

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LFQFP (12×12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104mfafb-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G14 1. OUTLINE

O ROM, RAM capacities

Flash ROM	Data flash	DAM	RAM RL78/G14							
Tiasii NOW	Data ilasii	KAW	30 pins	32 pins	36 pins	40 pins				
192 KB	8 KB	20 KB	_	_	_	R5F104EH				
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG				
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF				
64 KB	4 KB	5.5 KB Note	R5F104AE	R5F104BE	R5F104CE	R5F104EE				
48 KB	4 KB	5.5 KB Note	R5F104AD	R5F104BD	R5F104CD	R5F104ED				
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC				
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA				

Flash ROM	Data flash	RAM		RL78	3/G14	
Tiasii Kowi	Dala IIasii	INAIVI	44 pins	48 pins	52 pins	64 pins
512 KB	8 KB	48 KB Note	_	R5F104GL	_	R5F104LL
384 KB	8 KB	32 KB	_	R5F104GK	_	R5F104LK
256 KB	8 KB	24 KB Note	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF
64 KB	4 KB	5.5 KB Note	R5F104FE	R5F104GE	R5F104JE	R5F104LE
48 KB	4 KB	5.5 KB Note	R5F104FD	R5F104GD	R5F104JD	R5F104LD
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	_	

Flash ROM	sh ROM Data flash	RAM	RL78	8/G14
Flasii ROW	Dala IIasii	KAW	80 pins	100 pins
512 KB	8 KB	48 KB Note	R5F104ML	R5F104PL
384 KB	8 KB	32 KB	R5F104MK	R5F104PK
256 KB	8 KB	24 KB Note	R5F104MJ	R5F104PJ
192 KB	8 KB	20 KB	R5F104MH	R5F104PH
128 KB	8 KB	16 KB	R5F104MG	R5F104PG
96 KB	8 KB	12 KB	R5F104MF	R5F104PF

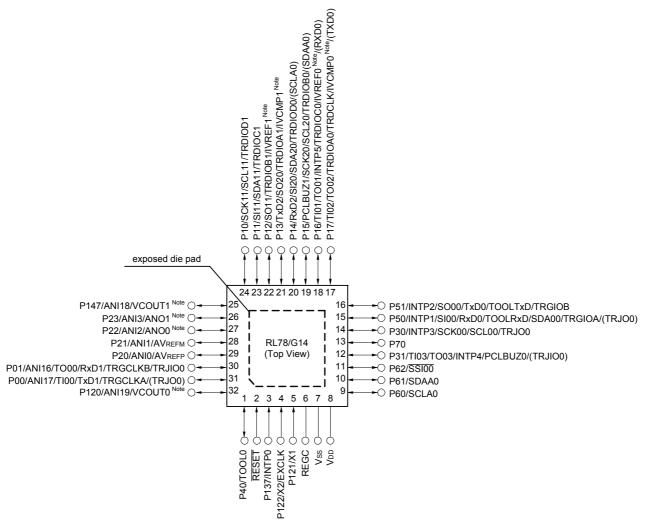
The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H

R5F104xE (x = A to C, E to G, J, L): Start address FE900H

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H


R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

RL78/G14 1. OUTLINE

1.3.2 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

RL78/G14 1. OUTLINE

(2/2)

		<u> </u>	(2/2)					
		80-pin	100-pin					
I	tem	R5F104Mx	R5F104Px					
		(x = K, L)	(x = K, L)					
Clock output/buzz	zer output	2	2					
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2. (Main system clock: fmain = 20 MHz operations of the system clock: fmain = 20 MHz operations of the system clock: fsub = 32.768 kHz, 4.05 (Subsystem clock: fsub = 32.768 kHz operations) 	on) 96 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz					
8/10-bit resolution	n A/D converter	17 channels	20 channels					
D/A converter		2 channels	2 channels					
Comparator		2 channels	2 channels					
Serial interface		 [80-pin, 100-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 						
	I ² C bus	2 channels	2 channels					
Data transfer con	troller (DTC)	39 sources	39 sources					
Event link control	ler (ELC)	Event input: 26 Event trigger output: 9	·					
Vectored inter-	Internal	32	32					
rupt sources	External	13	13					
Key interrupt		8	8					
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access						
Power-on-reset c	ircuit	1.51 \pm 0.06 V (TA = -40 • Power-down-reset: 1.50 \pm 0.04 V (TA = -40						
Voltage detector		1.63 V to 4.06 V (14 stages)						
On-chip debug fu	nction	Provided						
Power supply vol	tage	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)						
Operating ambier	nt temperature		T _A = -40 to +85°C (A: Consumer applications, D: Industrial applications), T _A = -40 to +105°C (G: Industrial applications)					

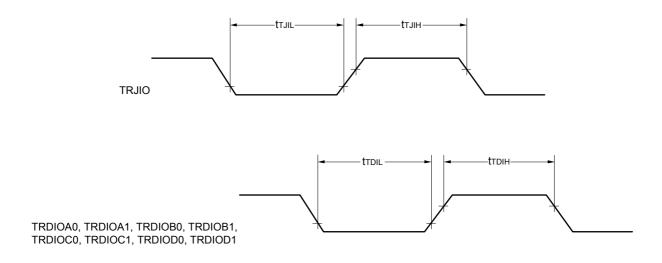
Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

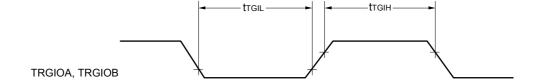
2.4 AC Characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Tcy	Main system	HS (high-speed main)	$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.03125		1	μs
imum instruction exe-		clock (fmain)	mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
cution time)		operation	LS (low-speed main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.125		1	μs
			LV (low-voltage main) mode	1.6 V ≤ VDD ≤ 5.5 V	0.25		1	μs
		Subsystem clo	ock (fsub) operation	1.8 V ≤ VDD ≤ 5.5 V	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.03125		1	μs
		program- ming mode	mode	2.4 V ≤ V _{DD} < 2.7 V	0.0625		1	μs
			LS (low-speed main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.125		1	μs
			LV (low-voltage main) mode	1.8 V ≤ VDD ≤ 5.5 V	0.25		1	μs
External system clock	fex	2.7 V ≤ V _{DD} ≤	5.5 V		1.0		20.0	MHz
frequency		2.4 V ≤ V _{DD} ≤	2.7 V		1.0		16.0	MHz
		1.8 V ≤ V _{DD} <	2.4 V		1.0		8.0	MHz
		1.6 V ≤ V _{DD} <	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texH,	2.7 V ≤ V _{DD} ≤	5.5 V		24			ns
input high-level width,	texL	2.4 V ≤ V _{DD} ≤	2.7 V		30			ns
low-level width		1.8 V ≤ V _{DD} <	2.4 V		60			ns
		1.6 V ≤ V _{DD} <	1.8 V		120			ns
	texhs,				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttih, ttil				1/fMCK + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		2.7 V ≤ EVDD0 ≤ 5.5 V	100			ns
				1.8 V ≤ EVDD0 < 2.7 V	300			ns
				1.6 V ≤ EVDD0 < 1.8 V	500			ns
Timer RJ input high-	tтлін,	TRJIO		2.7 V ≤ EVDD0 ≤ 5.5 V	40			ns
level width, low-level	ttjil			1.8 V ≤ EVDD0 < 2.7 V	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

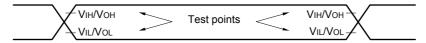

Note The following conditions are required for low voltage interface when EVDD0 < VDD

 $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V: MIN. } 125 \text{ ns}$ $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V: MIN. } 250 \text{ ns}$


Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel

number (n = 0 to 3))



2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions			HS (high-speed main) Mode		-speed main) Mode	· ·	roltage main) Node	Unit					
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.						
Transfer rate		2.4	4 V ≤ EVDD0 ≤ 5.5 V		fMCK/6 Note 2		fмск/6		fмск/6	bps					
Note 1			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps					
		1.8	8 V ≤ EVDD0 ≤ 5.5 V		fMCK/6 Note 2		fмск/6		fмск/6	bps					
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps					
		1.7	1.7	1.7	1.7	7 V ≤ EVDD0 ≤ 5.5 V		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps		
								Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		1.0	6 V ≤ EVDD0 ≤ 5.5 V		_		fMCK/6 Note 2		fмск/6	bps					
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		1.3		0.6	Mbps						

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4~V \leq EV_{DD0} < 2.7~V : MAX.~2.6~Mbps$

1.8 V ≤ EVDD0 < 2.4 V: MAX. 1.3 Mbps

 $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V}$: MAX. 0.6 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V})$

16 MHz (2.4 V \leq VDD \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode	d main)	LV (low-vol	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	2.7 V ≤ EVDD0 ≤ 5.5 V	125		500		1000		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	250		500		1000		ns
			1.8 V ≤ EVDD0 ≤ 5.5 V	500		500		1000		ns
			1.7 V ≤ EVDD0 ≤ 5.5 V	1000		1000		1000		ns
			1.6 V ≤ EV _{DD0} ≤ 5.5 V	_		1000		1000		ns
SCKp high-/low-level	tĸнı,	4.0 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 12		tkcy1/2 - 50		tkcy1/2 - 50		ns
width	tKL1	2.7 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 18		tkcy1/2 - 50		tkcy1/2 - 50		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		tkcy1/2 - 38		tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.8 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.7 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 100		tkcy1/2 - 100		tkcy1/2 - 100		ns
		1.6 V ≤ EVDD0	≤ 5.5 V	_		tkcy1/2 - 100		tkcy1/2 - 100		ns
SIp setup time	tsıĸ1	4.0 V ≤ EVDD0	≤ 5.5 V	44		110		110		ns
(to SCKp↑) Note 1		2.7 V ≤ EVDD0 ≤ 5.5 V		44		110		110		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		75		110		110		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		110		110		110		ns
		1.7 V ≤ EVDD0	≤ 5.5 V	220		220		220		ns
		1.6 V ≤ EVDD0	≤ 5.5 V	_		220		220		ns
SIp hold time	tksi1	1.7 V ≤ EVDD0	≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		1.6 V ≤ EVDD0	≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	1.7 V ≤ EV _{DD0} C = 30 pF Note			25		25		25	ns
Note 3		1.6 V ≤ EVDD0 ≤ 5.5 V C = 30 pF Note 4			_		25		25	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

$$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, VSS = EVSS0 = EVSS1 = 0 \text{ V})$$

(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) mode		peed main) ode	`	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 2	tsıĸ1	$ \begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $	23		110		110		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	33		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksı1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	10		10		10		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	10		10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		10		10		10	ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 & \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $		10		10		10	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
- Remark 3. fmck: Serial array unit operation clock frequency

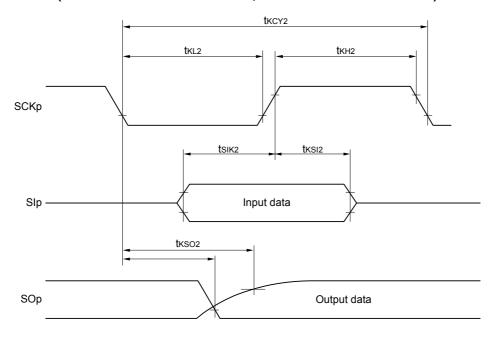
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number

 (mn = 00))
- Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

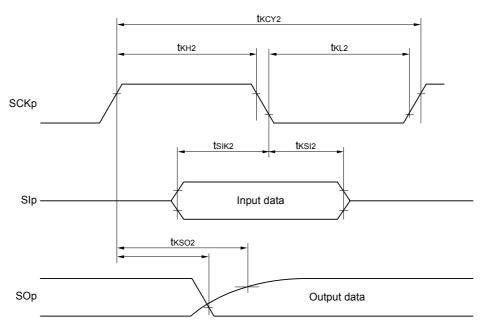
(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$ (2/3)

Parameter	Symbol	Conditions	, ,	HS (high-speed main) mode		peed main) ode	,	oltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸı	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	81		479		479		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $	177		479		479		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V Note 2}, \\ &C_{\text{b}} = 30 \text{ pF, } R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $	19		19		19		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $	19		19		19		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	19		19		19		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $		100		100		100	ns
				195		195		195	ns
		$\begin{array}{c} 1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ \text{Cb} = 30 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{array}$		483		483		483	ns


Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(Remarks are listed on the page after the next page.)

Note 2. Use it with $EV_{DD0} \ge V_b$.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

2.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
detection			Falling edge	3.90	3.98	4.06	V
threshold		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		VLVD3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		VLVD9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
			Falling edge	1.70	1.73	1.77	V
		VLVD13	Rising edge	1.64	1.67	1.70	V
			Falling edge	1.60	1.63	1.66	V
Minimum puls	se width	tLW		300			μs
Detection del	ay time					300	μs

3.2 Oscillator Characteristics

3.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

3.2.2 On-chip oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	-1.0		+1.0	%
accuracy		-40 to -20°C	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	-1.5		+1.5	%
		+85 to +105°C	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(3/5)

Items	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EV _{DD0}	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	2.0		EV _{DD0}	V
			TTL input buffer 2.4 V ≤ EVDD0 < 3.3 V	1.5		EV _{DD0}	V
	VIH3	P20 to P27, P150 to P156	0.7 Vdd		VDD	V	
	VIH4	P60 to P63	0.7 EVDD0		6.0	V	
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	V
	P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V	
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156	0		0.3 Vdd	V	
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	0		0.2 Vdd	V	

Caution The maximum value of ViH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2	HALT mode	HS (high-speed main) mode Note 7	S OO MALL Note 4	V _{DD} = 5.0 V		0.80	4.36	mA
	Note 2				V _{DD} = 3.0 V		0.80	4.36	
				f 20 MI I- Note 4	V _{DD} = 5.0 V		0.49	3.67	
					V _{DD} = 3.0 V		0.49	3.67	
				fносо = 48 MHz,	V _{DD} = 5.0 V		0.62	3.42	
				fih = 24 MHz Note 4	V _{DD} = 3.0 V		0.62	3.42	
				fHOCO = 24 MHz,	V _{DD} = 5.0 V		0.4	2.85	
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.4	2.85	
				fHOCO = 16 MHz,	V _{DD} = 5.0 V		0.37	2.08	
				fih = 16 MHz Note 4	V _{DD} = 3.0 V		0.37	2.08	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.28	2.45	mA
			mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.40	2.57	
				f _{MX} = 20 MHz Note 3, V _{DD} = 3.0 V	Square wave input		0.28	2.45	
					Resonator connection		0.40	2.57	
				fmx = 10 MHz Note 3, VDD = 5.0 V	Square wave input		0.19	1.28	
					Resonator connection		0.25	1.36	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	1.28	
				V _{DD} = 3.0 V	Resonator connection		0.25	1.36	
			Subsystem clock	fsuB = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μΑ
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsub = 32.768 kHz Note 5, TA = +25°C	Square wave input		0.30	0.57	1
					Resonator connection		0.49	0.76	
				fsub = 32.768 kHz Note 5, TA = +50°C	Square wave input		0.36	1.17	
					Resonator connection		0.59	1.36	
				fsub = 32.768 kHz Note 5, TA = +70°C	Square wave input		0.49	1.97	
					Resonator connection		0.72	2.16	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				TA = +85°C	Resonator connection		1.16	3.56	
				fsuB = 32.768 kHz Note 5,	Square wave input		3.20	17.10	
				T _A = +105°C	Resonator connection		3.40	17.50	
	IDD3 STOP mode Note 6 Note 8	STOP mode	TA = -40°C				0.18	0.51	μΑ
		Note 6 Note 8	$T_A = +25^{\circ}C$ $T_A = +50^{\circ}C$				0.24	0.51	
							0.29	1.10	
			T _A = +70°C				0.41	1.90	Ī
			T _A = +85°C				0.90	3.30	
		T _A = +105°C				3.10	17.00		

(Notes and Remarks are listed on the next page.)

<R><R>

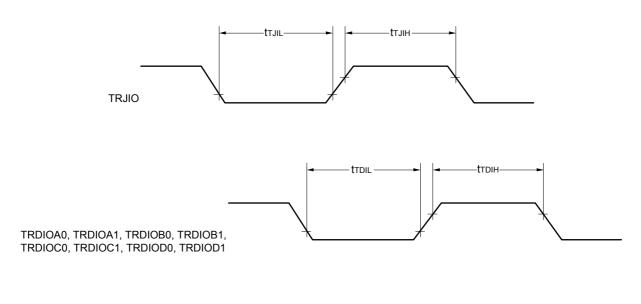
<R><R>

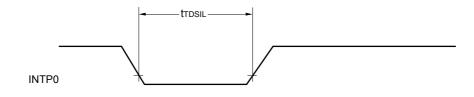
<R>

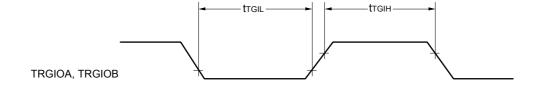
(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol		Conditions				MIN.	TYP.	MAX.	Unit
	IDD1	Operat-	(0 1 /	fHOCO = 64 MHz, fIH = 32 MHz Note 3	Basic operation	V _{DD} = 5.0 V		2.9		mA
		ing mode				V _{DD} = 3.0 V		2.9		
			fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.5			
				f _{IH} = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.5		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		6.0	11.2	mA
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		6.0	11.2	
				fhoco = 32 MHz, fih = 32 MHz Note 3	Normal operation	V _{DD} = 5.0 V		5.5	10.6	
						V _{DD} = 3.0 V		5.5	10.6	
				fHOCO = 48 MHz,	Normal	V _{DD} = 5.0 V		4.7	8.6	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.7	8.6	
				fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		4.4	8.2	mA
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.4	8.2	
			HS (high-speed main) mode Note 5 Subsystem clock operation	fhoco = 16 MHz, fih = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		3.3	5.9	
					operation	V _{DD} = 3.0 V		3.3	5.9	
				f _{MX} = 20 MHz Note 2, V _{DD} = 5.0 V	Normal operation	Square wave input		3.7	6.8	
						Resonator connection		3.9	7.0	
				fmx = 20 MHz Note 2, VDD = 3.0 V	Normal operation	Square wave input		3.7	6.8	
						Resonator connection		3.9	7.0	
				f _{MX} = 10 MHz Note 2, V _{DD} = 5.0 V	Normal operation	Square wave input		2.3	4.1	
						Resonator connection		2.3	4.2	
				f _{MX} = 10 MHz Note 2, V _{DD} = 3.0 V	Normal operation	Square wave input		2.3	4.1	
						Resonator connection		2.3	4.2	
				fsuB = 32.768 kHz Note 4 TA = -40°C	Normal operation	Square wave input		5.2	7.7	μА
						Resonator connection		5.2	7.7	
				fsuB = 32.768 kHz Note 4 TA = +25°C	Normal operation	Square wave input		5.3	7.7	
						Resonator connection		5.3	7.7	1
			fsuB = 32.768 kHz Note 4 TA = +50°C	Normal operation	Square wave input		5.5	10.6		
					Resonator connection		5.5	10.6	1	
			fsuB = 32.768 kHz Note 4 TA = +70°C	Normal operation	Square wave input		5.9	13.2		
					Resonator connection		6.0	13.2	1	
				fsub = 32.768 kHz Note 4 TA = +85°C	Normal operation	Square wave input		6.8	17.5	
						Resonator connection		6.9	17.5	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		15.5	77.8	1
				T _A = +105°C	operation	Resonator connection		15.5	77.8	


(Notes and Remarks are listed on the next page.)


- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.


HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

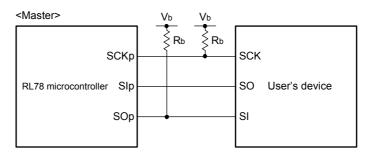
 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/3)

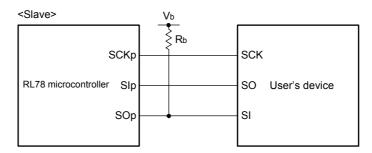

Parameter	Symbol	Conditions	HS (high-spee	HS (high-speed main) mode		
			MIN.	MAX.		
SIp setup time (to SCKp↑) Note	tsıĸ1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	162		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	354		ns	
		$2.4 \ V \le EV_{DDO} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	958		ns	
SIp hold time (from SCKp↑) Note	tksıı	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	38		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	38		ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	38		ns	
Delay time from SCKp↓ to SOp output Note	tkso1	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$		200	ns	
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{split}$		390	ns	
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$		966	ns	

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

CSI mode connection diagram (during communication at different potential



- **Remark 5.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 6.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 7. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))
- Remark 8. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- Remark 1. R_b[Ω]: Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.