

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f211b4dsp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/1A Group and Table 1.2 outlines the Functions and Specifications for R8C/1B Group.

Table 1.1 Functions and Specifications for R8C/1A Group

	Item	Specification
CPU	Number of fundamental	89 instructions
i	instructions	
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)
	Operating mode	Single-chip
	Address space	1 Mbyte
	Memory capacity	See Table 1.3 Product Information for R8C/1A Group
	Ports	I/O ports: 13 pins (including LED drive port)
Functions		Input port: 3 pins
	LED drive ports	I/O ports: 4 pins
	Timers	Timer X: 8 bits × 1 channel, timer Z: 8 bits × 1 channel
		(Each timer equipped with 8-bit prescaler)
		Timer C: 16 bits × 1 channel
		(Input capture and output compare circuits)
	Serial interfaces	1 channel
	Conar internaces	Clock synchronous serial I/O, UART
		1 channel
		UART
<u> </u>	Clock synchronous serial interface	1 channel
	Clock synonionous serial interface	I ² C bus Interface ⁽¹⁾
	A/D converter	Clock synchronous serial I/O with chip select (SSU) 10-bit A/D converter: 1 circuit, 4 channels
		,
	Watchdog timer	15 bits × 1 channel (with prescaler)
	Late we unto	Reset start selectable, count source protection mode
	Interrupts	Internal: 11 sources, External: 4 sources, Software: 4 sources,
	Olaska sa sa sa tiana si sa si ta	Priority levels: 7 levels
'	Clock generation circuits	2 circuits
		Main clock oscillation circuit (with on-chip feedback resistor)
		On-chip oscillator (high speed, low speed)
		High-speed on-chip oscillator has a frequency adjustment
_	0 111 11 11 11 11 11	function
	Oscillation stop detection function	Main clock oscillation stop detection function
	Voltage detection circuit	On-chip
	Power-on reset circuit	On-chip
	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, A/D converter stopped)
		Typ. 5 mA (VCC = 3.0 V, f(XIN) = 10 MHz, A/D converter stopped)
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)
		Typ. $0.7 \mu A$ (VCC = 3.0 V , stop mode)
	Programming and erasure voltage	VCC = 2.7 to 5.5 V
	Programming and erasure	100 times
	endurance	
Operating Ambient	t Temperature	-20 to 85°C
		-40 to 85°C (D version)
		-20 to 105°C (Y version) (2)
Package		20-pin molded-plastic LSSOP
		20-pin molded-plastic SDIP 28-pin molded-plastic HWQFN

- 1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 2. Please contact Renesas Technology sales offices for the Y version.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

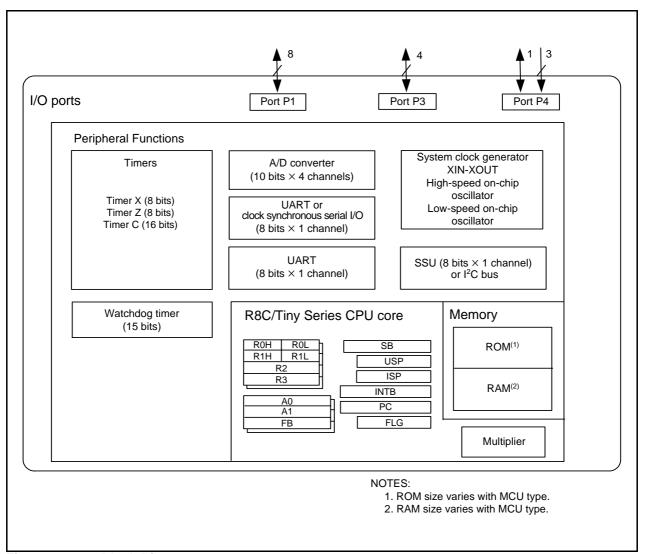


Figure 1.1 Block Diagram

1.4 Product Information

Table 1.3 lists Product Information for R8C/1A Group and Table 1.4 lists Product Information for R8C/1B Group.

Table 1.3 Product Information for R8C/1A Group

Current of October 2006

Type No.	ROM Capacity	RAM Capacity	Package Type	Rema	arks
R5F211A1SP	4 Kbytes	384 bytes	PLSP0020JB-A		
R5F211A2SP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3SP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4SP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DSP	4 Kbytes	384 bytes	PLSP0020JB-A	D version	
R5F211A2DSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3DSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4DSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DD	4 Kbytes	384 bytes	PRDP0020BA-A		
R5F211A2DD	8 Kbytes	512 bytes	PRDP0020BA-A		
R5F211A3DD	12 Kbytes	768 bytes	PRDP0020BA-A		
R5F211A4DD	16 Kbytes	1 Kbyte	PRDP0020BA-A		
R5F211A2NP	8 Kbytes	512 bytes	PWQN0028KA-B		
R5F211A3NP	12 Kbytes	768 bytes	PWQN0028KA-B		
R5F211A4NP	16 Kbytes	1 Kbyte	PWQN0028KA-B		
R5F211A1XXXSP	4 Kbytes	384 bytes	PLSP0020JB-A	Factory programm	ming product (1)
R5F211A2XXXSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3XXXSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4XXXSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DXXXSP	4 Kbytes	384 bytes	PLSP0020JB-A	D version	
R5F211A2DXXXSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3DXXXSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4DXXXSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1XXXDD	4 Kbytes	384 bytes	PRDP0020BA-A	Factory programm	ming product (1)
R5F211A2XXXDD	8 Kbytes	512 bytes	PRDP0020BA-A		
R5F211A3XXXDD	12 Kbytes	768 bytes	PRDP0020BA-A		
R5F211A4XXXDD	16 Kbytes	1 Kbyte	PRDP0020BA-A		
R5F211A2XXXNP	8 Kbytes	512 bytes	PWQN0028KA-B		
R5F211A3XXXNP	12 Kbytes	768 bytes	PWQN0028KA-B		
R5F211A4XXXNP	16 Kbytes	1 Kbyte	PWQN0028KA-B		

NOTE:

1. The user ROM is programmed before shipment.

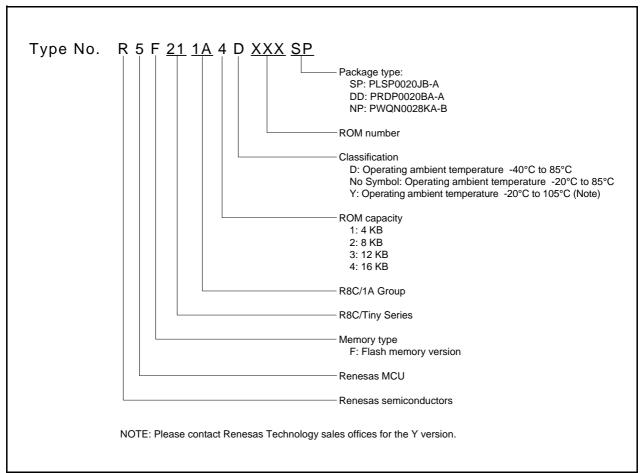


Figure 1.2 Type Number, Memory Size, and Package of R8C/1A Group

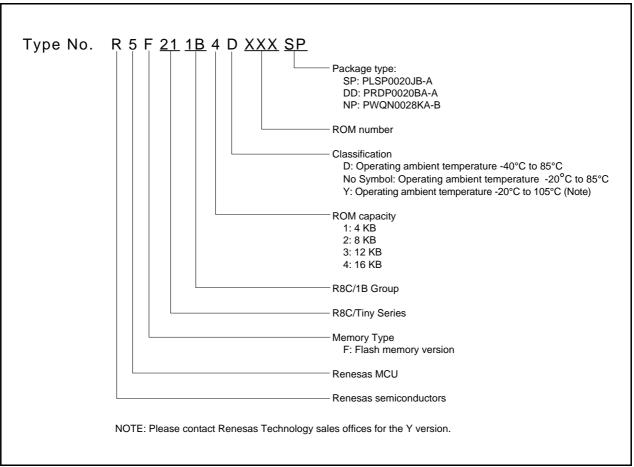


Figure 1.3 Type Number, Memory Size, and Package of R8C/1B Group

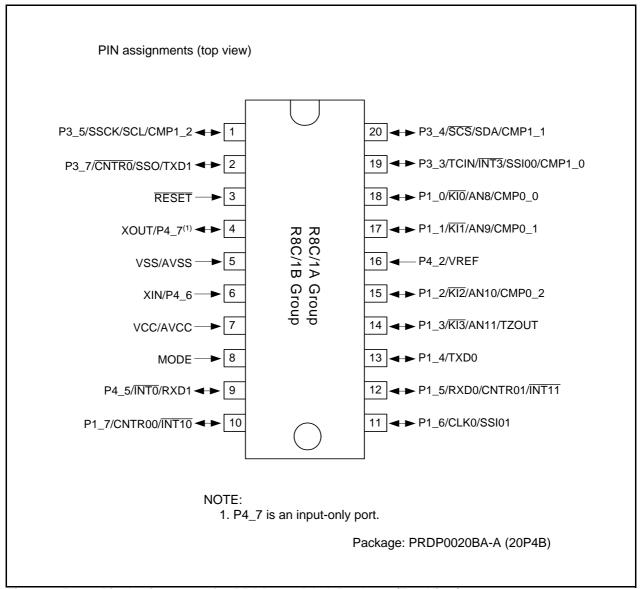


Figure 1.5 Pin Assignments for PRDP0020BA-A Package (Top View)

Table 1.6 Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A Packages

			i					
				I/O Pin	Functions	for Peripheral N	/lodules	
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	I ² C bus Interface	A/D Converter
1		P3_5		CMP1_2		SSCK	SCL	
2		P3_7		CNTR0	TXD1	SSO		
3	RESET							
4	XOUT	P4_7						
5	VSS/AVSS							
6	XIN	P4_6						
7	VCC/AVCC							
8	MODE							
9		P4_5	ĪNT0		RXD1			
10		P1_7	INT10	CNTR00				
11		P1_6			CLK0	SSI01		
12		P1_5	INT11	CNTR01	RXD0			
13		P1_4			TXD0			
14		P1_3	KI3	TZOUT				AN11
15		P1_2	KI2	CMP0_2				AN10
16	VREF	P4_2						
17		P1_1	KI1	CMP0_1				AN9
18		P1_0	KI0	CMP0_0				AN8
19		P3_3	ĪNT3	TCIN/ CMP1_0		SSI00		
20		P3_4		CMP1_1		SCS	SDA	

Table 1.7 Pin Name Information by Pin Number of PWQN0028KA-B Package

			I/O Pin Functions for Peripheral Modules					
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	I ² C bus Interface	A/D Converter
1	NC							
2	XOUT	P4_7						
3	VSS/AVSS							
4	NC							
5	NC							
6	XIN	P4_6						
7	NC							
8	VCC/AVCC							
9	MODE							
10		P4_5	INT0		RXD1			
11		P1_7	ĪNT10	CNTR00				
12		P1_6			CLK0	SSI01		
13		P1_5	INT11	CNTR01	RXD0			
14		P1_4			TXD0			
15	NC							
16		P1_3	KI3	TZOUT				AN11
17		P1_2	KI2	CMP0_2				AN10
18	NC							
19	NC							
20	VREF	P4_2						
21	NC							
22		P1_1	KI1	CMP0_1				AN9
23		P1_0	KI0	CMP0_0				AN8
24		P3_3	ĪNT3	TCIN/CMP1_0		SSI00		
25		P3_4		CMP1_1		SCS	SDA	
26	_	P3_5		CMP1_2		SSCK	SCL	
27		P3_7		CNTR0	TXD1	SSO		
28	RESET							

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer and arithmetic and logic operations. A1 is analogous to A0. A1 can be combined with A0 and used as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointer (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains a carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

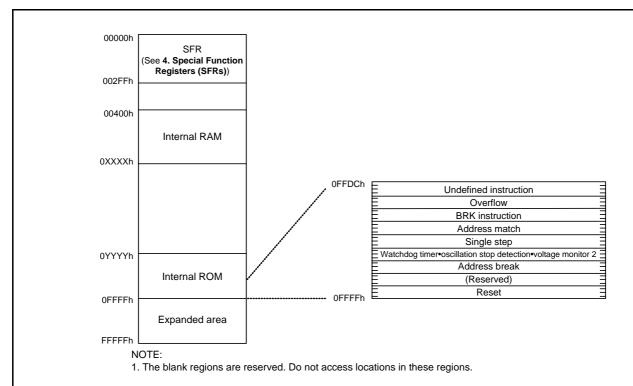
Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when the operation results in an overflow; otherwise to 0.

3. **Memory**

3.1 **R8C/1A Group**


Figure 3.1 is a Memory Map of R8C/1A Group. The R8C/1A Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

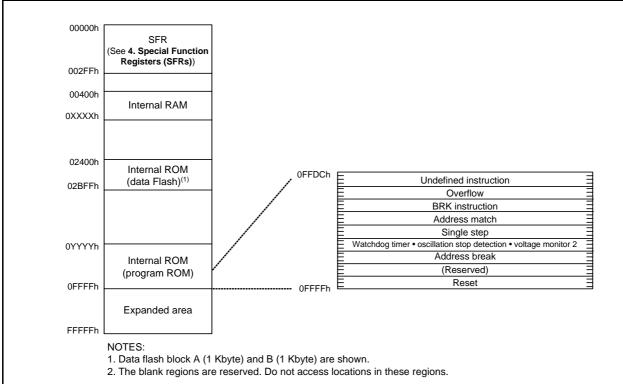
Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

D	Interna	al ROM	Internal RAM	
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh
R5F211A4SP, R5F211A4DSP, R5F211A4DD, R5F211A4NP, R5F211A4XXXSP, R5F211A4XXXDD, R5F211A4XXXNP	16 Kbytes	0C000h	1 Kbyte	007FFh
R5F211A3SP, R5F211A3DSP, R5F211A3DD, R5F211A3NP, R5F211A3XXXSP, R5F211A3XXXSP, R5F211A3XXXDD, R5F211A3XXXNP	12 Kbytes	0D000h	768 bytes	006FFh
R5F211A2SP, R5F211A2DSP, R5F211A2DD, R5F211A2NP, R5F211A2XXXSP, R5F211A2XXXSP, R5F211A2XXXDD, R5F211A2XXXNP	8 Kbytes	0E000h	512 bytes	005FFh
R5F211A1SP, R5F211A1DSP, R5F211A1DD, R5F211A1XXXSP, R5F211A1DXXXSP, R5F211A1XXXDD	4 Kbytes	0F000h	384 bytes	0057Fh

Figure 3.1 Memory Map of R8C/1A Group

3.2 R8C/1B Group

Figure 3.2 is a Memory Map of R8C/1B Group. The R8C/1B Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.


The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM is allocated higher addresses beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Part Number Size Address

D	Interna	II ROM	Internal RAM	
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh
R5F211B4SP, R5F211B4DSP, R5F211B4DD, R5F211B4NP, R5F211B4XXXSP, R5F211B4DXXXSP, R5F211B4XXXDD,	16 Kbytes	0C000h	1 Kbyte	007FFh
R5F211B4XXXNP R5F211B3SP, R5F211B3DSP, R5F211B3DD, R5F211B3NP,				
R5F211B3XXXSP, R5F211B3DXXXSP, R5F211B3XXXDD,	12 Kbytes	0D000h	768 bytes	006FFh
R5F211B3XXXNP				
R5F211B2SP, R5F211B2DSP, R5F211B2DD, R5F211B2NP, R5F211B2XXXSP, R5F211B2XXXDD, R5F211B2XXXNP	8 Kbytes	0E000h	512 bytes	005FFh
R5F211B1SP, R5F211B1DSP, R5F211B1DD, R5F211B1XXXSP, R5F211B1DXXXSP, R5F211B1DXXXSDD	4 Kbytes	0F000h	384 bytes	0057Fh

Figure 3.2 Memory Map of R8C/1B Group

SFR Information (2)⁽¹⁾ Table 4.2

Address	Register	Symbol	After reset
0040h	•		
0041h			
0042h			
0043h			
0044h			
0045h			
0046h			
0047h			
0048h			
0049h			
004Ah			
004Bh			
004Ch			
004Dh	Key Input Interrupt Control Register	KUPIC	XXXXX000b
004Eh	A/D Conversion Interrupt Control Register	ADIC	XXXXX000b
004Eh	SSU/IIC Interrupt Control Register ⁽²⁾	SSUAIC/IIC2AIC	XXXXX000b
0050h	Compare 1 Interrupt Control Register	CMP1IC	XXXXX000b
0051h	UARTO Transmit Interrupt Control Register	SOTIC	XXXXX000b
0052h	UARTO Receive Interrupt Control Register	SORIC	XXXXX000b
0053h	UART1 Transmit Interrupt Control Register	S1TIC	XXXXX000b
0054h	UART1 Receive Interrupt Control Register	S1RIC	XXXXX000b
0055h		T.// 0	VVVVVV 0 0 0 1
0056h	Timer X Interrupt Control Register	TXIC	XXXXX000b
0057h			
0058h	Timer Z Interrupt Control Register	TZIC	XXXXX000b
0059h	INT1 Interrupt Control Register	INT1IC	XXXXX000b
005Ah	INT3 Interrupt Control Register	INT3IC	XXXXX000b
005Bh	Timer C Interrupt Control Register	TCIC	XXXXX000b
005Ch	Compare 0 Interrupt Control Register	CMP0IC	XXXXX000b
005Dh	INT0 Interrupt Control Register	INT0IC	XX00X000b
005Eh			
005Fh			
0060h			
0061h			
0062h			
0063h			
0064h			
0065h			
0066h			
0067h			
0068h			
0069h			
006Ah			
006Bh			
006Ch			
006Dh			
006Eh			
006Fh			
0070h			
0071h			
0072h			
0072H			
0074h			
0075h			
0076h			
0077h			
	1	1	1
0078h			
0078h 0079h			
0078h 0079h 007Ah			
0078h 0079h 007Ah 007Bh			
0078h 0079h 007Ah 007Bh 007Ch			
0078h 0079h 007Ah 007Bh 007Ch 007Dh			
0078h 0079h 007Ah 007Bh 007Ch			

X: Undefined

- The blank regions are reserved. Do not access locations in these regions.
 Selected by the IICSEL bit in the PMR register.

SFR Information (3)⁽¹⁾ Table 4.3

Address	Register	Symbol	After reset
0080h	Timer Z Mode Register	TZMR	00h
0081h			
0082h			
0083h	T. 7W (0 , 10 , 10)		0.01
0084h	Timer Z Waveform Output Control Register	PUM	00h
0085h	Prescaler Z Register	PREZ	FFh
0086h	Timer Z Secondary Register	TZSC	FFh
0087h	Timer Z Primary Register	TZPR	FFh
0088h			
0089h			
008Ah	Timer Z Output Control Register	TZOC	00h
008Bh	Timer X Mode Register	TXMR	00h
008Ch	Prescaler X Register	PREX	FFh
008Dh	Timer X Register	TX	FFh
008Eh	Timer Count Source Setting Register	TCSS	00h
008Fh			
0090h	Timer C Register	TC	00h
0091h			00h
0092h			
0093h			
0094h			
0095h			
0096h	External Input Enable Register	INTEN	00h
0097h			
0098h	Key Input Enable Register	KIEN	00h
0099h			
009Ah	Timer C Control Register 0	TCC0	00h
009Bh	Timer C Control Register 1	TCC1	00h
009Ch	Capture, Compare 0 Register	TM0	0000h ⁽²⁾
009Dh			FFFFh(3)
009Eh	Compare 1 Register	TM1	FFh
009Fh			FFh
00A0h	UART0 Transmit/Receive Mode Register	U0MR	00h
00A1h	UART0 Bit Rate Generator	U0BRG	XXh
00A2h	UART0 Transmit Buffer Register	U0TB	XXh
00A3h			XXh
00A4h	UART0 Transmit/Receive Control Register 0	U0C0	00001000b
00A5h	UART0 Transmit/Receive Control Register 1	U0C1	00000010b
00A6h	UART0 Receive Buffer Register	U0RB	XXh
00A7h	-		XXh
00A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
00A9h	UART1 Bit Rate Generator	U1BRG	XXh
00AAh	UART1 Transmit Buffer Register	U1TB	XXh
00ABh	1		XXh
00ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
00ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
00AEh	UART1 Receive Buffer Register	U1RB	XXh
00AFh	1		XXh
00B0h	UART Transmit/Receive Control Register 2	UCON	00h
00B1h	, , , , , , , , , , , , , , , , , , ,		
00B2h			
00B3h			
00B4h			
00B5h	+	<u> </u>	
00B6h			
00B7h			
00B8h	SS Control Register H / IIC bus Control Register 1 ⁽⁴⁾	SSCRH / ICCR1	00h
00B9h	SS Control Register L / IIC bus Control Register 2 ⁽⁴⁾	SSCRL / ICCR2	01111101b
00Bah	SS Mode Register / IIC bus Mode Register (4)	SSMR / ICMR	00011000b
00BBh	SS Enable Register / IIC bus Interrupt Enable Register ⁽⁴⁾	SSER / ICIER	00h
00BCh	SS Status Register / IIC bus Status Register ⁽⁴⁾	SSSR / ICSR	00h / 0000X000b
00BDh	SS Mode Register 2 / Slave Address Register ⁽⁴⁾	SSMR2/SAR	00h
00BEh	SS Transmit Data Register / IIC bus Transmit Data Register ⁽⁴⁾	SSTDR / ICDRT	FFh
00BFh	SS Receive Data Register / IIC bus Receive Data Register ⁽⁴⁾	SSRDR / ICDRR	FFh

X: Undefined

- The blank regions are reserved. Do not access locations in these regions.
 In input capture mode.
- 3. In output compare mode.
- 4. Selected by the IICSEL bit in the PMR register.

5. Electrical Characteristics

Please contact Renesas Technology sales offices for the electrical characteristics in the Y version (Topr = -20° C to 105° C).

Table 5.1 Absolute Maximum Ratings

Symbol	Parameter	Condition	Rated Value	Unit
Vcc	Supply voltage	Vcc = AVcc	-0.3 to 6.5	V
AVcc	Analog supply voltage	Vcc = AVcc	-0.3 to 6.5	V
Vı	Input voltage		-0.3 to Vcc+0.3	V
Vo	Output voltage		-0.3 to Vcc+0.3	V
Pd	Power dissipation	Topr = 25°C	300	mW
Topr	Operating ambient temperature		-20 to 85 / -40 to 85 (D version)	°C
Tstg	Storage temperature		-65 to 150	°C

Table 5.2 Recommended Operating Conditions

C: mah al	Parameter		Conditions		Unit		
Symbol	Pa	rameter	Conditions	Min.	Тур.	Max.	Unit
Vcc	Supply voltage			2.7	-	5.5	V
AVcc	Analog supply volt	age		1	Vcc	-	V
Vss	Supply voltage			1	0	-	V
AVss	Analog supply volt	age		1	0	-	V
VIH	Input "H" voltage			0.8Vcc	-	Vcc	V
VIL	Input "L" voltage			0	ı	0.2Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH (peak)		=	=	-60	mA
IOH(peak)	Peak output "H" cu	urrent		-	-	-10	mA
IOH(avg)	Average output "H	" current		-	-	-5	mA
IOL(sum)	Peak sum output "L" currents	Sum of all pins IOL (peak)		=	=	60	mA
IOL(peak)	Peak output "L"	Except P1_0 to P1_3		1	-	10	mA
current	currents	P1_0 to P1_3	Drive capacity HIGH	1	-	30	mA
			Drive capacity LOW	-	_	10	mA
IOL(avg)	Average output	Except P1_0 to P1_3		-	_	5	mA
	"L" current	P1_0 to P1_3	Drive capacity HIGH	-	_	15	mA
			Drive capacity LOW	-	_	5	mA
f(XIN)	Main clock input o	scillation frequency	3.0 V ≤ Vcc ≤ 5.5 V	0	_	20	MHz
			2.7 V ≤ Vcc < 3.0 V	0	_	10	MHz
_	System clock	OCD2 = 0	3.0 V ≤ Vcc ≤ 5.5 V	0	=	20	MHz
		Main clock selected	2.7 V ≤ Vcc < 3.0 V	0	_	10	MHz
		OCD2 = 1 On-chip oscillator clock selected	HRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	-	kHz
			HRA01 = 1 High-speed on-chip oscillator clock selected	-	8	-	MHz

- 1. Vcc = 2.7 to 5.5 V at T_{opr} = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. Typical values when average output current is 100 ms.

Table 5.3	A/D Converter	Characteristics

Symbol			Conditions		- Unit		
			Conditions	Min.	Тур.	Max.	Offic
=			Vref = VCC	-	-	10	Bits
=	Absolute	10-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	-	-	±3	LSB
	accuracy	8-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	-	-	±2	LSB
		10-bit mode	ϕ AD = 10 MHz, Vref = VCC = 3.3 V ⁽³⁾	=	-	±5	LSB
		8-bit mode	ϕ AD = 10 MHz, Vref = VCC = 3.3 V ⁽³⁾	-	-	±2	LSB
Rladder	Resistor ladder		Vref = VCC	10	_	40	kΩ
tconv	Conversion time	10-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	3.3	_	_	μS
		8-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltage	e		2.7	-	Vcc	V
VIA	Analog input voltage ⁽⁴⁾			0	=	AVcc	V
=	A/D operating clock	Without sample and hold		0.25	=	10	MHz
	frequency ⁽²⁾	With sample and hold		1	-	10	MHz

- 1. Vcc = AVcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. If f1 exceeds 10 MHz, divide f1 and ensure the A/D operating clock frequency (ϕ AD) is 10 MHz or below.
- 3. If AVcc is less than 4.2 V, divide f1 and ensure the A/D operating clock frequency (\$\phi_{AD}\$) is f1/2 or below.
- 4. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

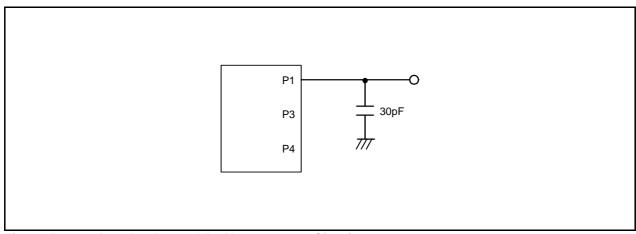


Figure 5.1 Port P1, P3, and P4 Measurement Circuit

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Symbol	Parameter	Conditions		Lloit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
_	Program/erase endurance ⁽²⁾	R8C/1A Group	100(3)	-	=	times
		R8C/1B Group	1,000(3)	-	=	times
_	Byte program time		=	50	400	μS
_	Block erase time		=	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		=	=	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	-	μS
=	Interval from program start/restart until following suspend request		0	=	-	ns
=	Time from suspend until program/erase restart		=	=	3+CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	_	5.5	V
-	Read voltage		2.7	-	5.5	V
-	Program, erase temperature		0	-	60	°C
=	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	_	_	year

- 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the number of erase operations between block A and block B can further reduce the effective number of rewrites. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.10 High-Speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition	;	Unit		
Symbol	Parameter	Condition	Min.	Тур.	Max.	Offic
_	High-speed on-chip oscillator frequency when the reset is deasserted	Vcc = 5.0 V, Topr = 25 °C	İ	8	-	MHz
_	High-speed on-chip oscillator frequency	0 to +60 °C/5 V ± 5 % ⁽³⁾	7.76	_	8.24	MHz
	temperature • supply voltage dependence(2)	-20 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.68	_	8.32	MHz
		-40 to +85 °C/2.7 to 5.5 V ⁽³⁾	7.44	_	8.32	MHz

NOTES:

- 1. The measurement condition is Vcc = 5.0 V and $Topr = 25 \,^{\circ}\text{C}$.
- 2. Refer to 10.6.4 High-Speed On-Chip Oscillator Clock for notes on high-speed on-chip oscillator clock.
- 3. The standard value shows when the HRA1 register is assumed as the value in shipping and the HRA2 register value is set to

Table 5.11 Power Supply Circuit Timing Characteristics

Symbol	Parameter	Condition	Standard			Unit
Syllibol	Falametei	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during power-on ⁽²⁾		1	=	2000	μS
td(R-S)	STOP exit time ⁽³⁾		_	-	150	μS

- 1. The measurement condition is Vcc = 2.7 to 5.5 V and T_{opr} = 25 °C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until CPU clock supply starts after the interrupt is acknowledged to exit stop mode.

Electrical Characteristics (2) [Vcc = 5 V] (Topr = -40 to 85 $^{\circ}$ C, unless otherwise specified.) **Table 5.15**

Symbol	Parameter	Condition		Standard			Unit
Cymbol	1 didiliotoi		Condition	Min.	Тур.	Max.	01110
() S C C	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	l	9	15	mA
	other pins are Vss, A/D converter is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	=	8	14	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5	ı	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	I	4	ı	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	3	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	ı	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	ı	4	8	mA
	on-chip		Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	1	1.5	-	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	110	300	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	=	40	80	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	-	38	76	μΑ
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	=	0.8	3.0	μΑ

Table 5.22 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -40 to 85 $^{\circ}$ C, unless otherwise specified.)

Symbol	Parameter	Condition		Standard			Unit
Cymbol	1 didiliotoi		Condition	Min.	Тур.	Max.	01110
(\ S o o A	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	l	8	13	mA
	other pins are Vss, A/D converter is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	=	7	12	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	=	5	_	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	I	3	İ	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	1	1.6	-	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	7.5	mA
	on-chip		Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	1	1.5	-	mA
		oscillator	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	100	280	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	=	37	74	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	-	35	70	μΑ
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	-	0.7	3.0	μА