

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f211a2sp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/1A Group and Table 1.2 outlines the Functions and Specifications for R8C/1B Group.

 Table 1.1
 Functions and Specifications for R8C/1A Group

NOTE:

1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.

2. Please contact Renesas Technology sales offices for the Y version.

	Item	Specification				
CPU	Number of fundamental	89 instructions				
	instructions					
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)				
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)				
	Operating mode	Single-chip				
	Address space	1 Mbyte				
	Memory capacity	See Table 1.4 Product Information for R8C/1B Group				
Peripheral	Ports	I/O ports: 13 pins (including LED drive port)				
Functions		Input port: 3 pins				
	LED drive ports	I/O ports: 4 pins				
	Timers	Timer X: 8 bits × 1 channel, timer Z: 8 bits × 1 channel				
		(Each timer equipped with 8-bit prescaler)				
		Timer C: 16 bits × 1 channel				
		(Input capture and output compare circuits)				
	Serial interfaces	1 channel				
	Centar Interfaces	Clock synchronous serial I/O, UART				
		1 channel				
		UART				
	Clock synchronous serial interface					
	Clock synchronous serial interface					
		I ² C bus Interface ⁽¹⁾				
		Clock synchronous serial I/O with chip select (SSU)				
	A/D converter	10-bit A/D converter: 1 circuit, 4 channels				
	Watchdog timer	15 bits × 1 channel (with prescaler)				
		Reset start selectable, count source protection mode				
	Interrupts	Internal: 11 sources, External: 4 sources, Software: 4 source				
		Priority levels: 7 levels				
	Clock generation circuits	2 circuits				
		 Main clock generation circuit (with on-chip feedback 				
		resistor)				
		 On-chip oscillator (high speed, low speed) 				
		High-speed on-chip oscillator has a frequency adjustme				
		function				
	Oscillation stop detection function	Main clock oscillation stop detection function				
	Voltage detection circuit	On-chip				
	Power on reset circuit	On-chip				
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)				
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)				
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, A/D converter stopped)				
		Typ. 5 mA (VCC = 3.0 V, f(XIN) = 10 MHz, A/D converter stopped)				
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)				
		Typ. 0.7 μ A (VCC = 3.0 V, stop mode)				
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V				
r laon monory	Programming and erasure	10,000 times (data flash)				
	endurance	1,000 times (program ROM)				
Operating Ambie		-20 to 85°C				
Operating Amble		-20 to 85°C (D version)				
Dealera		-20 to 105°C (Y version) ⁽²⁾				
Package		20-pin molded-plastic LSSOP				
		20-pin molded-plastic SDIP				
		28-pin molded-plastic HWQFN				

Functions and Specifications for R8C/1B Group Table 1.2

NOTE:

I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Please contact Renesas Technology sales offices for the Y version.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

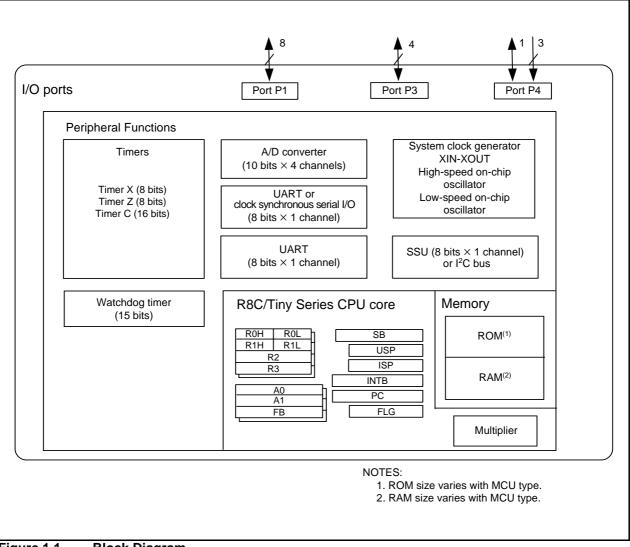
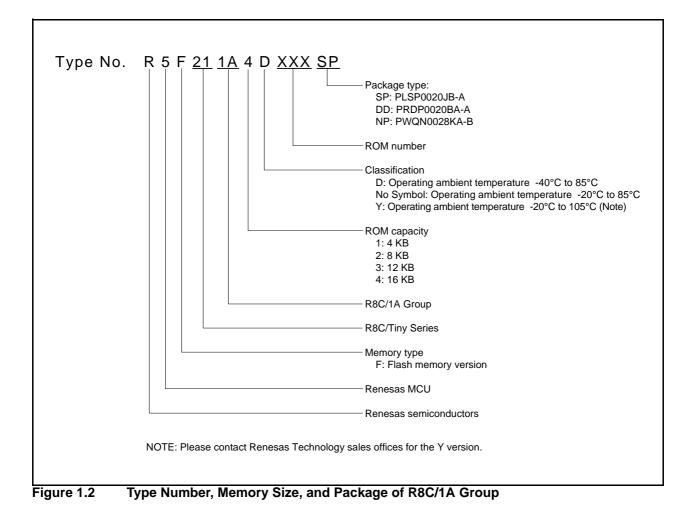



Figure 1.1 Block Diagram

Type No.	ROM Ca	apacity	RAM	Package Type	Remarks
Type No.	Program ROM	Data Flash	Capacity	Tackage Type	Remains
R5F211B1SP	4 Kbytes	1 Kbyte x 2	384 bytes	PLSP0020JB-A	
R5F211B2SP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	
R5F211B3SP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F211B4SP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	
R5F211B1DSP	4 Kbytes	1 Kbyte x 2	384 bytes	PLSP0020JB-A	D version
R5F211B2DSP	8 Kbytes	1 Kbyte x 2	512 bytes	PLSP0020JB-A	
R5F211B3DSP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F211B4DSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	
R5F211B1DD	4 Kbytes	1 Kbyte x 2	384 bytes	PRDP0020BA-A	
R5F211B2DD	8 Kbytes	1 Kbyte x 2	512 bytes	PRDP0020BA-A	
R5F211B3DD	12 Kbytes	1 Kbyte x 2	768 bytes	PRDP0020BA-A	
R5F211B4DD	16 Kbytes	1 Kbyte x 2	1 Kbyte	PRDP0020BA-A	
R5F211B2NP	8 Kbytes	1 Kbyte x 2	512 bytes	PWQN0028KA-B	
R5F211B3NP	12 Kbytes	1 Kbyte x 2	768 bytes	PWQN0028KA-B	
R5F211B4NP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PWQN0028KA-B	
R5F211B1XXXSP	4 Kbytes	1 Kbyte × 2	384 bytes	PLSP0020JB-A	Factory programming
R5F211B2XXXSP	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	product ⁽¹⁾
R5F211B3XXXSP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F211B4XXXSP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PLSP0020JB-A	
R5F211B1DXXXSP	4 Kbytes	1 Kbyte x 2	384 bytes	PLSP0020JB-A	D version
R5F211B2DXXXSP	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	
R5F211B3DXXXSP	12 Kbytes	1 Kbyte × 2	768 bytes	PLSP0020JB-A	
R5F211B4DXXXSP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PLSP0020JB-A	
R5F211B1XXXDD	4 Kbytes	1 Kbyte × 2	384 bytes	PRDP0020BA-A	Factory programming
R5F211B2XXXDD	8 Kbytes	1 Kbyte × 2	512 bytes	PRDP0020BA-A	product ⁽¹⁾
R5F211B3XXXDD	12 Kbytes	1 Kbyte x 2	768 bytes	PRDP0020BA-A	
R5F211B4XXXDD	16 Kbytes	1 Kbyte x 2	1 Kbyte	PRDP0020BA-A	
R5F211B2XXXNP	8 Kbytes	1 Kbyte x 2	512 bytes	PWQN0028KA-B	
R5F211B3XXXNP	12 Kbytes	1 Kbyte x 2	768 bytes	PWQN0028KA-B	
R5F211B4XXXNP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PWQN0028KA-B	

Table 1.4 Product Inform	ation for R8C/1B Group
--------------------------	------------------------

Current of October 2006

NOTE:

1. The user ROM is programmed before shipment.

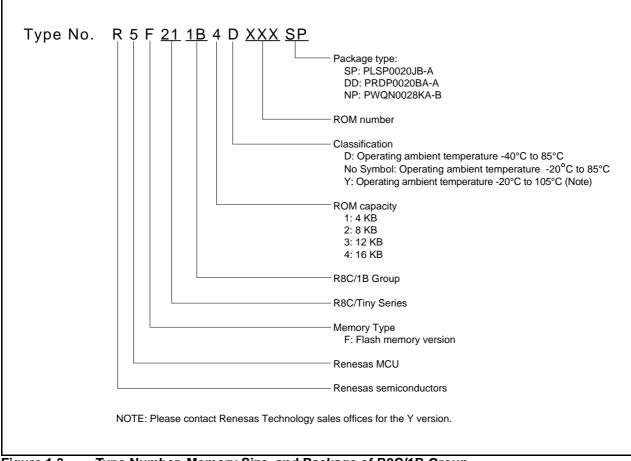


Figure 1.3 Type Number, Memory Size, and Package of R8C/1B Group

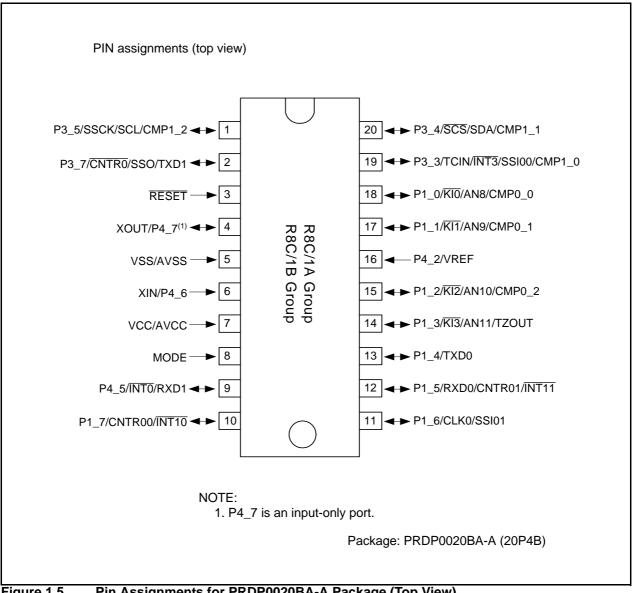


Figure 1.5 Pin Assignments for PRDP0020BA-A Package (Top View)

3.2 R8C/1B Group

Figure 3.2 is a Memory Map of R8C/1B Group. The R8C/1B Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

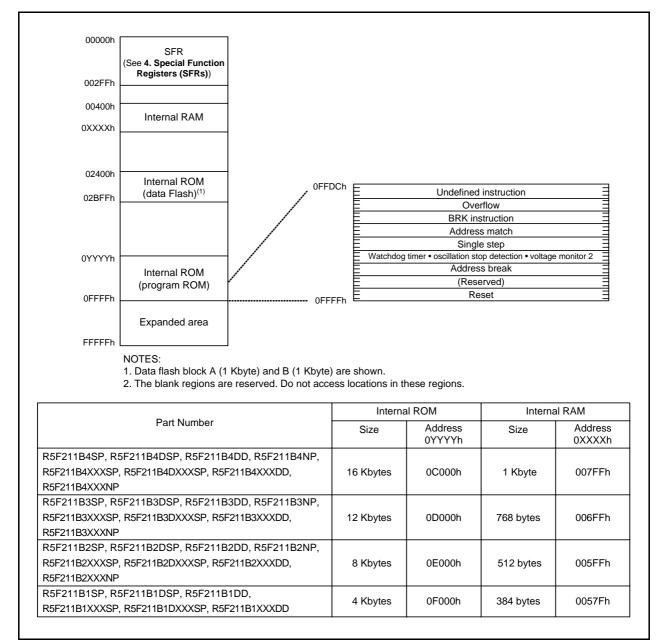


Figure 3.2 Memory Map of R8C/1B Group

Address	Register	Symbol	After reset
0080h	Timer Z Mode Register	TZMR	00h
0081h			
0082h			
0083h			
0084h	Timer Z Waveform Output Control Register	PUM	00h
0085h	Prescaler Z Register	PREZ	FFh
0086h	Timer Z Secondary Register	TZSC	FFh
0087h	Timer Z Primary Register	TZPR	FFh
0088h			
0089h			
008Ah	Timer Z Output Control Register	TZOC	00h
008Bh	Timer X Mode Register	TXMR	00h
008Ch	Prescaler X Register	PREX	FFh
008Dh	Timer X Register	ТХ	FFh
008Eh	Timer Count Source Setting Register	TCSS	00h
008Fh			
0090h	Timer C Register	TC	00h
0091h			00h
0092h			
0093h			
0094h			
0095h 0096h	External Input Enable Pagister	INTEN	00h
0096h 0097h	External Input Enable Register	INTEN	UUII
0097h 0098h	Key Input Enable Register	KIEN	00h
0099h		RIEN	0011
009Ah	Timer C Control Register 0	TCC0	00h
009Bh	Timer C Control Register 1	TCC1	00h
009Ch	Capture, Compare 0 Register	TMO	0000h ⁽²⁾
009Dh			FFFFh ⁽³⁾
009Eh	Compare 1 Register	TM1	FFh
009Eh			FFh
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UARTO Bit Rate Generator	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	UOTB	XXh
00A3h	Ť		XXh
00A4h	UART0 Transmit/Receive Control Register 0	UOCO	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	U0RB	XXh
00A7h			XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Generator	U1BRG	XXh
00AAh	UART1 Transmit Buffer Register	U1TB	XXh
00ABh			XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
00AEh	UART1 Receive Buffer Register	U1RB	XXh
00AFh	LIADT Transmit/Dessitys Original Destination		XXh
00B0h	UART Transmit/Receive Control Register 2	UCON	00h
00B1h			
00B2h 00B3h			
00B3h 00B4h			
00B4h			
00B6h			
00B0h			
00B8h	SS Control Register H / IIC bus Control Register 1 ⁽⁴⁾	SSCRH / ICCR1	00h
00B9h	SS Control Register L / IIC bus Control Register 2 ⁽⁴⁾	SSCRL / ICCR2	01111101b
00BAh	SS Mode Register / IIC bus Mode Register ⁽⁴⁾	SSORE / ICOR2	00011000b
00BAh 00BBh	SS Mode Register / IIC bus Mode Register ⁽⁴⁾	SSER / ICIER	0001100000 00h
00BBh 00BCh	SS Enable Register / IIC bus Interrupt Enable Register(4) SS Status Register / IIC bus Status Register ⁽⁴⁾	SSSR / ICIER	00h / 0000X000b
00BCh 00BDh		SSSR / ICSR SSMR2 / SAR	
	SS Mode Register 2 / Slave Address Register ⁽⁴⁾		00h
00BEh	SS Transmit Data Register / IIC bus Transmit Data Register ⁽⁴⁾	SSTDR / ICDRT	FFh
00BFh	SS Receive Data Register / IIC bus Receive Data Register ⁽⁴⁾	SSRDR / ICDRR	FFh

SFR Information (3)⁽¹⁾ Table 4.3

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions.
 In input capture mode.

3. In output compare mode.

4. Selected by the IICSEL bit in the PMR register.

5. Electrical Characteristics

Please contact Renesas Technology sales offices for the electrical characteristics in the Y version (Topr = -20° C to 105° C).

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog supply voltage	Vcc = AVcc	-0.3 to 6.5	V
VI	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Topr = 25°C	300	mW
Topr	Operating ambient temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

Cumbal	Parameter		Conditions		Unit			
Symbol	Pa	rameter	Conditions	Min.	Тур.	Max.	Unit	
Vcc	Supply voltage			2.7	-	5.5	V	
AVcc	Analog supply volt	age		-	Vcc	-	V	
Vss	Supply voltage			-	0	-	V	
AVss	Analog supply volt	age		-	0	-	V	
VIH	Input "H" voltage			0.8Vcc	-	Vcc	V	
VIL	Input "L" voltage			0	-	0.2Vcc	V	
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH (peak)		-	_	-60	mA	
IOH(peak)	Peak output "H" cu	urrent		T	-	-10	mA	
IOH(avg)	Average output "H	" current		T	-	-5	mA	
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL (peak)		-	-	60	mA	
IOL(peak)	Peak output "L"	Except P1_0 to P1_3		-	-	10	mA	
	currents	currents P1_0 to P1_3	P1_0 to P1_3	Drive capacity HIGH	_	-	30	mA
			Drive capacity LOW	-	-	10	mA	
IOL(avg)	Average output	Except P1_0 to P1_3		-	-	5	mA	
	"L" current	P1_0 to P1_3	Drive capacity HIGH	-	-	15	mA	
			Drive capacity LOW	-	-	5	mA	
f(XIN)	Main clock input o	scillation frequency	$3.0~V \leq Vcc \leq 5.5~V$	0	-	20	MHz	
			$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	-	10	MHz	
_	System clock	OCD2 = 0	$3.0~V \leq Vcc \leq 5.5~V$	0	-	20	MHz	
		Main clock selected	$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	-	10	MHz	
		OCD2 = 1 On-chip oscillator clock selected	HRA01 = 0 Low-speed on-chip oscillator clock selected	_	125	-	kHz	
			HRA01 = 1 High-speed on-chip oscillator clock selected	_	8	-	MHz	

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.

2. Typical values when average output current is 100 ms.

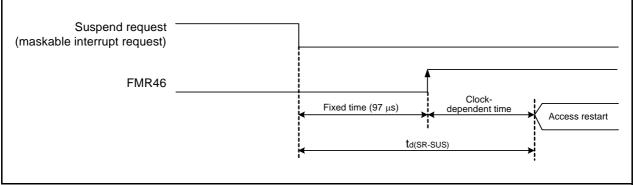


Figure 5.2 **Transition Time to Suspend**

Table 5.6 **Voltage Detection 1 Circuit Electrical Characteristics**

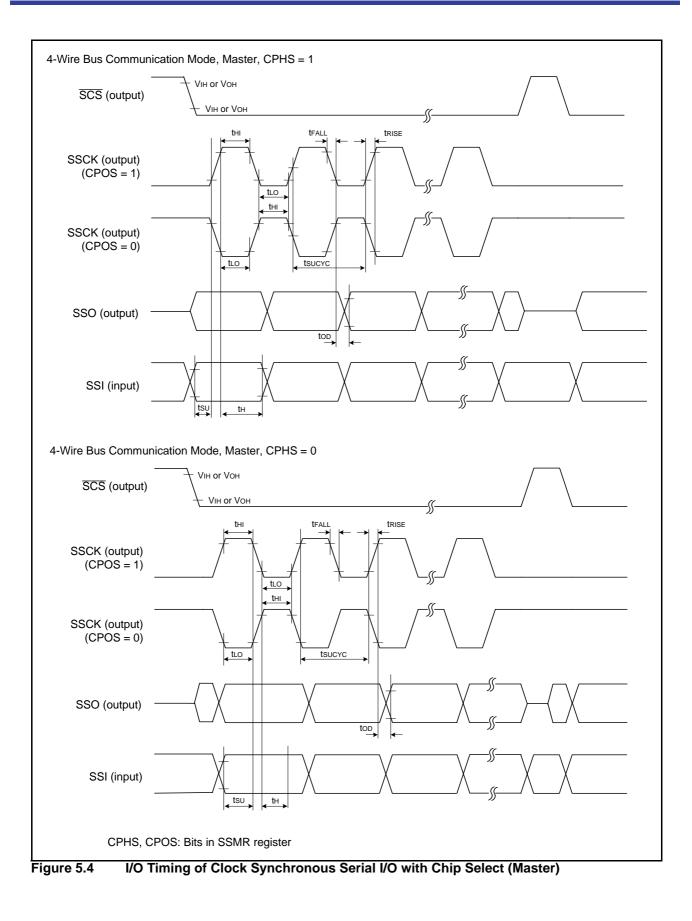
Symbol Parameter		Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level ⁽³⁾		2.70	2.85	3.00	V
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	100	μS
Vccmin	MCU operating voltage minimum value		2.7	-	-	V

NOTES:

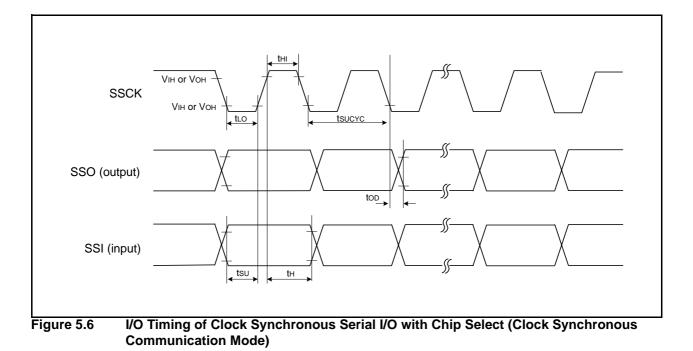
1. The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.

- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 3. Ensure that Vdet2 > Vdet1.

Table 5.7 **Voltage Detection 2 Circuit Electrical Characteristics**


Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level ⁽⁴⁾		3.00	3.30	3.60	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		I	I	100	μS

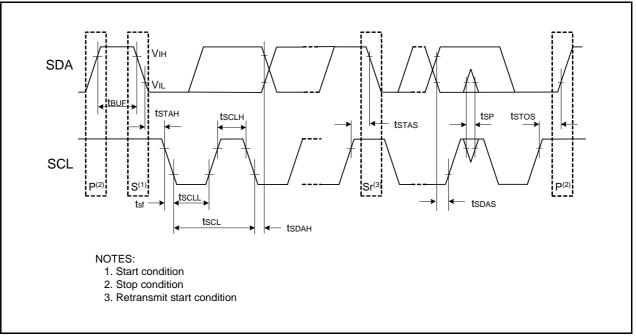
NOTES:

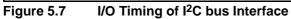

The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.
 Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

4. Ensure that Vdet2 > Vdet1.

RENESAS


Table 5.13 Timing Requirements of I ² C bus Interface (e (1)	I ² C bus Interface	Timing Reguirements of I	Table 5.13
--	-------	--------------------------------	--------------------------	------------


Symbol	Parameter	Condition	S	Standard			
Symbol		Condition	Min.	Тур.	Max.	Unit	
tSCL	SCL input cycle time		12tcyc+600 ⁽²⁾	-	-	ns	
t SCLH	SCL input "H" width		3tcyc+300 ⁽²⁾	-	-	ns	
tSCLL	SCL input "L" width		5tcyc+300 ⁽²⁾	-	-	ns	
tsf	SCL, SDA input fall time		-	-	300	ns	
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾	ns	
tBUF	SDA input bus-free time		5tcyc ⁽²⁾	-	-	ns	
t STAH	Start condition input hold time		3tcyc ⁽²⁾	-	-	ns	
t STAS	Retransmit start condition input setup time		3tcyc ⁽²⁾	-	-	ns	
tstos	Stop condition input setup time		3tcyc ⁽²⁾	-	-	ns	
tSDAS	Data input setup time		1tcyc+20 ⁽²⁾	-	-	ns	
t SDAH	Data input hold time		0	-	-	ns	

NOTES:

1. Vcc = 2.7 to 5.5 V, Vss = 0 V and Ta = -20 to 85 $^{\circ}$ C / -40 to 85 $^{\circ}$ C, unless otherwise specified.

2. 1tcyc = 1/f1(s)

Timing Requirements (Unless otherwise specified: Vcc = 5 V, Vss = 0 V at Ta = 25 °C) [Vcc = 5 V]

Table 5.16 XIN Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	-	ns		
twl(XIN)	XIN input "L" width	-	ns		

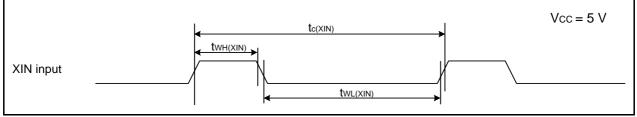
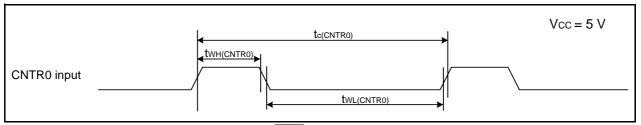



Figure 5.8 XIN Input Timing Diagram when Vcc = 5 V

Table 5.17 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(CNTR0)	CNTR0 input cycle time	-	ns	
tWH(CNTR0)	CNTR0 input "H" width 40 –			
tWL(CNTR0)	CNTR0 input "L" width 40 –			

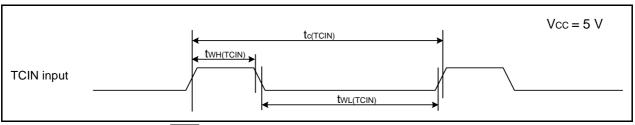

Figure 5.9 CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 5 V

Table 5.18 TCIN Input, INT3 Input

Symbol	Parameter	Stan	Unit		
Symbol	Falanielei		Max.	Offic	
tc(TCIN)	TCIN input cycle time	400(1)	-	ns	
twh(tcin)	TCIN input "H" width	-	ns		
twl(tcin)	TCIN input "L" width	-	ns		

NOTES:

- 1. When using timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.
- 2. When using timer C input capture mode, adjust the pulse width to (1/timer C count source frequency x 1.5) or above.

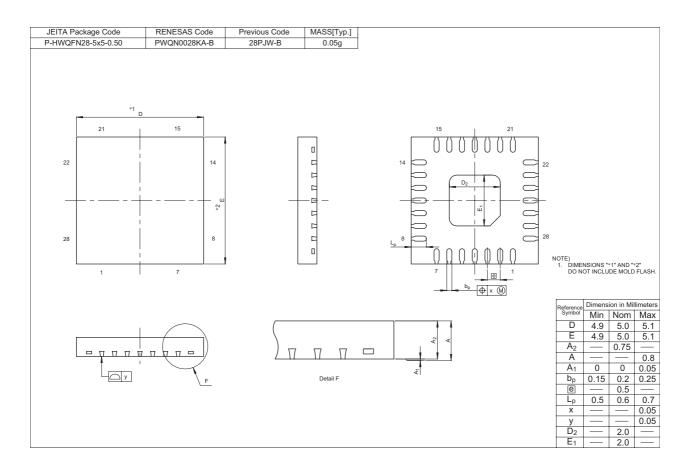


Figure 5.10 TCIN Input, INT3 Input Timing Diagram when Vcc = 5 V

Symbol	Parameter	Condition	Standard			- Unit	
				Min.	Тур.	Max.	Unit
(Vcc = 2.7 to 3.3 Single-chip mode	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	8	13	mA
	A/D converter is		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	7	12	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division		5	_	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8		3	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.6	_	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division		3.5	7.5	mA
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	_	100	280	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	_	37	74	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	_	35	70	μA
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	-	0.7	3.0	μΑ

Table 5.22 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -40 to 85 °C, unless otherwise specified.)

RENESAS

REVISION HISTORY

R8C/1A Group, R8C/1B Group Datasheet

			Description
Rev.	Rev. Date -		Summary
0.10	Feb 18, 2005	-	First Edition issued
0.20	Jun 01, 2005	2, 3	Tables 1.1, 1.2: Item name changed
		9	Table 1.5: Timer C's Pin name revised, Reference Voltage Input Description revised
0.30	Jul 04, 2005	16	Table 4.1 the value after reset revised; 0009h address "XXXXX00b" \rightarrow "00h", 000Ah address "00XXX000b" \rightarrow "00h", 001Eh address "XXXXX000b" \rightarrow "00h".
		17	Table 4.2 004Fh address; "SSU/IIC Interrupt Control Register, SSUAIC/ IIC2AIC, XXXXX000b" added
		18	Table 4.3 the value after reset revised; 00BCh address "00h" → "00h / 0000X000b"
		20 to 39	5. Electrical Characteristics added
1.00	Sep 01, 2005	all pages	"Under development" deleted
		3	Table 1.2 Performance Outline of the R8C/1B Group;Flash Memory: (Data area) \rightarrow (Data flash)(Program area) \rightarrow (Program ROM) revised
		4	Figure 1.1 Block Diagram; "Peripheral Function" added, "System Clock Generation" → "System Clock Generator" revised
		5	Table 1.3 Product Information of R8C/1A Group; "(D)" and "(D): Under development" deleted
		6	Table 1.4 Product Information of R8C/1B Group; "(D)" and "(D): Under development" deleted ROM capacity: (Program area) \rightarrow (Program ROM), (Data area) \rightarrow (Data flash) revised
		9	Table 1.5 Pin Description; Power Supply Input: "VCC/AVCC" \rightarrow "VCC", "VSS/AVSS" \rightarrow "VSS" revised Analog Power Supply Input: added
		11	Figure 2.1 CPU Register; "Reserved Area" → "Reserved Bit" revised
		13	2.8.10 Reserved Area; "Reserved Area" \rightarrow "Reserved Bit" revised
		15	 3.2 R8C/1B Group, Figure 3.2 Memory Map of R8C/1B Group; "Data area" → "Data flash", "Program area" → "Program ROM" revised

REVISION HISTORY

R8C/1A Group, R8C/1B Group Datasheet

Rev. Date			Description			
Nev.	Rev. Date	Page	Summary			
1.30	Oct 03, 2006	1	1.1 "portable equipment" added			
		2, 3	Table 1.1, Table 1.2; Specification Interrupts: "Internal: 9 sources" \rightarrow "Internal: 11 sources"			
		24	Table 5.2; Parameter: System clock added			
		45	Package Dimensions; PWQN0028KA-B revised			
1.40	Dec 08, 2006	20	Table 4.1; 000Fh: After reset "000XXXXXb" \rightarrow "00X11111b"			
		24	Table 19.2; Parameter: OCD2 = 1 On-chip oscillator clock selected revised			