


Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

| Details                    |                                                                                |
|----------------------------|--------------------------------------------------------------------------------|
| Product Status             | Not For New Designs                                                            |
| Core Processor             | R8C                                                                            |
| Core Size                  | 16-Bit                                                                         |
| Speed                      | 20MHz                                                                          |
| Connectivity               | I <sup>2</sup> C, SIO, SSU, UART/USART                                         |
| Peripherals                | LED, POR, Voltage Detect, WDT                                                  |
| Number of I/O              | 13                                                                             |
| Program Memory Size        | 8KB (8K x 8)                                                                   |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 512 x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                    |
| Data Converters            | A/D 4x10b                                                                      |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -20°C ~ 85°C (TA)                                                              |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 28-WFQFN Exposed Pad                                                           |
| Supplier Device Package    | 28-HWQFN (5x5)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f211b2np-u0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# R8C/1A Group, R8C/1B Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0144-0140 Rev.1.40 Dec 08, 2006

## 1. Overview

These MCUs are fabricated using the high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and is packaged in a 20-pin molded-plastic LSSOP, SDIP or a 28-pin plastic molded-HWQFN. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/1B Group has on-chip data flash ROM (1 KB x 2 blocks).

The difference between the R8C/1A Group and R8C/1B Group is only the presence or absence of data flash ROM. Their peripheral functions are the same.

# 1.1 Applications

Electric household appliances, office equipment, housing equipment (sensors, security systems), portable equipment, general industrial equipment, audio equipment, etc.



# 1.4 Product Information

Table 1.3 lists Product Information for R8C/1A Group and Table 1.4 lists Product Information for R8C/1B Group.

Table 1.3 Product Information for R8C/1A Group

## **Current of October 2006**

| Type No.       | ROM Capacity | RAM Capacity | Package Type | Rema             | arks             |
|----------------|--------------|--------------|--------------|------------------|------------------|
| R5F211A1SP     | 4 Kbytes     | 384 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A2SP     | 8 Kbytes     | 512 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A3SP     | 12 Kbytes    | 768 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A4SP     | 16 Kbytes    | 1 Kbyte      | PLSP0020JB-A |                  |                  |
| R5F211A1DSP    | 4 Kbytes     | 384 bytes    | PLSP0020JB-A | D version        |                  |
| R5F211A2DSP    | 8 Kbytes     | 512 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A3DSP    | 12 Kbytes    | 768 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A4DSP    | 16 Kbytes    | 1 Kbyte      | PLSP0020JB-A |                  |                  |
| R5F211A1DD     | 4 Kbytes     | 384 bytes    | PRDP0020BA-A |                  |                  |
| R5F211A2DD     | 8 Kbytes     | 512 bytes    | PRDP0020BA-A |                  |                  |
| R5F211A3DD     | 12 Kbytes    | 768 bytes    | PRDP0020BA-A |                  |                  |
| R5F211A4DD     | 16 Kbytes    | 1 Kbyte      | PRDP0020BA-A |                  |                  |
| R5F211A2NP     | 8 Kbytes     | 512 bytes    | PWQN0028KA-B |                  |                  |
| R5F211A3NP     | 12 Kbytes    | 768 bytes    | PWQN0028KA-B |                  |                  |
| R5F211A4NP     | 16 Kbytes    | 1 Kbyte      | PWQN0028KA-B |                  |                  |
| R5F211A1XXXSP  | 4 Kbytes     | 384 bytes    | PLSP0020JB-A | Factory programm | ming product (1) |
| R5F211A2XXXSP  | 8 Kbytes     | 512 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A3XXXSP  | 12 Kbytes    | 768 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A4XXXSP  | 16 Kbytes    | 1 Kbyte      | PLSP0020JB-A |                  |                  |
| R5F211A1DXXXSP | 4 Kbytes     | 384 bytes    | PLSP0020JB-A | D version        |                  |
| R5F211A2DXXXSP | 8 Kbytes     | 512 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A3DXXXSP | 12 Kbytes    | 768 bytes    | PLSP0020JB-A |                  |                  |
| R5F211A4DXXXSP | 16 Kbytes    | 1 Kbyte      | PLSP0020JB-A |                  |                  |
| R5F211A1XXXDD  | 4 Kbytes     | 384 bytes    | PRDP0020BA-A | Factory programm | ming product (1) |
| R5F211A2XXXDD  | 8 Kbytes     | 512 bytes    | PRDP0020BA-A |                  |                  |
| R5F211A3XXXDD  | 12 Kbytes    | 768 bytes    | PRDP0020BA-A |                  |                  |
| R5F211A4XXXDD  | 16 Kbytes    | 1 Kbyte      | PRDP0020BA-A |                  |                  |
| R5F211A2XXXNP  | 8 Kbytes     | 512 bytes    | PWQN0028KA-B |                  |                  |
| R5F211A3XXXNP  | 12 Kbytes    | 768 bytes    | PWQN0028KA-B |                  |                  |
| R5F211A4XXXNP  | 16 Kbytes    | 1 Kbyte      | PWQN0028KA-B |                  |                  |

# NOTE:

1. The user ROM is programmed before shipment.

# 1.5 Pin Assignments

Figure 1.4 shows Pin Assignments for PLSP0020JB-A Package (Top View), Figure 1.5 shows Pin Assignments for PRDP0020BA-A Package (Top View) and Figure 1.6 shows Pin Assignments for PWQN0028KA-B Package (Top View).

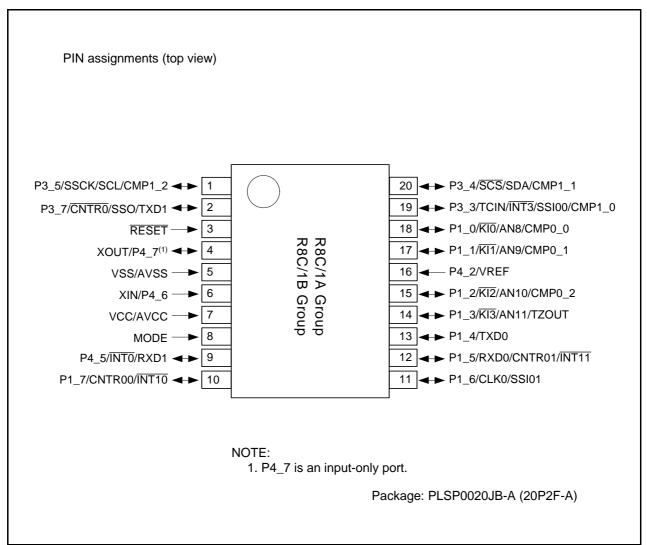



Figure 1.4 Pin Assignments for PLSP0020JB-A Package (Top View)

Table 1.6 Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A Packages

|               |                |      | i         |                 |                     |                                                        |                                   |                  |
|---------------|----------------|------|-----------|-----------------|---------------------|--------------------------------------------------------|-----------------------------------|------------------|
|               |                |      |           | I/O Pin         | Functions           | for Peripheral N                                       | /lodules                          |                  |
| Pin<br>Number | Control<br>Pin | Port | Interrupt | Timer           | Serial<br>Interface | Clock<br>Synchronous<br>Serial I/O with<br>Chip Select | I <sup>2</sup> C bus<br>Interface | A/D<br>Converter |
| 1             |                | P3_5 |           | CMP1_2          |                     | SSCK                                                   | SCL                               |                  |
| 2             |                | P3_7 |           | CNTR0           | TXD1                | SSO                                                    |                                   |                  |
| 3             | RESET          |      |           |                 |                     |                                                        |                                   |                  |
| 4             | XOUT           | P4_7 |           |                 |                     |                                                        |                                   |                  |
| 5             | VSS/AVSS       |      |           |                 |                     |                                                        |                                   |                  |
| 6             | XIN            | P4_6 |           |                 |                     |                                                        |                                   |                  |
| 7             | VCC/AVCC       |      |           |                 |                     |                                                        |                                   |                  |
| 8             | MODE           |      |           |                 |                     |                                                        |                                   |                  |
| 9             |                | P4_5 | ĪNT0      |                 | RXD1                |                                                        |                                   |                  |
| 10            |                | P1_7 | INT10     | CNTR00          |                     |                                                        |                                   |                  |
| 11            |                | P1_6 |           |                 | CLK0                | SSI01                                                  |                                   |                  |
| 12            |                | P1_5 | INT11     | CNTR01          | RXD0                |                                                        |                                   |                  |
| 13            |                | P1_4 |           |                 | TXD0                |                                                        |                                   |                  |
| 14            |                | P1_3 | KI3       | TZOUT           |                     |                                                        |                                   | AN11             |
| 15            |                | P1_2 | KI2       | CMP0_2          |                     |                                                        |                                   | AN10             |
| 16            | VREF           | P4_2 |           |                 |                     |                                                        |                                   |                  |
| 17            |                | P1_1 | KI1       | CMP0_1          |                     |                                                        |                                   | AN9              |
| 18            |                | P1_0 | KI0       | CMP0_0          |                     |                                                        |                                   | AN8              |
| 19            |                | P3_3 | ĪNT3      | TCIN/<br>CMP1_0 |                     | SSI00                                                  |                                   |                  |
| 20            |                | P3_4 |           | CMP1_1          |                     | SCS                                                    | SDA                               |                  |

Table 1.7 Pin Name Information by Pin Number of PWQN0028KA-B Package

|               |                |      |           | I/O Pin Fu  | unctions fo         | r Peripheral Mo                                        | dules                             |                  |
|---------------|----------------|------|-----------|-------------|---------------------|--------------------------------------------------------|-----------------------------------|------------------|
| Pin<br>Number | Control<br>Pin | Port | Interrupt | Timer       | Serial<br>Interface | Clock<br>Synchronous<br>Serial I/O with<br>Chip Select | I <sup>2</sup> C bus<br>Interface | A/D<br>Converter |
| 1             | NC             |      |           |             |                     |                                                        |                                   |                  |
| 2             | XOUT           | P4_7 |           |             |                     |                                                        |                                   |                  |
| 3             | VSS/AVSS       |      |           |             |                     |                                                        |                                   |                  |
| 4             | NC             |      |           |             |                     |                                                        |                                   |                  |
| 5             | NC             |      |           |             |                     |                                                        |                                   |                  |
| 6             | XIN            | P4_6 |           |             |                     |                                                        |                                   |                  |
| 7             | NC             |      |           |             |                     |                                                        |                                   |                  |
| 8             | VCC/AVCC       |      |           |             |                     |                                                        |                                   |                  |
| 9             | MODE           |      |           |             |                     |                                                        |                                   |                  |
| 10            |                | P4_5 | INT0      |             | RXD1                |                                                        |                                   |                  |
| 11            |                | P1_7 | ĪNT10     | CNTR00      |                     |                                                        |                                   |                  |
| 12            |                | P1_6 |           |             | CLK0                | SSI01                                                  |                                   |                  |
| 13            |                | P1_5 | INT11     | CNTR01      | RXD0                |                                                        |                                   |                  |
| 14            |                | P1_4 |           |             | TXD0                |                                                        |                                   |                  |
| 15            | NC             |      |           |             |                     |                                                        |                                   |                  |
| 16            |                | P1_3 | KI3       | TZOUT       |                     |                                                        |                                   | AN11             |
| 17            |                | P1_2 | KI2       | CMP0_2      |                     |                                                        |                                   | AN10             |
| 18            | NC             |      |           |             |                     |                                                        |                                   |                  |
| 19            | NC             |      |           |             |                     |                                                        |                                   |                  |
| 20            | VREF           | P4_2 |           |             |                     |                                                        |                                   |                  |
| 21            | NC             |      |           |             |                     |                                                        |                                   |                  |
| 22            |                | P1_1 | KI1       | CMP0_1      |                     |                                                        |                                   | AN9              |
| 23            |                | P1_0 | KI0       | CMP0_0      |                     |                                                        |                                   | AN8              |
| 24            |                | P3_3 | ĪNT3      | TCIN/CMP1_0 |                     | SSI00                                                  |                                   |                  |
| 25            |                | P3_4 |           | CMP1_1      |                     | SCS                                                    | SDA                               |                  |
| 26            |                | P3_5 |           | CMP1_2      |                     | SSCK                                                   | SCL                               |                  |
| 27            |                | P3_7 |           | CNTR0       | TXD1                | SSO                                                    |                                   |                  |
| 28            | RESET          |      |           |             |                     |                                                        |                                   |                  |

# 2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

# 2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

# 2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

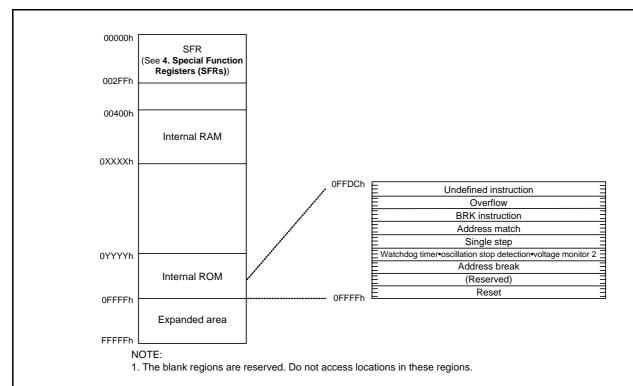
## 2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.



### 3. **Memory**

### 3.1 **R8C/1A Group**


Figure 3.1 is a Memory Map of R8C/1A Group. The R8C/1A Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.



| D                                                                                                           | Interna   | Internal ROM      |           | al RAM            |
|-------------------------------------------------------------------------------------------------------------|-----------|-------------------|-----------|-------------------|
| Part Number                                                                                                 | Size      | Address<br>0YYYYh | Size      | Address<br>0XXXXh |
| R5F211A4SP, R5F211A4DSP, R5F211A4DD, R5F211A4NP, R5F211A4XXXSP, R5F211A4XXXDD, R5F211A4XXXNP                | 16 Kbytes | 0C000h            | 1 Kbyte   | 007FFh            |
| R5F211A3SP, R5F211A3DSP, R5F211A3DD, R5F211A3NP, R5F211A3XXXSP, R5F211A3XXXSP, R5F211A3XXXDD, R5F211A3XXXNP | 12 Kbytes | 0D000h            | 768 bytes | 006FFh            |
| R5F211A2SP, R5F211A2DSP, R5F211A2DD, R5F211A2NP, R5F211A2XXXSP, R5F211A2XXXSP, R5F211A2XXXDD, R5F211A2XXXNP | 8 Kbytes  | 0E000h            | 512 bytes | 005FFh            |
| R5F211A1SP, R5F211A1DSP, R5F211A1DD,<br>R5F211A1XXXSP, R5F211A1DXXXSP, R5F211A1XXXDD                        | 4 Kbytes  | 0F000h            | 384 bytes | 0057Fh            |

Figure 3.1 Memory Map of R8C/1A Group

SFR Information (4)<sup>(1)</sup> Table 4.4

| Address        | Register                                | Symbol    | After reset |
|----------------|-----------------------------------------|-----------|-------------|
| 00C0h          | A/D Register                            | AD        | XXh         |
| 00C1h          |                                         |           | XXh         |
| 00C2h          |                                         |           |             |
| 00C3h          |                                         |           |             |
| 00C4h          |                                         |           |             |
| 00C5h<br>00C6h |                                         |           |             |
| 00C7h          |                                         |           |             |
| 00C8h          |                                         |           |             |
| 00C9h          |                                         |           |             |
| 00CAh          |                                         |           |             |
| 00CBh          |                                         |           |             |
| 00CCh          |                                         |           |             |
| 00CDh          |                                         |           |             |
| 00CEh<br>00CFh |                                         |           |             |
| 00D0h          |                                         |           |             |
| 00D0h          |                                         |           |             |
| 00D2h          |                                         |           |             |
| 00D3h          |                                         |           |             |
| 00D4h          | A/D Control Register 2                  | ADCON2    | 00h         |
| 00D5h          |                                         | 1565      |             |
| 00D6h          | A/D Control Register 0                  | ADCON0    | 00000XXXb   |
| 00D7h<br>00D8h | A/D Control Register 1                  | ADCON1    | 00h         |
| 00D8h          |                                         |           |             |
| 00DAh          |                                         |           |             |
| 00DBh          |                                         |           |             |
| 00DCh          |                                         |           |             |
| 00DDh          |                                         |           |             |
| 00DEh          |                                         |           |             |
| 00DFh          |                                         |           |             |
| 00E0h<br>00E1h | Port P1 Register                        | P1        | XXh         |
| 00E111         | Port PT Register                        | FI        | ^^11        |
| 00E3h          | Port P1 Direction Register              | PD1       | 00h         |
| 00E4h          | T GIVE T Ellipsonom register            |           |             |
| 00E5h          | Port P3 Register                        | P3        | XXh         |
| 00E6h          |                                         |           |             |
| 00E7h          | Port P3 Direction Register              | PD3       | 00h         |
| 00E8h<br>00E9h | Port P4 Register                        | P4        | XXh         |
| 00EAh          | Port P4 Direction Register              | PD4       | 00h         |
| 00EBh          | 1 of 1 4 Direction (Cegister            | 1 04      | 0011        |
| 00ECh          |                                         |           |             |
| 00EDh          |                                         |           |             |
| 00EEh          |                                         |           |             |
| 00EFh          |                                         |           |             |
| 00F0h          |                                         |           |             |
| 00F1h<br>00F2h |                                         |           |             |
| 00F2fi         |                                         |           |             |
| 00F4h          |                                         |           | -           |
| 00F5h          |                                         |           |             |
| 00F6h          |                                         |           |             |
| 00F7h          |                                         |           |             |
| 00F8h          | Port Mode Register                      | PMR       | 00h         |
| 00F9h<br>00FAh |                                         |           |             |
| 00FBh          |                                         |           |             |
| 00FCh          | Pull-Up Control Register 0              | PUR0      | 00XX0000b   |
| 00FDh          | Pull-Up Control Register 1              | PUR1      | XXXXXX0Xb   |
| 00FEh          | Port P1 Drive Capacity Control Register | DRR       | 00h         |
| 00FFh          | Timer C Output Control Register         | TCOUT     | 00h         |
|                |                                         |           |             |
| 01B3h          | Flash Memory Control Register 4         | FMR4      | 01000000b   |
| 01B4h<br>01B5h | Flash Memory Control Register 1         | FMR1      | 1000000Xb   |
| 01B6h          | i idani memory Control Negister i       | 1 ZIIVI I | 100000000   |
| 01B7h          | Flash Memory Control Register 0         | FMR0      | 00000001b   |
|                | 1                                       | 1         | 1           |
| 0FFFFh         | Optional Function Select Register       | OFS       | (2)         |
| •              | <del>-</del>                            | •         | •           |

### X: Undefined NOTES:

- Blank regions, 0100h to 01B2h and 01B8h to 02FFh are all reserved. Do not access locations in these regions.
   The OFS register cannot be changed by a user program. Use a flash programmer to write to it.

| Table 5.3 | A/D Converter | Characteristics |
|-----------|---------------|-----------------|
|           |               |                 |

| Symbol  | Ь                        | arameter                | Conditions                                            |      | Unit |      |       |
|---------|--------------------------|-------------------------|-------------------------------------------------------|------|------|------|-------|
| Symbol  |                          | arameter                | Conditions                                            | Min. | Тур. | Max. | Offic |
| =       | Resolution               |                         | Vref = VCC                                            | -    | _    | 10   | Bits  |
| _       | Absolute                 | 10-bit mode             | φAD = 10 MHz, Vref = VCC = 5.0 V                      | -    | _    | ±3   | LSB   |
|         | accuracy                 | 8-bit mode              | φAD = 10 MHz, Vref = VCC = 5.0 V                      | -    | _    | ±2   | LSB   |
|         |                          | 10-bit mode             | $\phi$ AD = 10 MHz, Vref = VCC = 3.3 V <sup>(3)</sup> | _    | _    | ±5   | LSB   |
|         |                          | 8-bit mode              | $\phi$ AD = 10 MHz, Vref = VCC = 3.3 V <sup>(3)</sup> | -    | =    | ±2   | LSB   |
| Rladder | Resistor ladder          |                         | Vref = VCC                                            | 10   | _    | 40   | kΩ    |
| tconv   | Conversion time          | 10-bit mode             | φAD = 10 MHz, Vref = VCC = 5.0 V                      | 3.3  | -    | =    | μS    |
|         |                          | 8-bit mode              | φAD = 10 MHz, Vref = VCC = 5.0 V                      | 2.8  | -    | =    | μS    |
| Vref    | Reference voltage        | 9                       |                                                       | 2.7  | =    | Vcc  | V     |
| VIA     | Analog input volta       | ige <sup>(4)</sup>      |                                                       | 0    | _    | AVcc | V     |
| =       | A/D operating clock      | Without sample and hold |                                                       | 0.25 | -    | 10   | MHz   |
|         | frequency <sup>(2)</sup> | With sample and hold    |                                                       | 1    | _    | 10   | MHz   |

- 1. Vcc = AVcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. If f1 exceeds 10 MHz, divide f1 and ensure the A/D operating clock frequency ( $\phi$ AD) is 10 MHz or below.
- 3. If AVcc is less than 4.2 V, divide f1 and ensure the A/D operating clock frequency (\$\phi\_{AD}\$) is f1/2 or below.
- 4. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

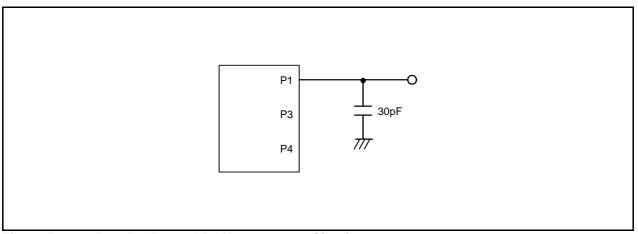



Figure 5.1 Port P1, P3, and P4 Measurement Circuit

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

| Symbol          | Parameter                                         | Condition            | ,    | Standard |       | Unit |
|-----------------|---------------------------------------------------|----------------------|------|----------|-------|------|
|                 |                                                   |                      | Min. | Тур.     | Max.  |      |
| Vpor2           | Power-on reset valid voltage                      | -20°C ≤ Topr ≤ 85°C  | -    | -        | Vdet1 | V    |
| tw(Vpor2-Vdet1) | Supply voltage rising time when power-on reset is | -20°C ≤ Topr ≤ 85°C, | =    | =        | 100   | ms   |
|                 | deasserted <sup>(1)</sup>                         | $tw(por2) \ge 0s(3)$ |      |          |       |      |

### NOTES:

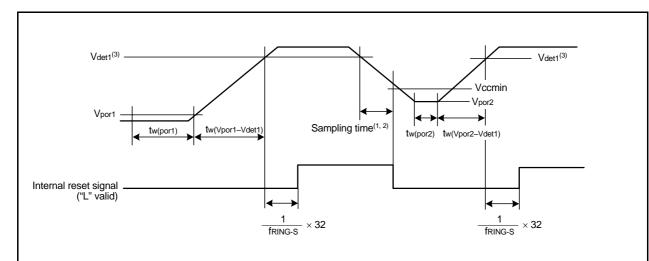

- 1. This condition is not applicable when using with  $Vcc \ge 1.0 \text{ V}$ .
- 2. When turning power on after the time to hold the external power below effective voltage (Vport) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).

Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

| Symbol          | Parameter                                                    | Condition                                                                                            |      | Standard |      | Unit |
|-----------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------|----------|------|------|
|                 |                                                              |                                                                                                      | Min. | Тур.     | Max. |      |
| Vpor1           | Power-on reset valid voltage                                 | -20°C ≤ Topr ≤ 85°C                                                                                  | _    | =        | 0.1  | V    |
| tw(Vpor1-Vdet1) | Supply voltage rising time when power-on reset is deasserted | $0^{\circ}C \leq Topr \leq 85^{\circ}C,$<br>$tw(por1) \geq 10 \ s^{(2)}$                             | -    | -        | 100  | ms   |
| tw(Vpor1-Vdet1) | Supply voltage rising time when power-on reset is deasserted | $ -20^{\circ}C \leq Topr < 0^{\circ}C, \\ tw(por1) \geq 30 \ s^{(2)} $                               | -    | -        | 100  | ms   |
| tw(Vpor1-Vdet1) | Supply voltage rising time when power-on reset is deasserted | $\begin{aligned} -20^{\circ}C &\leq Topr < 0^{\circ}C, \\ tw(por1) &\geq 10 \ s^{(2)} \end{aligned}$ | -    | _        | 1    | ms   |
| tw(Vpor1-Vdet1) | Supply voltage rising time when power-on reset is deasserted | $0^{\circ}C \leq Topr \leq 85^{\circ}C,$<br>$tw(por1) \geq 1 \ s^{(2)}$                              | -    | -        | 0.5  | ms   |

## NOTES:

- 1. When not using voltage monitor 1, use with Vcc≥ 2.7 V.
- 2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).



- Hold the voltage inside the MCU operation voltage range (Vccmin or above) within the sampling time.
   The sampling clock can be selected. Refer to 7. Voltage Detection Circuit for details.
- 3. Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 7. Voltage Detection Circuit for details.

Figure 5.3 **Reset Circuit Electrical Characteristics** 

**Table 5.10 High-Speed On-Chip Oscillator Circuit Electrical Characteristics** 

| Cumbal | Parameter                                                            | Condition                                 | ;    | Lloit |      |      |
|--------|----------------------------------------------------------------------|-------------------------------------------|------|-------|------|------|
| Symbol | Parameter                                                            | Condition                                 | Min. | Тур.  | Max. | Unit |
| _      | High-speed on-chip oscillator frequency when the reset is deasserted | Vcc = 5.0 V, Topr = 25 °C                 | İ    | 8     | -    | MHz  |
| _      | High-speed on-chip oscillator frequency                              | 0 to +60 °C/5 V ± 5 % <sup>(3)</sup>      | 7.76 | _     | 8.24 | MHz  |
|        | temperature • supply voltage dependence <sup>(2)</sup>               | -20 to +85 °C/2.7 to 5.5 V <sup>(3)</sup> | 7.68 | _     | 8.32 | MHz  |
|        |                                                                      | -40 to +85 °C/2.7 to 5.5 V <sup>(3)</sup> | 7.44 | _     | 8.32 | MHz  |

### NOTES:

- 1. The measurement condition is Vcc = 5.0 V and  $Topr = 25 \,^{\circ}\text{C}$ .
- 2. Refer to 10.6.4 High-Speed On-Chip Oscillator Clock for notes on high-speed on-chip oscillator clock.
- 3. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to

**Table 5.11 Power Supply Circuit Timing Characteristics** 

| Symbol   | Parameter                                                                   | Condition | ,    | Unit |      |       |
|----------|-----------------------------------------------------------------------------|-----------|------|------|------|-------|
| Syllibol | Falametei                                                                   | Condition | Min. | Тур. | Max. | Offic |
| td(P-R)  | Time for internal power supply stabilization during power-on <sup>(2)</sup> |           | 1    | =    | 2000 | μS    |
| td(R-S)  | STOP exit time <sup>(3)</sup>                                               |           | _    | -    | 150  | μS    |

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and Topr = 25  $^{\circ}$ C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until CPU clock supply starts after the interrupt is acknowledged to exit stop mode.

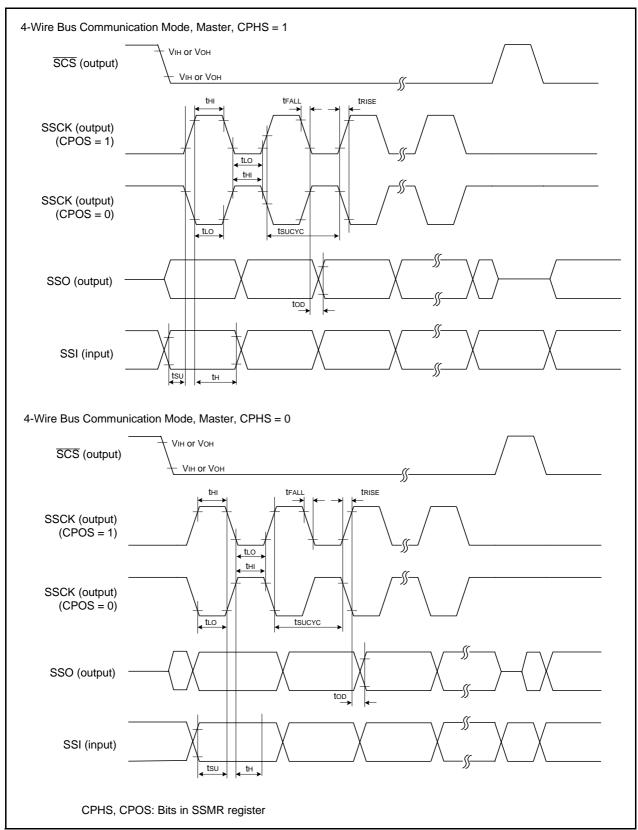



Figure 5.4 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Master)

Electrical Characteristics (2) [Vcc = 5 V] (Topr = -40 to 85  $^{\circ}$ C, unless otherwise specified.) **Table 5.15** 

| Symbol | Parameter                                                                                  | Condition                                   |                                                                                                                                                                              | Standard |      |      | Unit  |
|--------|--------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|-------|
| Cymbol | 1 didiliotoi                                                                               |                                             | Condition                                                                                                                                                                    | Min.     | Тур. | Max. | 01110 |
| Icc    | Power supply current<br>(Vcc = 3.3 to 5.5 V)<br>Single-chip mode,<br>output pins are open, | High-speed mode                             | XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division                                                           | I        | 9    | 15   | mA    |
|        | other pins are Vss,<br>A/D converter is<br>stopped                                         |                                             | XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division                                                           | -        | 8    | 14   | mA    |
|        |                                                                                            |                                             | XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division                                                           | -        | 5    | _    | mA    |
|        |                                                                                            | Medium-<br>speed mode                       | XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                           | I        | 4    | -    | mA    |
|        |                                                                                            |                                             | XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                           | =        | 3    | _    | mA    |
|        |                                                                                            |                                             | XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                           | _        | 2    | _    | mA    |
|        |                                                                                            | High-speed<br>on-chip<br>oscillator<br>mode | Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division                                                                | -        | 4    | 8    | mA    |
|        |                                                                                            |                                             | Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                                | ı        | 1.5  | _    | mA    |
|        |                                                                                            | Low-speed<br>on-chip<br>oscillator<br>mode  | Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1                                                             | -        | 110  | 300  | μА    |
|        |                                                                                            | Wait mode                                   | Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0 | -        | 40   | 80   | μΑ    |
|        |                                                                                            | Wait mode                                   | Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0       | _        | 38   | 76   | μΑ    |
|        |                                                                                            | Stop mode                                   | Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0                              | =        | 0.8  | 3.0  | μΑ    |

Table 5.21 Electrical Characteristics (3) [Vcc = 3V]

| Symbol  | Parameter                   |                                                                         | Condition              |               | Standard  |      |      | Unit |
|---------|-----------------------------|-------------------------------------------------------------------------|------------------------|---------------|-----------|------|------|------|
| Symbol  |                             |                                                                         |                        |               | Min.      | Тур. | Max. | Unit |
| Vон     | Output "H" voltage          | Except Xout                                                             | Iон = -1 mA            | = -1 mA       |           | ı    | Vcc  | V    |
|         |                             | Хоит                                                                    | Drive capacity<br>HIGH | Iон = -0.1 mA | Vcc - 0.5 | =    | Vcc  | V    |
|         |                             |                                                                         | Drive capacity<br>LOW  | Іон = -50 μΑ  | Vcc - 0.5 | _    | Vcc  | V    |
| Vol     | Output "L" voltage          | Except P1_0 to P1_3, Xout                                               | IOL = 1 mA             |               | =         | =    | 0.5  | V    |
|         |                             | P1_0 to P1_3                                                            | Drive capacity<br>HIGH | IoL = 2 mA    | =         | =    | 0.5  | V    |
|         |                             |                                                                         | Drive capacity<br>LOW  | IOL = 1 mA    | =         | _    | 0.5  | V    |
|         |                             | Хоит                                                                    | Drive capacity<br>HIGH | IOL = 0.1 mA  | =         | =    | 0.5  | V    |
|         |                             |                                                                         | Drive capacity<br>LOW  | IOL = 50 μA   | =         | =    | 0.5  | V    |
| VT+-VT- | Hysteresis                  | INTO, INT1, INT3,<br>KIO, KI1, KI2, KI3,<br>CNTR0, CNTR1,<br>TCIN, RXD0 |                        |               | 0.2       | -    | 0.8  | V    |
|         |                             | RESET                                                                   |                        |               | 0.2       | =    | 1.8  | V    |
| Іін     | Input "H" current           | 1                                                                       | VI = 3 V               |               | =         | =    | 4.0  | μΑ   |
| lıL     | Input "L" current           |                                                                         | VI = 0 V               |               | _         | _    | -4.0 | μΑ   |
| RPULLUP | Pull-up resistance VI = 0 V |                                                                         |                        | 66            | 160       | 500  | kΩ   |      |
| RfXIN   | Feedback resistance         | XIN                                                                     |                        |               | -         | 3.0  | -    | MΩ   |
| fring-s | Low-speed on-chip or        | scillator frequency                                                     |                        |               | 40        | 125  | 250  | kHz  |
| VRAM    | RAM hold voltage            |                                                                         | During stop mode       | <b>!</b>      | 2.0       | _    | -    | V    |

<sup>1.</sup> Vcc = 2.7 to 3.3 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 10 MHz, unless otherwise specified.

Table 5.22 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -40 to 85  $^{\circ}$ C, unless otherwise specified.)

| Symbol | Parameter                                                                                  | Condition                                   |                                                                                                                                                                              | Standard |      |      | Unit  |
|--------|--------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|------|-------|
| Cymbol | 1 diamotoi                                                                                 |                                             | Condition                                                                                                                                                                    | Min.     | Тур. | Max. | 01110 |
| Icc    | Power supply current<br>(Vcc = 2.7 to 3.3 V)<br>Single-chip mode,<br>output pins are open, | High-speed mode                             | XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division                                                           | l        | 8    | 13   | mA    |
|        | other pins are Vss,<br>A/D converter is<br>stopped                                         |                                             | XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division                                                           | =        | 7    | 12   | mA    |
|        |                                                                                            |                                             | XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division                                                           | =        | 5    | _    | mA    |
|        |                                                                                            | Medium-<br>speed mode                       | XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                           | I        | 3    | İ    | mA    |
|        |                                                                                            |                                             | XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                           | -        | 2.5  | -    | mA    |
|        |                                                                                            |                                             | XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                           | ı        | 1.6  | -    | mA    |
|        |                                                                                            | High-speed<br>on-chip<br>oscillator<br>mode | Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division                                                                | ı        | 3.5  | 7.5  | mA    |
|        |                                                                                            |                                             | Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8                                                                | ı        | 1.5  | ı    | mA    |
|        |                                                                                            | Low-speed<br>on-chip<br>oscillator<br>mode  | Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1                                                             | -        | 100  | 280  | μА    |
|        |                                                                                            | Wait mode                                   | Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0 | =        | 37   | 74   | μΑ    |
|        |                                                                                            | Wait mode                                   | Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0       | -        | 35   | 70   | μА    |
|        |                                                                                            | Stop mode                                   | Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0                              | =        | 0.7  | 3.0  | μΑ    |

Table 5.26 Serial Interface

| Symbol   | Parameter              |     | Standard |      |  |
|----------|------------------------|-----|----------|------|--|
|          |                        |     | Max.     | Unit |  |
| tc(CK)   | CLKi input cycle time  | 300 | -        | ns   |  |
| tW(CKH)  | CLKi input "H" width   | 150 | -        | ns   |  |
| tW(CKL)  | CLKi input "L" width   | 150 | -        | ns   |  |
| td(C-Q)  | TXDi output delay time | =   | 80       | ns   |  |
| th(C-Q)  | TXDi hold time         | 0   | -        | ns   |  |
| tsu(D-C) | RXDi input setup time  | 70  | =        | ns   |  |
| th(C-D)  | RXDi input hold time   | 90  | -        | ns   |  |

i = 0 or 1

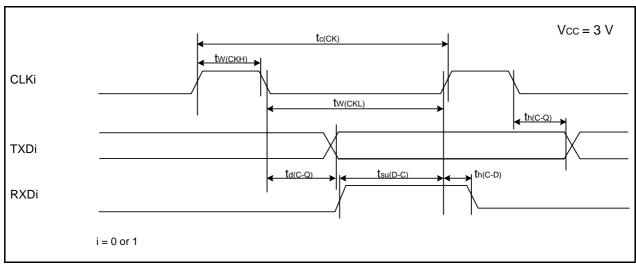
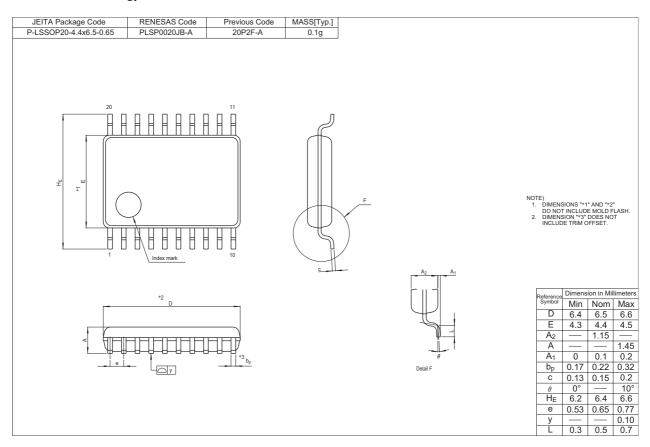
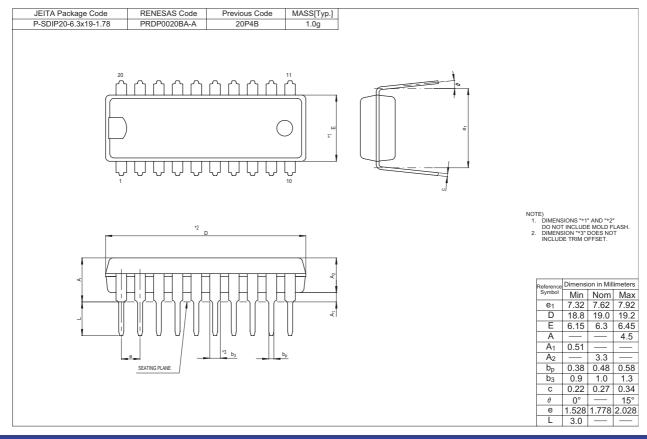


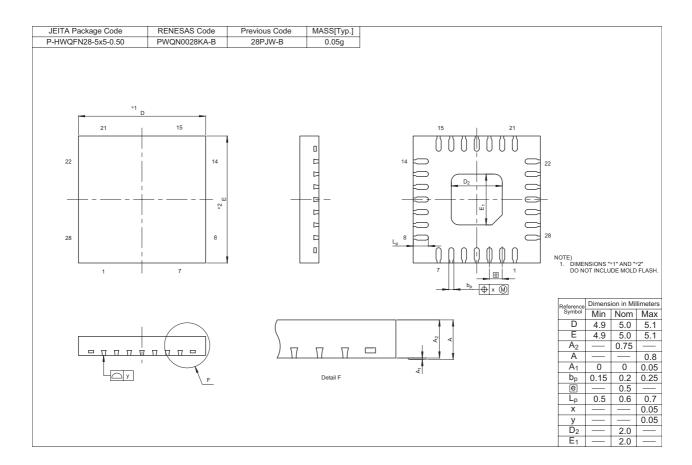

Figure 5.16 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.27 External Interrupt INTO Input

| Symbol  | Parameter            |        | Standard |      |
|---------|----------------------|--------|----------|------|
|         | Falanielei           | Min.   | Max.     | Unit |
| tW(INH) | INTO input "H" width | 380(1) | -        | ns   |
| tW(INL) | INTO input "L" width | 380(2) | -        | ns   |


- 1. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater \_\_\_\_\_
- 2. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater





Figure 5.17 External Interrupt INTO Input Timing Diagram when Vcc = 3 V

# **Package Dimensions**

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.







| REVISION HISTORY | R8C/1A Group, R8C/1B Group Datasheet |
|------------------|--------------------------------------|
|------------------|--------------------------------------|

| Rev. | Date         |      | Description                                                                                    |  |  |  |
|------|--------------|------|------------------------------------------------------------------------------------------------|--|--|--|
| Nev. |              | Page | Summary                                                                                        |  |  |  |
| 1.30 | Oct 03, 2006 | 1    | 1.1 "portable equipment" added                                                                 |  |  |  |
|      |              | 2, 3 | Table 1.1, Table 1.2; Specification Interrupts: "Internal: 9 sources" → "Internal: 11 sources" |  |  |  |
|      |              | 24   | Table 5.2; Parameter: System clock added                                                       |  |  |  |
|      |              | 45   | Package Dimensions; PWQN0028KA-B revised                                                       |  |  |  |
| 1.40 | Dec 08, 2006 | 20   | Table 4.1; 000Fh: After reset "000XXXXXb" → "00X11111b"                                        |  |  |  |
|      |              | 24   | Table 19.2; Parameter: OCD2 = 1 On-chip oscillator clock selected revised                      |  |  |  |

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

  1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

  3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the such procedures and the such procedures and the such procedures and the such procedures and the such procedures and the such procedures are such as the such procedures and the such procedures and the such procedures and the such procedures and the



# **RENESAS SALES OFFICES**

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

### Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

**Renesas Technology Taiwan Co., Ltd.** 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510