

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	64
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 17x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LFQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104mgafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(4/5)

Pin count	Package	Fields of Application Note	Ordering Part Number
64 pins	64-pin plastic LQFP $(12 \times 12 \text{ mm}, 0.65 \text{ mm pitch})$	А	R5F104LCAFA#V0, R5F104LDAFA#V0, R5F104LEAFA#V0, R5F104LFAFA#V0, R5F104LGAFA#V0, R5F104LHAFA#V0, R5F104LJAFA#V0
			R5F104LCAFA#X0, R5F104LDAFA#X0, R5F104LEAFA#X0, R5F104LFAFA#X0, R5F104LGAFA#X0, R5F104LHAFA#X0, R5F104LJAFA#X0
			R5F104LKAFA#30, R5F104LLAFA#30
			R5F104LKAFA#50, R5F104LLAFA#50
		D	R5F104LCDFA#V0, R5F104LDDFA#V0, R5F104LEDFA#V0, R5F104LFDFA#V0, R5F104LGDFA#V0, R5F104LHDFA#V0, R5F104LJDFA#V0
			R5F104LCDFA#X0, R5F104LDDFA#X0, R5F104LEDFA#X0, R5F104LFDFA#X0, R5F104LGDFA#X0, R5F104LHDFA#X0, R5F104LJDFA#X0
		G	R5F104LCGFA#V0, R5F104LDGFA#V0, R5F104LEGFA#V0, R5F104LFGFA#V0, R5F104LGGFA#V0, R5F104LHGFA#V0, R5F104LJGFA#V0
			R5F104LCGFA#X0, R5F104LDGFA#X0, R5F104LEGFA#X0, R5F104LFGFA#X0, R5F104LGGFA#X0, R5F104LHGFA#X0, R5F104LJGFA#X0
			R5F104LKGFA#30, R5F104LLGFA#30
			R5F104LKGFA#50, R5F104LLGFA#50
	64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)	A	R5F104LCAFB#V0, R5F104LDAFB#V0, R5F104LEAFB#V0, R5F104LFAFB#V0, R5F104LGAFB#V0, R5F104LHAFB#V0, R5F104LJAFB#V0
			R5F104LCAFB#X0, R5F104LDAFB#X0, R5F104LEAFB#X0, R5F104LFAFB#X0, R5F104LGAFB#X0, R5F104LHAFB#X0, R5F104LJAFB#X0
			R5F104LKAFB#30, R5F104LLAFB#30
			R5F104LKAFB#50, R5F104LLAFB#50
		D	R5F104LCDFB#V0, R5F104LDDFB#V0, R5F104LEDFB#V0, R5F104LFDFB#V0, R5F104LGDFB#V0, R5F104LHDFB#V0, R5F104LJDFB#V0
			R5F104LCDFB#X0, R5F104LDDFB#X0, R5F104LEDFB#X0, R5F104LFDFB#X0, R5F104LGDFB#X0, R5F104LHDFB#X0, R5F104LJDFB#X0
		G	R5F104LCGFB#V0, R5F104LDGFB#V0, R5F104LEGFB#V0, R5F104LFGFB#V0,
			R5F104LGGFB#V0, R5F104LHGFB#V0, R5F104LJGFB#V0 R5F104LCGFB#X0, R5F104LDGFB#X0, R5F104LEGFB#X0, R5F104LFGFB#X0,
			R5F104LGGFB#X0, R5F104LHGFB#X0, R5F104LJGFB#X0
			R5F104LKGFB#30, R5F104LLGFB#30
	64 pip plastic ELCA	Δ	R5F104LKGFB#50, R5F104LLGFB#50
	$(5 \times 5 \text{ mm}, 0.5 \text{ mm pitch})$	~	R5F104LCALA#00, R5F104LDALA#00, R5F104LEALA#00, R5F104LFALA#00, R5F104LGALA#U0, R5F104LHALA#U0, R5F104LJALA#U0
			R5F104LCALA#W0, R5F104LDALA#W0, R5F104LEALA#W0, R5F104LFALA#W0, R5F104LGALA#W0, R5F104LHALA#W0, R5F104LJALA#W0
			R5F104LKALA#U0, R5F104LLALA#U0
			R5F104LKALA#W0, R5F104LLALA#W0
		G	R5F104LCGLA#U0, R5F104LDGLA#U0, R5F104LEGLA#U0, R5F104LFGLA#U0, R5F104LGGLA#U0, R5F104LHGLA#U0, R5F104LJGLA#U0, R5F104LKGLA#U0, R5F104LLGLA#U0
			R5F104LCGLA#W0, R5F104LDGLA#W0, R5F104LEGLA#W0, R5F104LFGLA#W0,
			R5F104LGGLA#W0, R5F104LHGLA#W0, R5F104LJGLA#W0, R5F104LKGLA#W0, R5F104LLGLA#W0
	64-pin plastic LQFP (14 \times 14 mm, 0.8 mm pitch)	A	R5F104LCAFP#V0, R5F104LDAFP#V0, R5F104LEAFP#V0, R5F104LFAFP#V0, R5F104LGAFP#V0, R5F104LHAFP#V0, R5F104LJAFP#V0
			R5F104LCAFP#X0, R5F104LDAFP#X0, R5F104LEAFP#X0, R5F104LFAFP#X0, R5F104LGAFP#X0, R5F104LHAFP#X0, R5F104LJAFP#X0
		D	R5F104LCDFP#V0, R5F104LDDFP#V0, R5F104LEDFP#V0, R5F104LFDFP#V0, R5F104LGDFP#V0, R5F104LHDFP#V0, R5F104LJDFP#V0
			R5F104LCDFP#X0, R5F104LDDFP#X0, R5F104LEDFP#X0, R5F104LFDFP#X0, R5F104LGDFP#X0, R5F104LHDFP#X0, R5F104LJDFP#X0
		G	R5F104LCGFP#V0, R5F104LDGFP#V0, R5F104LEGFP#V0, R5F104LFGFP#V0,
			R5F104LGGFP#V0, R5F104LHGFP#V0, R5F104LJGFP#V0
			R5F104LCGFP#X0, R5F104LDGFP#X0, R5F104LEGFP#X0, R5F104LFGFP#X0, R5F104LGGFP#X0, R5F104LHGFP#X0, R5F104LJGFP#X0

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.8 64-pin products

- 64-pin plastic LQFP (14 × 14 mm, 0.8 mm pitch)
- + 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)

- Note 1. Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

2.1 **Absolute Maximum Ratings**

Absolute Maximum Ratings

Absolute Maximum R	atings			(1/2)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to VDD +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	Vı2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	Vo2	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	Vai1	ANI16 to ANI20	-0.3 to EVDD0 +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 ^{Notes 2, 3}	v

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

(2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	pin P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147		mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient tem-	Та	In normal c	operation mode	-40 to +85	°C
perature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	1.0		16.0	
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.4 \text{ V}$	1.0		8.0	
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	C	conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fiн		1		32	MHz	
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8~V \le V_{DD} \le 5.5~V$	-1.0		+1.0	%
accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		-40 to -20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz
LV (low-voltage main) mode:	1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.) Remark 3. file:
- High-speed on-chip oscillator clock frequency (32 MHz max.) Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

R01DS0053EJ0330 Rev. 3.30 Aug 12, 2016

(TA = -40 t	o +85°0	C, 1.6 V ≤ E	$VDD0 = EVDD1 \le VD$	DD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)					
Parameter	Symbol			MIN.	TYP.	MAX.	Unit		
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	V _{DD} = 5.0 V		0.79	3.32	mA
rent Note 1	Note 2		mode Note 7	fiн = 32 MHz Note 4	V _{DD} = 3.0 V		0.79	3.32	
				fносо = 32 MHz,	VDD = 5.0 V		0.49	2.63	
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	2.63	
				fносо = 48 MHz,	V _{DD} = 5.0 V		0.62	2.57	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.57	
				fносо = 24 MHz,	V _{DD} = 5.0 V		0.4	2.00	
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	2.00	
				fносо = 16 MHz,	VDD = 5.0 V		0.38	1.49	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.38	1.49	
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		250	800	μA
			mode Note 7	fiH = 8 MHz Note 4	V _{DD} = 2.0 V		250	800	
			LV (low-voltage main)	fносо = 4 MHz,	V _{DD} = 3.0 V		420	755	μA
			mode Note /	fiH = 4 MHz Note 4	V _{DD} = 2.0 V		420	755	
			HS (high-speed main)	f _{MX} = 20 MHz Note 3,	Square wave input		0.30	1.63	mA
			mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.40	1.85	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.30	1.63	
				VDD = 3.0 V	Resonator connection		0.40	1.85	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.20	0.89	
				V _{DD} = 5.0 V	Resonator connection		0.25	0.97	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.89	
				V _{DD} = 3.0 V	Resonator connection		0.25	0.97	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	580	μA
			mode Note 7	V _{DD} = 3.0 V	Resonator connection		140	630	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	580	
				VDD = 2.0 V	Resonator connection		140	630	
			Subsystem clock oper-	fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.28	0.66	μΑ
			ation	TA = -40°C	Resonator connection		0.47	0.85	
				fsue = 32.768 kHz Note 5,	Square wave input		0.34	0.66	
				TA = +25°C	Resonator connection		0.53	0.85	
				fsue = 32.768 kHz Note 5,	Square wave input		0.37	2.35	
				TA = +50°C	Resonator connection		0.56	2.54	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.61	4.08	
				TA = +70°C	Resonator connection		0.80	4.27	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		1.55	8.09	
				TA = +85°C	Resonator connection		1.74	8.28	
	IDD3	STOP mode	TA = -40°C				0.19	0.57	μΑ
	Note 6	Note 8	T _A = +25°C				0.25	0.57	
			T _A = +50°C				0.33	2.26	
			T _A = +70°C				0.52	3.99	
			TA = +85°C				1.46	8.00	

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time tkcy1 1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{DD0} \leq 5.5~V$	62.5		250		500		ns	
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level	tĸнı, tĸ∟ı	$4.0~V \leq EV_{DD0} \leq 5.5~V$		tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
width		$2.7 \text{ V} \leq EV \text{ddo} \leq 5.5 \text{ V}$		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp \uparrow)	tsik1	$4.0 \ V \leq EV_{DD0} \leq 5.5 \ V$		23		110		110		ns
Note 1		$2.7~V \leq EV_{DD0} \leq 5.5~V$		33		110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	$2.7~V \leq EV_{DD0} \leq 5.5~V$		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note	4		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),

g: PIM and POM numbers (g = 1)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Parameter	Symbol	Cond	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	20 MHz < fмск	8/fмск		_		_		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	16 MHz < fмск	8/fмск		_		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/ tkH2,	tкн2,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tĸcy2/2 - 7		tkcy2/2 - 7		tксү2/2 - 7		ns
IOW-IEVEI WIDTN	TKL2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns	
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	tксү2/2 - 66		tkcy2/2 - 66		tkcy2/2 - 66		ns	
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		_		tkcy2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$				1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$				1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

Parameter	Symbol			Conditions	_	MIN.	TYP.	MAX.	Unit
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	4.36	mA
Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.80	4.36	
				fносо = 32 MHz,	VDD = 5.0 V		0.49	3.67	
				fiн = 32 MHz Note 4	VDD = 3.0 V		0.49	3.67	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	3.42	
		fin = 24 MHz Note 4	V _{DD} = 3.0 V		0.62	3.42			
		fносо = 24 MHz,	V _{DD} = 5.0 V		0.4	2.85			
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.4	2.85	
				fносо = 16 MHz,	V _{DD} = 5.0 V		0.37	2.08	
				fiH = 16 MHz Note 4	V _{DD} = 3.0 V		0.37	2.08	
		HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	mA	
		mode Note 7	VDD = 5.0 V	Resonator connection		0.40	2.57		
			f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45		
				VDD = 3.0 V	Resonator connection		0.40	2.57	1
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.28		
			VDD = 5.0 V	Resonator connection		0.25	1.36		
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.28		
			VDD = 3.0 V	Resonator connection		0.25	1.36		
			Subsystem clock	fsuB = 32.768 kHz Note 5, TA = -40°C fsuB = 32.768 kHz Note 5, TA = +25°C	Square wave input		0.25	0.57	μA
			operation		Resonator connection		0.44	0.76	
					Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				fsub = 32.768 kHz Note 5,	Square wave input		0.36	1.17	
				TA = +50°C	Resonator connection		0.59	1.36	
				fsub = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	
				fsub = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				TA = +85°C	Resonator connection		1.16	3.56	
				fsub = 32.768 kHz Note 5,	Square wave input		3.20	17.10	
				TA = +105°C	Resonator connection		3.40	17.50	
	IDD3	STOP mode	TA = -40°C				0.18	0.51	μΑ
	Note 6	Note 8	TA = +25°C				0.24	0.51	
			TA = +50°C			0.29	1.10		
			TA = +70°C				0.41	1.90	
			TA = +85°C				0.90	3.30]
		TA = +105°C				3.10	17.00		

$1A = -40$ to $+105^{\circ}C$, 2.4 V $\leq 100^{\circ}$	$\mathbf{LVDD0} \leq \mathbf{VDD} \leq 5.5 \ \mathbf{V},$	VSS = EVSS0 = 0 V)(2/2)	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- **Remark 1.** fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

<R>

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.93	5.16	mA
rent Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.93	5.16	
				fносо = 32 MHz,	VDD = 5.0 V		0.5	4.47	1
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.5	4.47	
				fносо = 48 MHz,	VDD = 5.0 V		0.72	4.08	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	4.08	1
				fносо = 24 MHz,	V _{DD} = 5.0 V		0.42	3.51	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.42	3.51	
				fносо = 16 MHz,	VDD = 5.0 V		0.39	2.38	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.39	2.38	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	
				VDD = 3.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	1.46	
				VDD = 5.0 V	Resonator connection		0.26	1.57	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.46	
				VDD = 3.0 V	Resonator connection		0.26	1.57	1
			Subsystem clock oper-	fsue = 32.768 kHz Note 5,	Square wave input		0.31	0.76	μΑ
			ation	TA = -40°C	Resonator connection		0.50	0.95	1
				fsue = 32.768 kHz Note 5,	Square wave input		0.38	0.76	
				TA = +25°C	Resonator connection		0.57	0.95	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.47	3.59	
				TA = +50°C	Resonator connection		0.70	3.78	
				fsue = 32.768 kHz Note 5,	Square wave input		0.80	6.20	
				T _A = +70°C	Resonator connection		1.00	6.39	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		1.65	10.56	
				TA = +85°C	Resonator connection		1.84	10.75	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		8.00	65.7	
				T _A = +105°C	Resonator connection		8.00	65.7	
	IDD3	STOP mode	TA = -40°C				0.19	0.63	μA
	Note 6	Note 8	TA = +25°C				0.30	0.63	
			TA = +50°C				0.41	3.47	
			T _A = +70°C				0.80	6.08	
			TA = +85°C				1.53	10.44	
			T _A = +105°C				6.50	67.14	

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)		clock (fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsub) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{Vdd} \leq 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,	texL	$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width	texhs, texls				13.7			μs
TI00 to TI03, TI10 to	tтін, tті∟				1/fмск + 10			ns
TI13 input high-level width, low-level width					Note			
Timer RJ input cycle	fc	TRJIO		$2.7~V \leq EV \text{DD0} \leq 5.5~V$	100			ns
				$2.4~V \leq EV_{DD0} < 2.7~V$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

 Remark
 fmck: Timer array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

Parameter	Symbol			Conditions	HS (high-s	peed main) mode	Unit
					MIN.	MAX.	
Transfer rate		reception	4.0 2.7	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} Note 3		2.6	Mbps
			2.7 2.3	$V \le EV_{DD0} < 4.0 V,$ $V \le V_b \le 2.7 V$		fмск/12 Note 1	bps
				Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} $^{Note\ 3}$		2.6	Mbps
			2.4 1.6	$V \le EV_{DD0} < 3.3 \text{ V},$ $V \le V_b \le 2.0 \text{ V}$		f _{MCK} /12 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

```
Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.
```

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

- **Note 3.** The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$
 - 16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb [V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2	$2.4 V \leq EVDD0 = EVDD^{2}$	$1 \leq VDD \leq 5.5 V, VSS$	= EVss0 $=$ EVss1 $=$ 0 V)
(

(1/2)

Parameter	Symbol	Conditions	HS (high-spe	ed main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟			400 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$		100 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 Note 1	kHz
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW		1200		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1200		ns
			4600		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	4600		ns
		$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tнigн		620		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	2700		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	2400		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	1830		ns

3.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V
threshold			Falling edge	3.83	3.98	4.13	V
		VLVD1	Rising edge	3.60	3.75	3.90	V
			Falling edge	3.53	3.67	3.81	V
		VLVD2	Rising edge	3.01	3.13	3.25	V
			Falling edge	2.94	3.06	3.18	V
		VLVD3	Rising edge	2.90	3.02	3.14	V
			Falling edge	2.85	2.96	3.07	V
		VLVD4	Rising edge	2.81	2.92	3.03	V
			Falling edge	2.75	2.86	2.97	V
		VLVD5	Rising edge	2.70	2.81	2.92	V
			Falling edge	2.64	2.75	2.86	V
		VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V
		VLVD7	Rising edge	2.51	2.61	2.71	V
			Falling edge	2.45	2.55	2.65	V
Minimum pulse width		t∟w		300			μs
Detection delay time						300	μs

4.6 48-pin products

R5F104GAAFB, R5F104GCAFB, R5F104GDAFB, R5F104GEAFB, R5F104GFAFB, R5F104GGAFB, R5F104GHAFB, R5F104GJAFB

R5F104GADFB, R5F104GCDFB, R5F104GDDFB, R5F104GEDFB, R5F104GFDFB, R5F104GGDFB, R5F104GHDFB, R5F104GJDFB

R5F104GAGFB, R5F104GCGFB, R5F104GDGFB, R5F104GEGFB, R5F104GFGFB, R5F104GGGFB, R5F104GHGFB, R5F104GJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP48-7x7-0.50	PLQP0048KF-A	P48GA-50-8EU-1	0.16

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

ZE

0.75

R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14x14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7

© 2012 Renesas Electronics Corporation. All rights reserved.

REVISION HISTORY

RL78/G14 Datasheet

Boy	Data		Description			
Rev.	Date	Page	Summary			
0.01	Feb 10, 2011	—	First Edition issued			
0.02	May 01, 2011	1 to 2	1.1 Features revised			
		3	1.2 Ordering Information revised			
		4 to 13	1.3 Pin Configuration (Top View) revised			
		14	1.4 Pin Identification revised			
		15 to 17	1.5.1 30-pin products to 1.5.3 36-pin products revised			
		23 to 26	1.6 Outline of Functions revised			
0.03	Jul 28, 2011	1	1.1 Features revised			
1.00	Feb 21, 2012	1 to 40	1. OUTLINE revised			
		41 to 97	2. ELECTRICAL SPECIFICATIONS added			
2.00	Oct 25, 2013	1	Modification of 1.1 Features			
		3 to 8	Modification of 1.2 Ordering Information			
		9 to 22	Modification of package type in 1.3 Pin Configuration (Top View)			
		34 to 43	Modification of description of subsystem clock in 1.6 Outline of Functions			
		34 to 43	Modification of description of timer output in 1.6 Outline of Functions			
		34 to 43	Modification of error of data transfer controller in 1.6 Outline of Functions			
		34 to 43	Modification of error of event link controller in 1.6 Outline of Functions			
		45, 46	Modification of description of Tables in 2.1 Absolute Maximum Ratings			
		47	Modification of Tables, notes, cautions, and remarks in 2.2 Oscillator Characteristics			
		48	Modification of error of conditions of high level input voltage in 2.3.1 Pin characteristics			
		49	Modification of error of conditions of low level output voltage in 2.3.1 Pin characteristics			
		53 to 62	Modification of Notes and Remarks in 2.3.2 Supply current characteristics			
		65, 66	Addition of Minimum Instruction Execution Time during Main System Clock Operation			
		67 to 69	Addition of AC Timing Test Points			
		70 to 97	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit			
		98 to 101	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA			
		102 to 105	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics			
		107	Addition of characteristic in 2.6.4 Comparator			
		107	Deletion of detection delay in 2.6.5 POR circuit characteristics			
		109	Modification of 2.6.7 Power supply voltage rising slope characteristics			
		110	Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics			
		110	Addition of characteristic in 2.8 Flash Memory Programming Characteristics			
		111	Addition of description in 2.10 Timing for Switching Flash Memory Programming Modes			