

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	N.E. N. B.
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f211a4sp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/1A Group, R8C/1B Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0144-0140 Rev.1.40 Dec 08, 2006

1. Overview

These MCUs are fabricated using the high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and is packaged in a 20-pin molded-plastic LSSOP, SDIP or a 28-pin plastic molded-HWQFN. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/1B Group has on-chip data flash ROM (1 KB x 2 blocks).

The difference between the R8C/1A Group and R8C/1B Group is only the presence or absence of data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliances, office equipment, housing equipment (sensors, security systems), portable equipment, general industrial equipment, audio equipment, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/1A Group and Table 1.2 outlines the Functions and Specifications for R8C/1B Group.

Table 1.1 Functions and Specifications for R8C/1A Group

	Item	Specification
CPU	Number of fundamental	89 instructions
i	instructions	
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	See Table 1.3 Product Information for R8C/1A Group
	Ports	I/O ports: 13 pins (including LED drive port)
Functions		Input port: 3 pins
	LED drive ports	I/O ports: 4 pins
	Timers	Timer X: 8 bits × 1 channel, timer Z: 8 bits × 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits × 1 channel
		(Input capture and output compare circuits)
	Serial interfaces	1 channel
	Conar internaces	Clock synchronous serial I/O, UART
		1 channel
		UART
<u> </u>	Clock synchronous serial interface	1 channel
	Clock synonionous serial interface	I ² C bus Interface ⁽¹⁾
	A/D converter	Clock synchronous serial I/O with chip select (SSU) 10-bit A/D converter: 1 circuit, 4 channels
		,
	Watchdog timer	15 bits × 1 channel (with prescaler)
	lata un unto	Reset start selectable, count source protection mode
	Interrupts	Internal: 11 sources, External: 4 sources, Software: 4 sources,
	Olaska sa sa sa tiana si sa si ta	Priority levels: 7 levels
'	Clock generation circuits	2 circuits
		Main clock oscillation circuit (with on-chip feedback resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has a frequency adjustment
_	0 111 11 11 11 11 11	function
	Oscillation stop detection function	Main clock oscillation stop detection function
	Voltage detection circuit	On-chip
	Power-on reset circuit	On-chip
	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, A/D converter stopped)
		Typ. 5 mA (VCC = 3.0 V, f(XIN) = 10 MHz, A/D converter stopped)
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)
		Typ. $0.7 \mu A$ (VCC = 3.0 V , stop mode)
	Programming and erasure voltage	VCC = 2.7 to 5.5 V
	Programming and erasure	100 times
	endurance	
Operating Ambient	t Temperature	-20 to 85°C
		-40 to 85°C (D version)
		-20 to 105°C (Y version) (2)
Package		20-pin molded-plastic LSSOP
Package		
		20-pin molded-plastic SDIP 28-pin molded-plastic HWQFN

- 1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 2. Please contact Renesas Technology sales offices for the Y version.

Functions and Specifications for R8C/1B Group Table 1.2

	Item	Specification			
CPU	Number of fundamental	89 instructions			
	instructions				
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)			
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)			
	Operating mode	Single-chip			
	Address space	1 Mbyte			
	Memory capacity	See Table 1.4 Product Information for R8C/1B Group			
Peripheral	Ports	I/O ports: 13 pins (including LED drive port)			
Functions		Input port: 3 pins			
	LED drive ports	I/O ports: 4 pins			
	Timers	Timer X: 8 bits x 1 channel, timer Z: 8 bits x 1 channel			
		(Each timer equipped with 8-bit prescaler)			
		Timer C: 16 bits × 1 channel			
		(Input capture and output compare circuits)			
	Serial interfaces	1 channel			
	Contai internaces	Clock synchronous serial I/O, UART			
		1 channel			
		UART			
	Clock synchronous serial interface				
	Clock dynamonous sonar internace	I ² C bus Interface ⁽¹⁾			
		Clock synchronous serial I/O with chip select (SSU)			
	A/D converter	10-bit A/D converter: 1 circuit, 4 channels			
	Watchdog timer	15 bits × 1 channel (with prescaler)			
	Waterlady times	Reset start selectable, count source protection mode			
	Interrupts	Internal: 11 sources, External: 4 sources, Software: 4 sources,			
	Interrupts	Priority levels: 7 levels			
	Clock generation circuits	2 circuits			
	Clock generation circuits	Main clock generation circuit (with on-chip feedback			
		resistor)			
		On-chip oscillator (high speed, low speed)			
		High-speed on-chip oscillator has a frequency adjustment			
		function			
	Oscillation stop detection function	Main clock oscillation stop detection function			
	Voltage detection circuit	On-chip			
	Power on reset circuit	On-chip			
Electric	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)			
Characteristics	Supply voltage	VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)			
Onaracteristics	Current consumption	Typ. 9 mA (VCC = 5.0 V , f(XIN) = 20 MHz , A/D converter stopped)			
	Current consumption	Typ. 5 mA (VCC = 3.0 V , f(XIN) = 10 MHz , A/D converter stopped)			
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)			
		Typ. 0.7 μ A (VCC = 3.0 V, wait mode, periprieral clock oil)			
Flash Memory	Programming and erasure voltage	VCC = 2.7 to 5.5 V			
I lasif Memory	Programming and erasure	10,000 times (data flash)			
	endurance	1,000 times (data hash)			
Operating Ambie		-20 to 85°C			
Operating Amble	ant romperature	-40 to 85°C (D version)			
		·			
Dookogo		-20 to 105°C (Y version) (2)			
Package		20-pin molded-plastic LSSOP			
		20-pin molded-plastic SDIP			
		28-pin molded-plastic HWQFN			

- I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Please contact Renesas Technology sales offices for the Y version.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

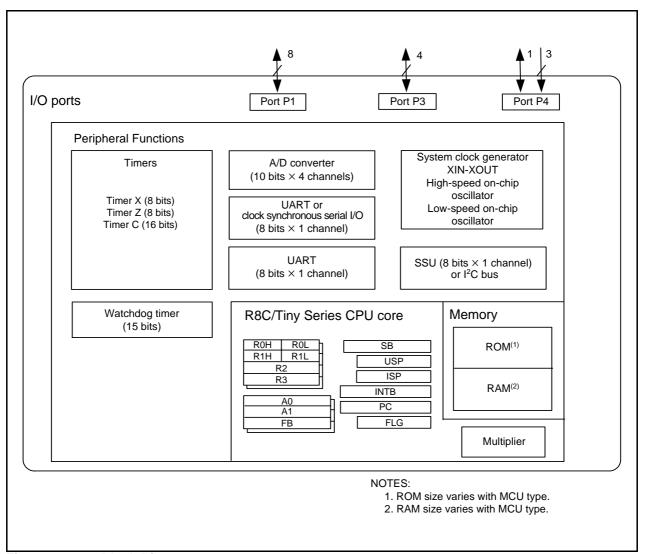


Figure 1.1 Block Diagram

1.5 Pin Assignments

Figure 1.4 shows Pin Assignments for PLSP0020JB-A Package (Top View), Figure 1.5 shows Pin Assignments for PRDP0020BA-A Package (Top View) and Figure 1.6 shows Pin Assignments for PWQN0028KA-B Package (Top View).



Figure 1.4 Pin Assignments for PLSP0020JB-A Package (Top View)

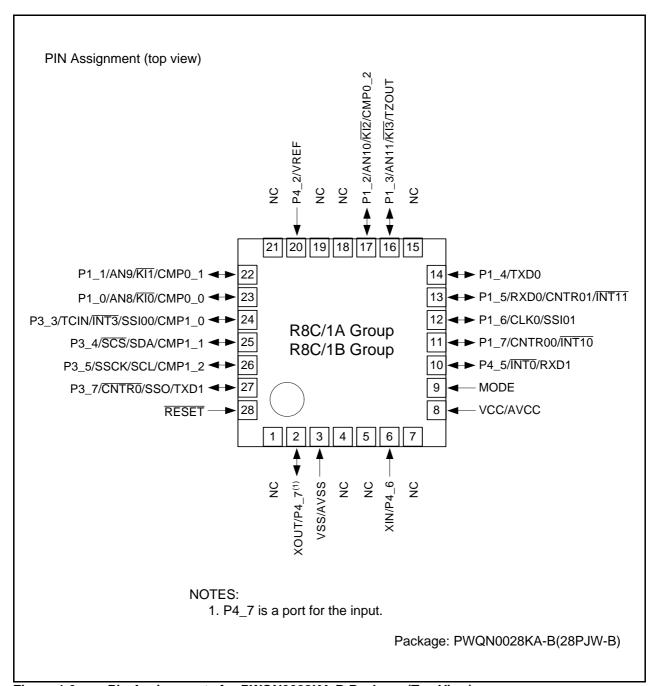


Figure 1.6 Pin Assignments for PWQN0028KA-B Package (Top View)

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer and arithmetic and logic operations. A1 is analogous to A0. A1 can be combined with A0 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when the operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

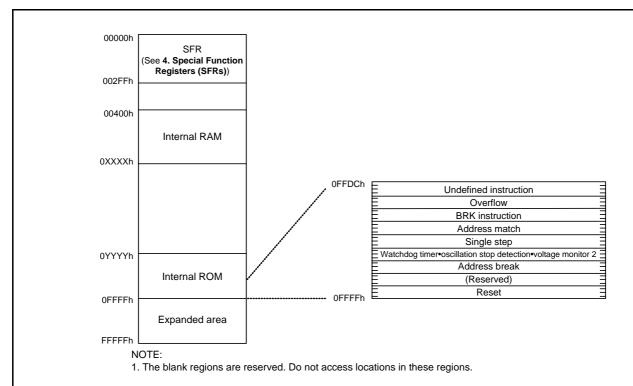
IPL is 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. **Memory**

3.1 **R8C/1A Group**


Figure 3.1 is a Memory Map of R8C/1A Group. The R8C/1A Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

D	Interna	al ROM	Internal RAM		
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh	
R5F211A4SP, R5F211A4DSP, R5F211A4DD, R5F211A4NP, R5F211A4XXXSP, R5F211A4XXXDD, R5F211A4XXXNP	16 Kbytes	0C000h	1 Kbyte	007FFh	
R5F211A3SP, R5F211A3DSP, R5F211A3DD, R5F211A3NP, R5F211A3XXXSP, R5F211A3XXXSP, R5F211A3XXXDD, R5F211A3XXXNP	12 Kbytes	0D000h	768 bytes	006FFh	
R5F211A2SP, R5F211A2DSP, R5F211A2DD, R5F211A2NP, R5F211A2XXXSP, R5F211A2XXXSP, R5F211A2XXXDD, R5F211A2XXXNP	8 Kbytes	0E000h	512 bytes	005FFh	
R5F211A1SP, R5F211A1DSP, R5F211A1DD, R5F211A1XXXSP, R5F211A1DXXXSP, R5F211A1XXXDD	4 Kbytes	0F000h	384 bytes	0057Fh	

Figure 3.1 Memory Map of R8C/1A Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.4 list the special function registers.

Table 4.1 SFR Information (1)⁽¹⁾

			A.C.
Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h	-,		
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh	1 Total Tragistor	TROR	0011
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Ch	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			X0h
0013h			
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h	1		00h
0016h			X0h
0017h			-
0018h			
0019h			
0013h			
001An			
	Court Course Doctostics Made Docistos	CCDD	001-
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh			
001Eh	INT0 Input Filter Select Register	INT0F	00h
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0023h	· · · · · · · · · · · · · · · · · · ·		
002011			
002Ah			
002An			
002Ch			
002Dh			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾
			01000000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register (2)	VW1C	0000X000b ⁽³⁾
003011	voltage Monitor i Circuit Control Register (2)	****	
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register (5)	VW2C	00h
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

X: Undefined

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. After hardware reset.
- 4. After power-on reset or voltage monitor 1 reset.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.

SFR Information (2)⁽¹⁾ Table 4.2

Address	Register	Symbol	After reset
0040h	•		
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h			
0048h			
0049h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Eh	SSU/IIC Interrupt Control Register ⁽²⁾	SSUAIC/IIC2AIC	XXXXX000b
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h		T.// 0	VVVVVV 0 0 0 1
0056h	Timer X Interrupt Control Register	TXIC	XXXXX000b
0057h			
0058h	Timer Z Interrupt Control Register	TZIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XXXXX000b
005Ah	INT3 Interrupt Control Register	INT3IC	XXXXX000b
005Bh	Timer C Interrupt Control Register	TCIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INT0IC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h			
0072H			
0074h			
0075h			
0076h			
0077h			
	1	1	1
0078h			
0078h 0079h			
0078h 0079h 007Ah			
0078h 0079h 007Ah 007Bh			
0078h 0079h 007Ah 007Bh 007Ch			
0078h 0079h 007Ah 007Bh 007Ch 007Dh			
0078h 0079h 007Ah 007Bh 007Ch			

X: Undefined

- The blank regions are reserved. Do not access locations in these regions.
 Selected by the IICSEL bit in the PMR register.

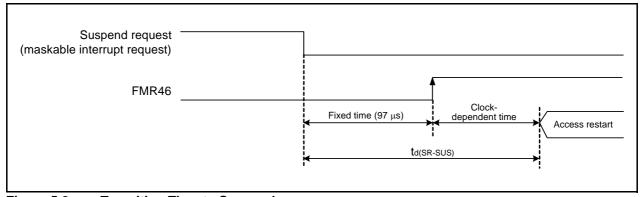


Figure 5.2 **Transition Time to Suspend**

Table 5.6 **Voltage Detection 1 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ⁽³⁾		2.70	2.85	3.00	V
=	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	=	600	=	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		=	=	100	μS
Vccmin	MCU operating voltage minimum value		2.7	=	=	V

NOTES:

- 1. The measurement condition is Vcc = 2.7 V to 5.5 V and T_{opr} = -40°C to 85 °C.
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 3. Ensure that Vdet2 > Vdet1.

Table 5.7 **Voltage Detection 2 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level ⁽⁴⁾		3.00	3.30	3.60	V
_	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	_	μS
_	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		ı	=	100	μS

- The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.
 Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 4. Ensure that Vdet2 > Vdet1.

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	Vdet1	V
tw(Vpor2-Vdet1)	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$ \begin{array}{l} -20^{\circ}C \leq Topr \leq 85^{\circ}C, \\ tw(por2) \geq 0s^{(3)} \end{array} $	-	-	100	ms

NOTES:

- 1. This condition is not applicable when using with $Vcc \ge 1.0 \text{ V}$.
- 2. When turning power on after the time to hold the external power below effective voltage (Vport) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).

Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	Standard			Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	_	=	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 10 \ s^{(2)}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, \\ tw(por1) \geq 30 \ s^{(2)} $	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\begin{aligned} -20^{\circ}C &\leq Topr < 0^{\circ}C, \\ tw(por1) &\geq 10 \ s^{(2)} \end{aligned}$	-	-	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 1 \ s^{(2)}$	-	-	0.5	ms

NOTES:

- 1. When not using voltage monitor 1, use with Vcc≥ 2.7 V.
- 2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

- Hold the voltage inside the MCU operation voltage range (Vccmin or above) within the sampling time.
 The sampling clock can be selected. Refer to 7. Voltage Detection Circuit for details.
- 3. Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 7. Voltage Detection Circuit for details.

Figure 5.3 **Reset Circuit Electrical Characteristics**

Table 5.10 High-Speed On-Chip Oscillator Circuit Electrical Characteristics

Cumbal	Deservator	Condition	Standard			Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Offic
_	High-speed on-chip oscillator frequency when the reset is deasserted	Vcc = 5.0 V, Topr = 25 °C	İ	8	-	MHz
_	High-speed on-chip oscillator frequency	0 to +60 °C/5 V ± 5 % ⁽³⁾	7.76	_	8.24	MHz
	temperature • supply voltage dependence ⁽²⁾	-20 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.68	_	8.32	MHz
		-40 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.44	_	8.32	MHz

NOTES:

- 1. The measurement condition is Vcc = 5.0 V and $Topr = 25 \,^{\circ}\text{C}$.
- 2. Refer to 10.6.4 High-Speed On-Chip Oscillator Clock for notes on high-speed on-chip oscillator clock.
- 3. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
Syllibol	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		_	-	150	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and T_{opr} = 25 °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until CPU clock supply starts after the interrupt is acknowledged to exit stop mode.

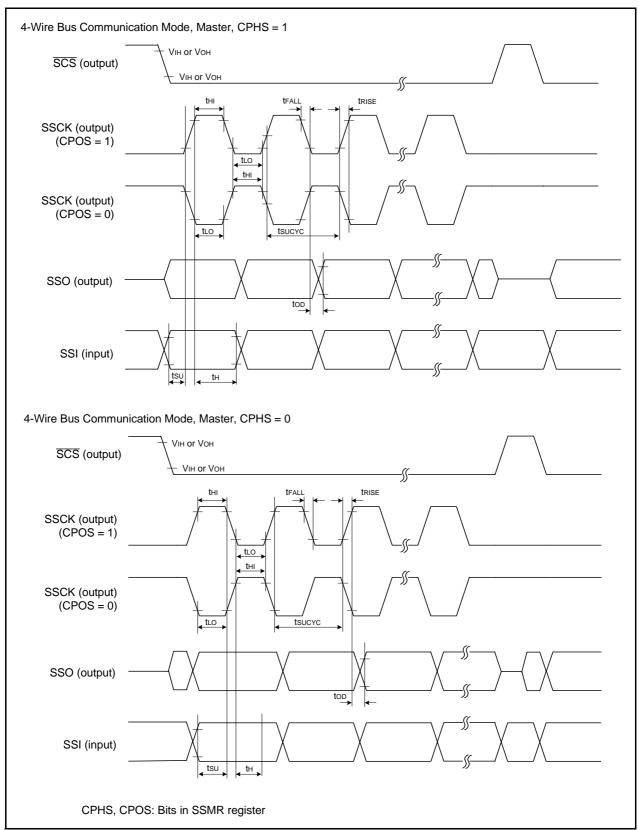


Figure 5.4 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Master)

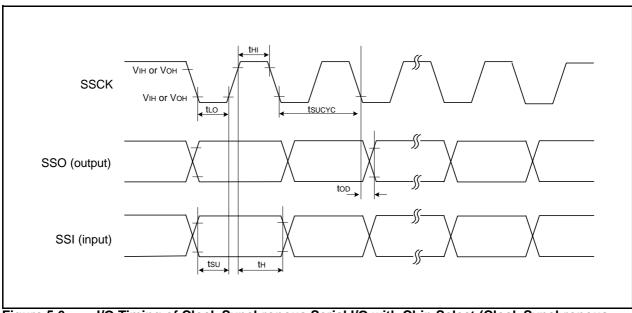
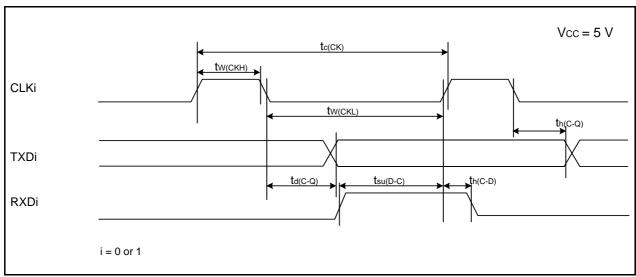


Figure 5.6 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Clock Synchronous Communication Mode)

Table 5.14 Electrical Characteristics (1) [Vcc = 5 V]

Cumbal	Parameter		Condition		Standard			1.121
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except Xouт	Iон = -5 mA		Vcc - 2.0	-	Vcc	V
			IOH = -200 μA		Vcc - 0.3	-	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -1 mA	Vcc - 2.0	=	Vcc	V
			Drive capacity LOW	ΙΟΗ = -500 μΑ	Vcc - 2.0	_	Vcc	V
Vol	Output "L" voltage	Except P1_0 to	IoL = 5 mA		-	_	2.0	V
		Р1_3, Хоит	IOL = 200 μA		-	_	0.45	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 15 mA	-	-	2.0	V
			Drive capacity LOW	IOL = 5 mA	=	=	2.0	V
			Drive capacity LOW	IOL = 200 μA	-	=	0.45	V
		Хоит	Drive capacity HIGH	IOL = 1 mA	=	=	2.0	V
			Drive capacity LOW	IOL = 500 μA	-	_	2.0	V
VT+-VT-	Hysteresis	INT0, INT1, INT3, KI0, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0			0.2	-	1.0	V
		RESET			0.2	-	2.2	V
Іін	Input "H" current		VI = 5 V		_	-	5.0	μА
lıL	Input "L" current		VI = 0 V		-	-	-5.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V		30	50	167	kΩ
RfXIN	Feedback resistance XIN				-	1.0	-	MΩ
fring-s	Low-speed on-chip of	scillator frequency			40	125	250	kHz
VRAM	RAM hold voltage		During stop mode		2.0	-	-	V

^{1.} Vcc = 4.2 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 20 MHz, unless otherwise specified.

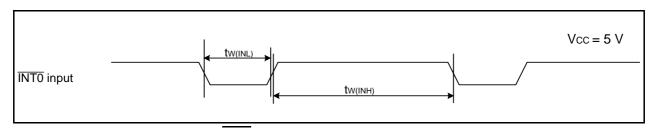

Electrical Characteristics (2) [Vcc = 5 V] (Topr = -40 to 85 $^{\circ}$ C, unless otherwise specified.) **Table 5.15**

Symbol	Parameter	Condition		Standard			Unit
Cymbol	i didiliotoi	Condition		Min.	Тур.	Max.	OTIK
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	I	9	15	mA
	other pins are Vss, A/D converter is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	8	14	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5	_	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	I	4	_	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	-	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	ı	4	8	mA
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	110	300	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	-	40	80	μА
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	_	38	76	μА
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	-	0.8	3.0	μА

Table 5.19 Serial Interface

Symbol	Parameter	Stan	Unit	
	Falameter			Max.
tc(CK)	CLKi input cycle time	200	=	ns
tW(CKH)	CLKi input "H" width	100	-	ns
tW(CKL)	CLKi input "L" width	100	-	ns
td(C-Q)	TXDi output delay time	-	50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	50	=	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1



Serial Interface Timing Diagram when Vcc = 5 V Figure 5.11

Table 5.20 External Interrupt INTO Input

Symbol	Parameter	Stan	Unit	
Symbol	Falanielei			Max.
tw(INH)	INTO input "H" width	250 ⁽¹⁾	-	ns
tw(INL)	INTO input "L" width	250 ⁽²⁾	=	ns

- 1. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

External Interrupt INTO Input Timing Diagram when Vcc = 5 V Figure 5.12

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the such procedures and procedures are such as that disclosed through our website. (http://www.renesas.com/)

 3. Renesas has su used reasonable care in compling the information included in this document, but the respect to the procedure of the procedu

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510