		Multiplication and Accur		+ 32 bits)	,
I/O port	Total	26	28	32	36
	CMOS I/O	21	22	26	28
	CMOS input	3	3	3	5
	CMOS output	—	_	_	-
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer F	RJ: 1 channel, Timer RD: 2	channels, Timer RG: 1 c	hannel)
	Watchdog timer	1 channel			
	Real-time clock (RTC)	1 channel			
	12-bit interval timer	1 channel			
	Timer output	Timer outputs: 13 channe PWM outputs: 9 channels			
	RTC output		_		1 • 1 Hz (subsystem clock: fs⊍B = 32.768 kHz)

(Note is listed on the next page.)

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

- **Note 4.** This value as an example is calculated when the conditions described in the "Conditions" column are met.
- Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $EV_{DD0} \ge V_b$.
- **Note 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate

sfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

1

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Symbol Conditions		· · ·	h-speed mode	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	ow $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	$1.8 \ V \leq EV_{DD0} \leq 5.5 \ V$			1.3		1.3		μs
Hold time when SCLA0 = "H"	tнigн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
	and temperature sensor output voltage	5	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.5625		39	μs
		$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs	
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq Vpd \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 5		
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed m	nain) mode)	VT	MPS25 Not	ie 5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as foll	ows.
	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	Values when the conversion time is set to 57 μs	(min.) and 95 µs (max.).

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications $T_A = -40$ to $+105^{\circ}C$ R5F104xxGxx

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.
- Caution 4. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Remark When RL78/G14 is used in the range of T_A = -40 to +85°C, see 2. ELECTRICAL SPECIFICATIONS (T_A = -40 to +85°C).

3.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVsso = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4		
Note 1				fносо = 32 MHz, Ba	Basic	VDD = 5.0 V		2.1		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	9.3	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	9.3	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.7	
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.7	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.0	7.3	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	7.3	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.7	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.7	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.9	
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.9	1
			HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.3	5.7	mA
mode	mode Note 5	V _{DD} = 5.0 V operation	Resonator connection		3.4	5.8				
	f _{MX} = 20 MHz ^{NC}	f _{MX} = 20 MHz ^{Note 2} ,	IX = 20 MHz Note 2, Normal	Square wave input		3.3	5.7			
				VDD = 3.0 V	operation	Resonator connection		3.4	5.8	1
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.0	3.4	
				VDD = 5.0 V	operation	Resonator connection		2.1	3.5	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.0	3.4	
				VDD = 3.0 V	operation	Resonator connection		2.1	3.5	
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
				TA = +25°C	operation	Resonator connection		4.7	6.1	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7	
				TA = +50°C	operation	Resonator connection		4.8	6.7	1
		fsub = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5			
		TA = +70°C	operation	Resonator connection		4.8	7.5			
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	1
				TA = +85°C	operation	Resonator connection		5.4	8.9	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		7.2	21.0	
				$T_A = +105^{\circ}C \qquad \text{opera}$		Resonator connection		7.3	21.1	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

3.4 AC Characteristics

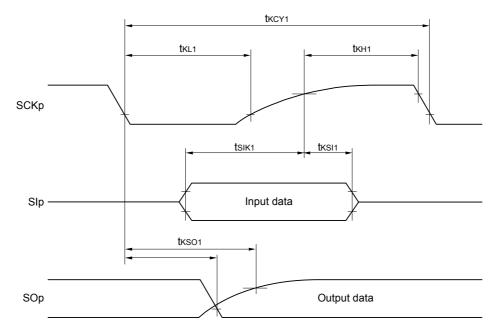
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)		clock (fMAIN) operation	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsuв) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- r ming mode	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V \text{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			24			ns
input high-level width,	t EXL	$2.4~V \leq V \text{DD} \leq$	2.7 V		30			ns
low-level width	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq EV\text{DD0} \leq 5.5 \text{ V}$	100			ns
				$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV\text{DD0} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EVdd0} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

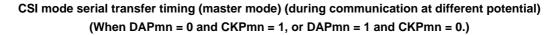
NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

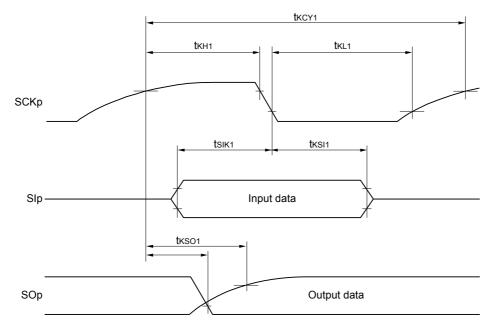
RemarkfMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel
number (n = 0 to 3))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)


Parameter	Symbol	C	onditions	HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 4/fclк		600		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		tĸcy1/2 - 150		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 340		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 - 916		ns
SCKp low-level width	tKL1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ ' \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \end{array}$,	tксү1/2 - 24		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $\text{Cb} = 30 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega$		tксү1/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \end{array}$,	tkcy1/2 - 100		ns

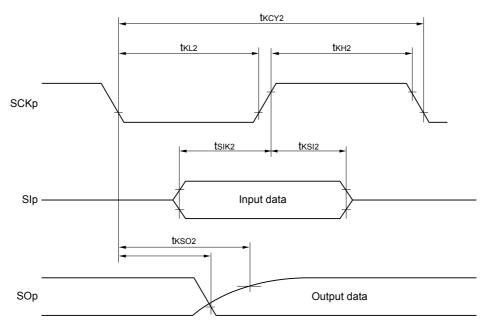
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

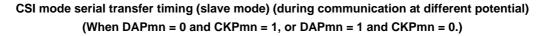

(**Remarks** are listed two pages after the next page.)

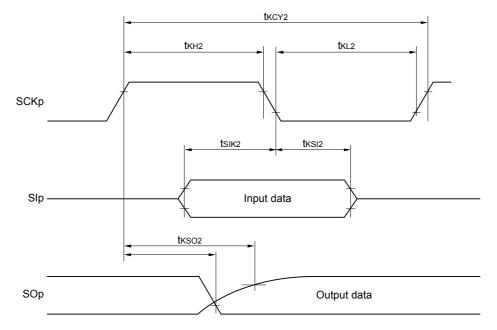
CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.


(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

1	$x = -40$ to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0	0 V)
	$(-40 10 + 103 C, 2.4 V \le LVDD0 - LVDD1 \le VDD \le 3.3 V, V33 - LV330 - LV331 - 0$	J V J


Parameter	Parameter Symbol Conditions		HS (high-spee	Unit		
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$4.0 V \le EV_{DD0} \le 5.5 V$, 2.7 V $\le V_b \le 4.0 V$	24 MHz < fмск	28/f мск		ns
			$20 \text{ MHz} < f_{\text{MCK}} \leq 24 \text{ MHz}$	24/fмск		ns
			$8 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	20/fмск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$	24 MHz < fмск	40/fмск		ns
			$20 \text{ MHz} < f_{\text{MCK}} \leq 24 \text{ MHz}$	32/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fmck \leq 16 MHz	24/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le EV_{DD0} < 3.3 \text{ V},$ $1.6 \text{ V} \le V_b \le 2.0 \text{ V}$	24 MHz < fмск	96/fмск		ns
			$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	72/fмск		ns
			$16 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	64/fмск		ns
			8 MHz < fmck \leq 16 MHz	52/f мск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tĸн₂, tĸ∟₂	$4.0 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$		tĸcy2/2 - 24		ns
width		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V$		tkcy2/2 - 36		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V$		tксү2/2 - 100		ns
SIp setup time	tsik2	$4.0 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}, \ 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$		1/fмск + 40		ns
(to SCKp↑) Note 2		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V$		1/fмск + 40		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tĸso2				2/fмск + 240	ns
					2/fмск + 428	ns
					2/fмск + 1146	ns


(Notes, Caution, and Remarks are listed on the next page.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

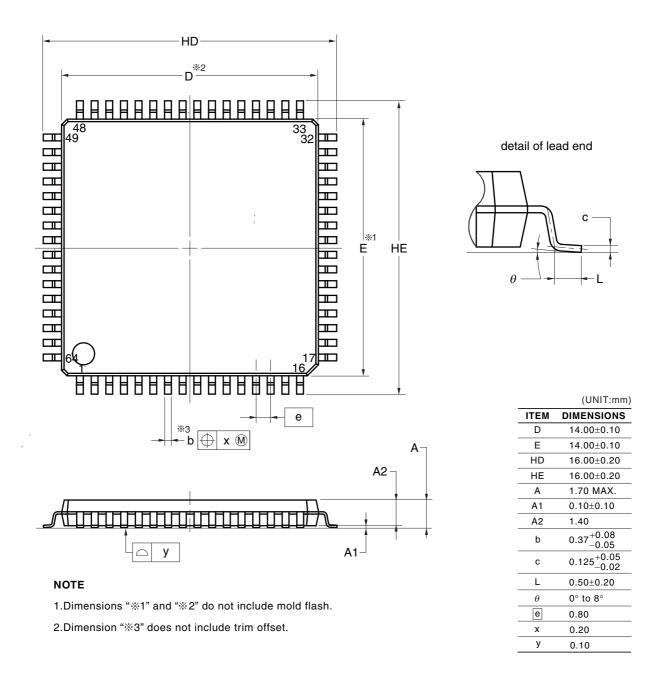
- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics


(TA = -40 to +105°C, 2.4 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		Rload = 8 MΩ	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V\text{DD} \leq 5.5~V$			3	μs
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs

R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14x14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7

© 2012 Renesas Electronics Corporation. All rights reserved.

