

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f211b4sp-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

R8C/1A Group, R8C/1B Group SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

REJ03B0144-0140 Rev.1.40 Dec 08, 2006

1. Overview

These MCUs are fabricated using the high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and is packaged in a 20-pin molded-plastic LSSOP, SDIP or a 28-pin plastic molded-HWQFN. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/1B Group has on-chip data flash ROM (1 KB x 2 blocks).

The difference between the R8C/1A Group and R8C/1B Group is only the presence or absence of data flash ROM. Their peripheral functions are the same.

1.1 Applications

Electric household appliances, office equipment, housing equipment (sensors, security systems), portable equipment, general industrial equipment, audio equipment, etc.

1.2 Performance Overview

Table 1.1 outlines the Functions and Specifications for R8C/1A Group and Table 1.2 outlines the Functions and Specifications for R8C/1B Group.

Table 1.1 Functions and Specifications for R8C/1A Group

	Item	Specification				
CPU	Number of fundamental	89 instructions				
i	instructions					
	Minimum instruction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V)				
	time	100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V)				
	Operating mode	Single-chip				
	Address space	1 Mbyte				
	Memory capacity	See Table 1.3 Product Information for R8C/1A Group				
	Ports	I/O ports: 13 pins (including LED drive port)				
Functions		Input port: 3 pins				
	LED drive ports	I/O ports: 4 pins				
	Timers	Timer X: 8 bits × 1 channel, timer Z: 8 bits × 1 channel				
		(Each timer equipped with 8-bit prescaler)				
		Timer C: 16 bits × 1 channel				
		(Input capture and output compare circuits)				
	Serial interfaces	1 channel				
	Conar internaces	Clock synchronous serial I/O, UART				
		1 channel				
		UART				
<u> </u>	Clock synchronous serial interface	1 channel				
	Clock synonionous serial interface	I ² C bus Interface ⁽¹⁾				
	A/D converter	Clock synchronous serial I/O with chip select (SSU)				
		10-bit A/D converter: 1 circuit, 4 channels				
	Watchdog timer	15 bits × 1 channel (with prescaler)				
	Late we unto	Reset start selectable, count source protection mode				
	Interrupts	Internal: 11 sources, External: 4 sources, Software: 4 sources,				
	Olaska sa sa sa tiana si sa si ta	Priority levels: 7 levels				
'	Clock generation circuits	2 circuits				
		Main clock oscillation circuit (with on-chip feedback resistor)				
		On-chip oscillator (high speed, low speed)				
		High-speed on-chip oscillator has a frequency adjustment				
_	0 111 11 11 11 11 11	function				
	Oscillation stop detection function	Main clock oscillation stop detection function				
	Voltage detection circuit	On-chip				
	Power-on reset circuit	On-chip				
	Supply voltage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz)				
Characteristics		VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz)				
	Current consumption	Typ. 9 mA (VCC = 5.0 V, f(XIN) = 20 MHz, A/D converter stopped)				
		Typ. 5 mA (VCC = 3.0 V, f(XIN) = 10 MHz, A/D converter stopped)				
		Typ. 35 μ A (VCC = 3.0 V, wait mode, peripheral clock off)				
		Typ. $0.7 \mu A$ (VCC = 3.0 V , stop mode)				
	Programming and erasure voltage	VCC = 2.7 to 5.5 V				
	Programming and erasure	100 times				
	endurance					
Operating Ambient	t Temperature	-20 to 85°C				
		-40 to 85°C (D version)				
		-20 to 105°C (Y version) (2)				
Package		20-pin molded-plastic LSSOP				
Раскаде						
		20-pin molded-plastic SDIP 28-pin molded-plastic HWQFN				

- 1. I²C bus is a trademark of Koninklijke Philips Electronics N. V.
- 2. Please contact Renesas Technology sales offices for the Y version.

1.4 Product Information

Table 1.3 lists Product Information for R8C/1A Group and Table 1.4 lists Product Information for R8C/1B Group.

Table 1.3 Product Information for R8C/1A Group

Current of October 2006

Type No.	ROM Capacity	RAM Capacity	Package Type	Rema	arks
R5F211A1SP	4 Kbytes	384 bytes	PLSP0020JB-A		
R5F211A2SP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3SP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4SP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DSP	4 Kbytes	384 bytes	PLSP0020JB-A	D version	
R5F211A2DSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3DSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4DSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DD	4 Kbytes	384 bytes	PRDP0020BA-A		
R5F211A2DD	8 Kbytes	512 bytes	PRDP0020BA-A		
R5F211A3DD	12 Kbytes	768 bytes	PRDP0020BA-A		
R5F211A4DD	16 Kbytes	1 Kbyte	PRDP0020BA-A		
R5F211A2NP	8 Kbytes	512 bytes	PWQN0028KA-B		
R5F211A3NP	12 Kbytes	768 bytes	PWQN0028KA-B		
R5F211A4NP	16 Kbytes	1 Kbyte	PWQN0028KA-B		
R5F211A1XXXSP	4 Kbytes	384 bytes	PLSP0020JB-A	Factory programm	ming product (1)
R5F211A2XXXSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3XXXSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4XXXSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DXXXSP	4 Kbytes	384 bytes	PLSP0020JB-A	D version	
R5F211A2DXXXSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3DXXXSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4DXXXSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1XXXDD	4 Kbytes	384 bytes	PRDP0020BA-A	Factory programm	ming product (1)
R5F211A2XXXDD	8 Kbytes	512 bytes	PRDP0020BA-A		
R5F211A3XXXDD	12 Kbytes	768 bytes	PRDP0020BA-A		
R5F211A4XXXDD	16 Kbytes	1 Kbyte	PRDP0020BA-A		
R5F211A2XXXNP	8 Kbytes	512 bytes	PWQN0028KA-B		
R5F211A3XXXNP	12 Kbytes	768 bytes	PWQN0028KA-B		
R5F211A4XXXNP	16 Kbytes	1 Kbyte	PWQN0028KA-B		

NOTE:

1. The user ROM is programmed before shipment.

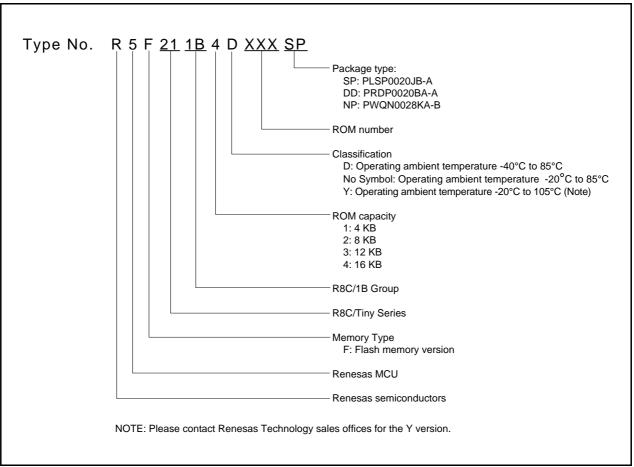


Figure 1.3 Type Number, Memory Size, and Package of R8C/1B Group

1.5 Pin Assignments

Figure 1.4 shows Pin Assignments for PLSP0020JB-A Package (Top View), Figure 1.5 shows Pin Assignments for PRDP0020BA-A Package (Top View) and Figure 1.6 shows Pin Assignments for PWQN0028KA-B Package (Top View).

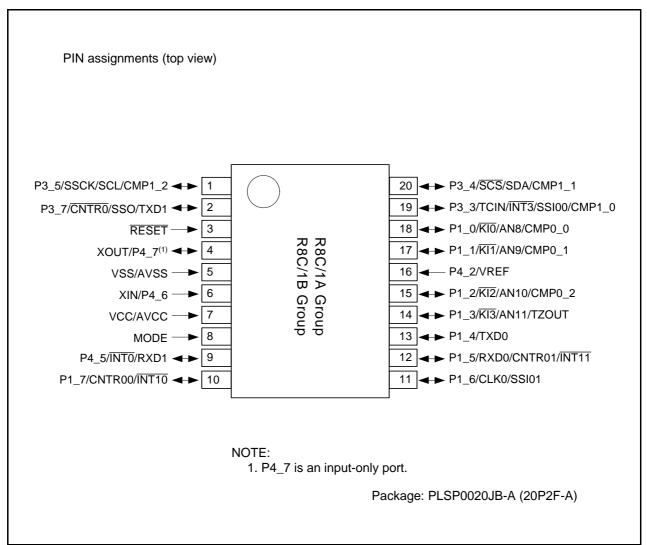


Figure 1.4 Pin Assignments for PLSP0020JB-A Package (Top View)

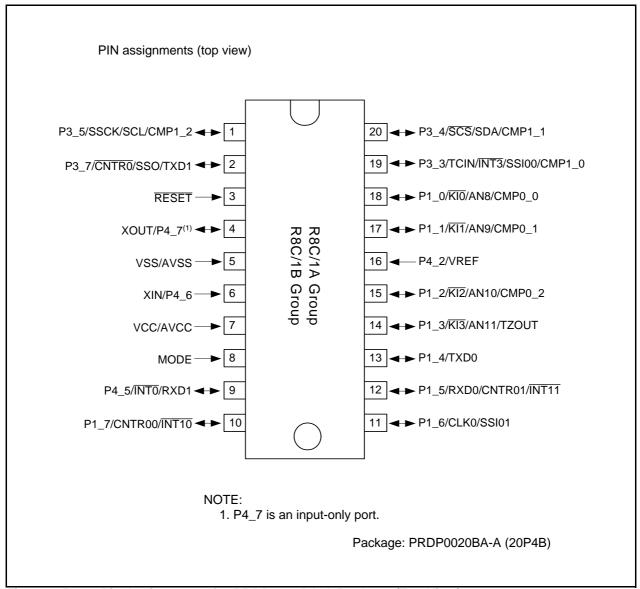


Figure 1.5 Pin Assignments for PRDP0020BA-A Package (Top View)

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.4 list the special function registers.

Table 4.1 SFR Information (1)⁽¹⁾

			A.C.
Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	00100000b
0008h	-,		
0009h	Address Match Interrupt Enable Register	AIER	00h
000Ah	Protect Register	PRCR	00h
000Bh	1 Total Tragistor	TROR	0011
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Ch	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h			00h
0012h			X0h
0013h			
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h	1		00h
0016h			X0h
0017h			-
0018h			
0019h			
0013h			
001An			
	Court Course Doctostics Made Docistos	CCDD	001-
001Ch	Count Source Protection Mode Register	CSPR	00h
001Dh			
001Eh	INT0 Input Filter Select Register	INT0F	00h
001Fh			
0020h	High-Speed On-Chip Oscillator Control Register 0	HRA0	00h
0021h	High-Speed On-Chip Oscillator Control Register 1	HRA1	When shipping
0022h	High-Speed On-Chip Oscillator Control Register 2	HRA2	00h
0023h	· · · · · · · · · · · · · · · · · · ·		
002011			
002Ah			
002An			
002Ch			
002Dh			
002Eh			
002Fh			
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾
			01000000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register (2)	VW1C	0000X000b ⁽³⁾
003011	voltage Monitor i Circuit Control Register (2)	V VV 10	
			0100X001b ⁽⁴⁾
0037h	Voltage Monitor 2 Circuit Control Register (5)	VW2C	00h
0038h			
0039h			
003Ah			
003Bh			
003Ch			
003Dh			
003Eh			
003Fh			

X: Undefined

- 1. The blank regions are reserved. Do not access locations in these regions.
- 2. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect this register.
- 3. After hardware reset.
- 4. After power-on reset or voltage monitor 1 reset.
- 5. Software reset, watchdog timer reset, and voltage monitor 2 reset do not affect b2 and b3.

Table 5.3	A/D Converter	Characteristics

Symbol Rladder tconv	Parameter	Conditions		Unit			
	Farameter		Conditions	Min.	Тур.	Max.	Offic
=	Resolution		Vref = VCC	-	_	10	Bits
_	Absolute	10-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	-	_	±3	LSB
	accuracy	8-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	-	_	±2	LSB
		10-bit mode	ϕ AD = 10 MHz, Vref = VCC = 3.3 V ⁽³⁾	_	_	±5	LSB
		8-bit mode	ϕ AD = 10 MHz, Vref = VCC = 3.3 V ⁽³⁾	-	=	±2	LSB
Rladder	Resistor ladder		Vref = VCC	10	_	40	kΩ
tconv	Conversion time	10-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	3.3	-	-	μS
		8-bit mode	φAD = 10 MHz, Vref = VCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltage	9		2.7	=	Vcc	V
VIA	Analog input volta	ige ⁽⁴⁾		0	_	AVcc	V
=	A/D operating clock	Without sample and hold		0.25	-	10	MHz
	frequency ⁽²⁾	With sample and hold		1	_	10	MHz

- 1. Vcc = AVcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. If f1 exceeds 10 MHz, divide f1 and ensure the A/D operating clock frequency (ϕ AD) is 10 MHz or below.
- 3. If AVcc is less than 4.2 V, divide f1 and ensure the A/D operating clock frequency (\$\phi_{AD}\$) is f1/2 or below.
- 4. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

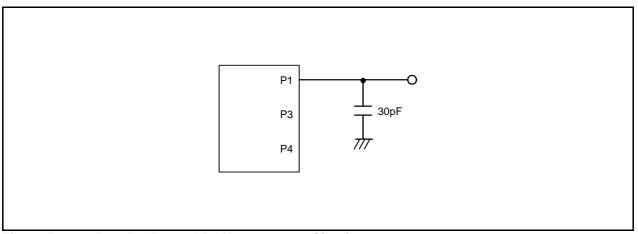


Figure 5.1 Port P1, P3, and P4 Measurement Circuit

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	n. Typ. Max.		Unit
=	Program/erase endurance ⁽²⁾	R8C/1A Group	100(3)	=	=	times
		R8C/1B Group	1,000(3)	-	-	times
_	Byte program time		-	50	400	μS
_	Block erase time		=	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		_	-	97+CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	_	_	ns
_	Time from suspend until program/erase restart		-	_	3+CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		2.7	-	5.5	V
_	Program, erase temperature		0	-	60	°C
=	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	-	=	year

- 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 µs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the number of erase operations between block A and block B can further reduce the effective number of rewrites. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics

Symbol	Parameter	Conditions		Unit		
Symbol	Faranielei	Conditions	Min.	Тур.	Max.	Offic
_	Program/erase endurance ⁽²⁾		10,000(3)	-	_	times
-	Byte program time (Program/erase endurance ≤ 1,000 times)		-	50	400	μS
_	Byte program time (Program/erase endurance > 1,000 times)		-	65	_	μS
_	Block erase time (Program/erase endurance ≤ 1,000 times)		-	0.2	9	S
_	Block erase time (Program/erase endurance > 1,000 times)		_	0.3	_	S
td(SR-SUS)	Time Delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	_	_	ns
_	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	-	5.5	V
=	Read voltage		2.7	-	5.5	V
_	Program, erase temperature		-20 ⁽⁸⁾	_	85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	_	-	year

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. -40 °C for D version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

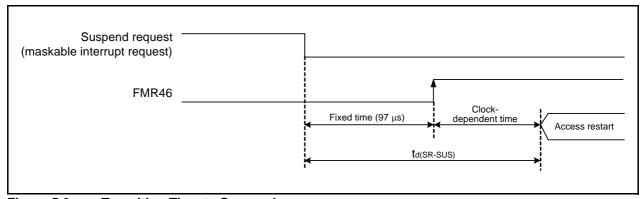


Figure 5.2 **Transition Time to Suspend**

Table 5.6 **Voltage Detection 1 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		l loit		
Symbol	Farameter	Condition	Min.	Тур.		Unit
Vdet1	Voltage detection level ⁽³⁾		2.70	2.85	3.00	V
=	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	=	600	=	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	=	100	μS
Vccmin	MCU operating voltage minimum value		2.7	=	=	V

- 1. The measurement condition is Vcc = 2.7 V to 5.5 V and T_{opr} = -40°C to 85 °C.
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 3. Ensure that Vdet2 > Vdet1.

Table 5.7 **Voltage Detection 2 Circuit Electrical Characteristics**

Symbol	Voltage monitor 2 interrupt request generation time ⁽²⁾ Voltage detection circuit self power consumption A) Waiting time until voltage detection circuit operation VCA27 = 1, Vcc = 5.0 V - 600 - 100	Canalitian		Unit		
Symbol		Onit				
Vdet2	Voltage detection level ⁽⁴⁾		3.00	3.30	3.60	V
_	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	_	μS
_	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		l	=	100	μS

- The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.
 Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 4. Ensure that Vdet2 > Vdet1.

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	,	Standard lin. Typ. Max Vdet1		Unit
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	Vdet1	V
tw(Vpor2-Vdet1)	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$ \begin{array}{l} -20^{\circ}C \leq Topr \leq 85^{\circ}C, \\ tw(por2) \geq 0s^{(3)} \end{array} $	-	-	100	ms

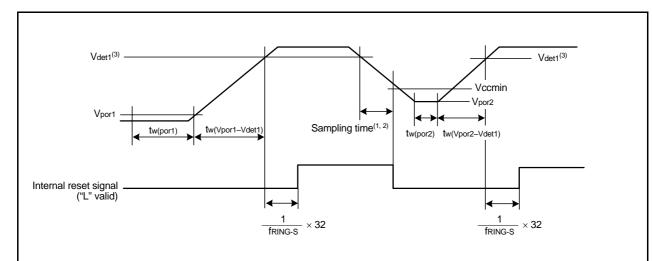

- 1. This condition is not applicable when using with $Vcc \ge 1.0 \text{ V}$.
- 2. When turning power on after the time to hold the external power below effective voltage (Vport) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).

Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition		Standar	d	Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	_	=	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 10 \ s^{(2)}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, \\ tw(por1) \geq 30 \ s^{(2)} $	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\begin{aligned} -20^{\circ}C &\leq Topr < 0^{\circ}C, \\ tw(por1) &\geq 10 \ s^{(2)} \end{aligned}$	-	-	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 1 \ s^{(2)}$	-	-	0.5	ms

NOTES:

- 1. When not using voltage monitor 1, use with Vcc≥ 2.7 V.
- 2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

- Hold the voltage inside the MCU operation voltage range (Vccmin or above) within the sampling time.
 The sampling clock can be selected. Refer to 7. Voltage Detection Circuit for details.
- 3. Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 7. Voltage Detection Circuit for details.

Figure 5.3 **Reset Circuit Electrical Characteristics**

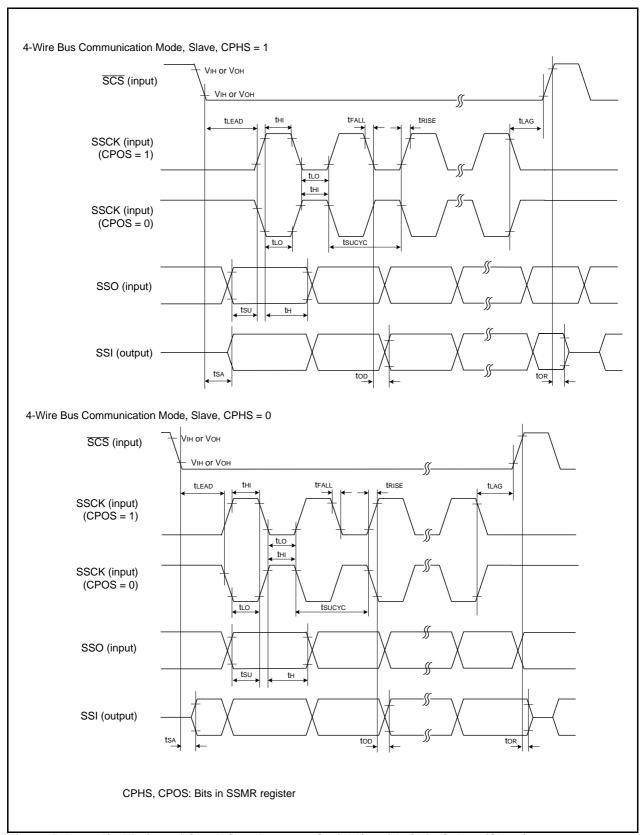


Figure 5.5 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Slave)

Electrical Characteristics (2) [Vcc = 5 V] (Topr = -40 to 85 $^{\circ}$ C, unless otherwise specified.) **Table 5.15**

Symbol	Parameter	Condition		Standard			Unit
Cymbol	1 didiliotoi		Condition	Min.	Тур.	Max.	01110
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode, output pins are open,	High-speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	I	9	15	mA
	other pins are Vss, A/D converter is stopped		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	8	14	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	5	_	mA
		Medium- speed mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	I	4	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	3	_	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		High-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	4	8	mA
			Main clock off High-speed on-chip oscillator on = 8 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	ı	1.5	_	mA
		Low-speed on-chip oscillator mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8 FMR47 = 1	-	110	300	μА
	W	Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = 0	-	40	80	μΑ
		Wait mode	Main clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = 0	_	38	76	μΑ
		Stop mode	Main clock off, Topr = 25 °C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = 0	=	0.8	3.0	μΑ

Timing Requirements

(Unless otherwise specified: Vcc = 5 V, Vss = 0 V at Ta = 25 °C) [Vcc = 5 V]

Table 5.16 XIN Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(XIN)	XIN input cycle time	50	-	ns	
twh(xin)	XIN input "H" width	25	-	ns	
twl(XIN)	XIN input "L" width	25	-	ns	

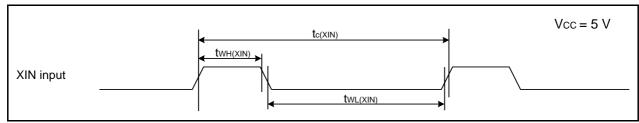


Figure 5.8 XIN Input Timing Diagram when Vcc = 5 V

Table 5.17 CNTR0 Input, CNTR1 Input, INT1 Input

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(CNTR0)	CNTR0 input cycle time	100	=	ns
tWH(CNTR0)	CNTR0 input "H" width	40	=	ns
tWL(CNTR0)	CNTR0 input "L" width	40	Ī	ns

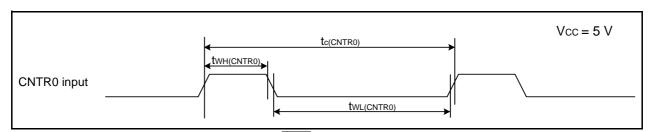


Figure 5.9 CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 5 V

Table 5.18 TCIN Input, INT3 Input

Symbol	Parameter		Standard		
			Max.	Unit	
tc(TCIN)	TCIN input cycle time	400(1)	-	ns	
tWH(TCIN)	TCIN input "H" width	200(2)	_	ns	
tWL(TCIN)	TCIN input "L" width	200(2)	=	ns	

- 1. When using timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.
- 2. When using timer C input capture mode, adjust the pulse width to (1/timer C count source frequency x 1.5) or above.

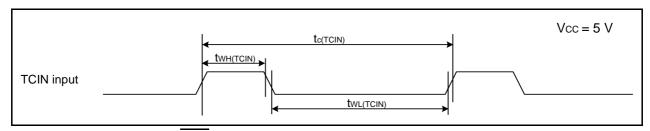


Figure 5.10 TCIN Input, INT3 Input Timing Diagram when Vcc = 5 V

Table 5.21 Electrical Characteristics (3) [Vcc = 3V]

Symbol	Parameter		Condition		Standard			Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except Xout	Except Xout IoH = -1 mA V		Vcc - 0.5	-	Vcc	V
		Хоит	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	=	Vcc	V
			Drive capacity LOW	Іон = -50 μΑ	Vcc - 0.5	_	Vcc	V
Vol	Output "L" voltage	Except P1_0 to P1_3, Xout	IOL = 1 mA		=	=	0.5	V
		P1_0 to P1_3	Drive capacity HIGH	IOL = 2 mA	=	=	0.5	V
			Drive capacity LOW	IOL = 1 mA	=	_	0.5	V
		Хоит	Drive capacity HIGH	IOL = 0.1 mA	=	=	0.5	V
			Drive capacity LOW	IOL = 50 μA	=	=	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT3, KIO, KI1, KI2, KI3, CNTR0, CNTR1, TCIN, RXD0			0.2	-	0.8	V
		RESET			0.2	=	1.8	V
Іін	Input "H" current VI = 3		VI = 3 V		=	=	4.0	μΑ
lıL	Input "L" current		VI = 0 V		_	_	-4.0	μΑ
RPULLUP	Pull-up resistance		VI = 0 V		66	160	500	kΩ
RfXIN	Feedback resistance	XIN			-	3.0	-	MΩ
fring-s	Low-speed on-chip of	scillator frequency			40	125	250	kHz
VRAM	RAM hold voltage		During stop mode	!	2.0	_	_	V

^{1.} Vcc = 2.7 to 3.3 V at Topr = -20 to 85 °C / -40 to 85 °C, f(XIN) = 10 MHz, unless otherwise specified.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Ta = 25 °C) [Vcc = 3 V]

Table 5.23 XIN Input

Symbol	Parameter		Standard	
			Max.	Unit
tc(XIN)	XIN input cycle time	100	=	ns
twh(xin)	XIN input "H" width	40	=	ns
twl(xin)	XIN input "L" width	40	-	ns

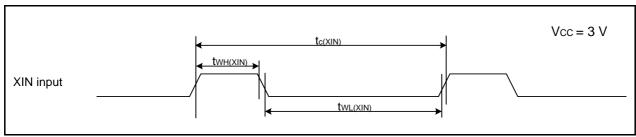
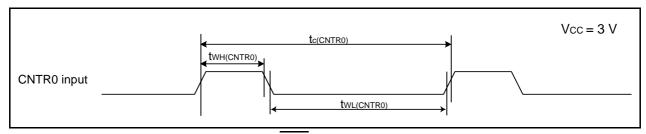
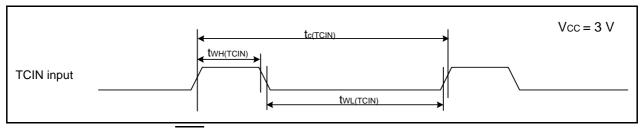



Figure 5.13 XIN Input Timing Diagram when Vcc = 3 V

CNTR0 Input, CNTR1 Input, INT1 Input **Table 5.24**

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(CNTR0)	CNTR0 input cycle time	300	=	ns	
tWH(CNTR0)	CNTR0 input "H" width	120	=	ns	
twl(CNTR0)	CNTR0 input "L" width	120		ns	



CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 3 V Figure 5.14

TCIN Input, INT3 Input **Table 5.25**

Symbol	Parameter		Standard	
			Max.	Unit
tc(TCIN)	TCIN input cycle time	1,200(1)	_	ns
twh(TCIN)	TCIN input "H" width	600(2)	_	ns
tWL(TCIN)	TCIN input "L" width	600(2)	1	ns

- 1. When using the timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.
- 2. When using the timer C input capture mode, adjust the width to (1/timer C count source frequency x 1.5) or above.

TCIN Input, INT3 Input Timing Diagram when Vcc = 3 V Figure 5.15

Table 5.26 Serial Interface

Symbol	Parameter		Standard		
			Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width		-	ns	
tW(CKL)	CLKi input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	=	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

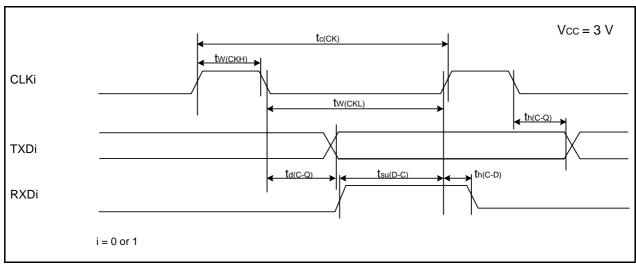


Figure 5.16 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.27 External Interrupt INTO Input

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tW(INH)	INTO input "H" width	380(1)	-	ns
tW(INL)	INTO input "L" width	380(2)	-	ns

- 1. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater _____
- 2. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater

Figure 5.17 External Interrupt INTO Input Timing Diagram when Vcc = 3 V

REVISION HISTORY

R8C/1A Group, R8C/1B Group Datasheet

Dov	Doto		Description
Rev.	Date	Page	Summary
0.10	Feb 18, 2005	_	First Edition issued
0.20	Jun 01, 2005	2, 3	Tables 1.1, 1.2: Item name changed
		9	Table 1.5: Timer C's Pin name revised, Reference Voltage Input Description revised
0.30	Jul 04, 2005	16	Table 4.1 the value after reset revised; 0009h address "XXXXXX00b" → "00h", 000Ah address "00XXX000b" → "00h", 001Eh address "XXXXXX000b" → "00h".
		17	Table 4.2 004Fh address; "SSU/IIC Interrupt Control Register, SSUAIC/IIC2AIC, XXXXX000b" added
		18	Table 4.3 the value after reset revised; 00BCh address "00h" → "00h / 0000X000b"
		20 to 39	5. Electrical Characteristics added
1.00	Sep 01, 2005	all pages	"Under development" deleted
		3	Table 1.2 Performance Outline of the R8C/1B Group; Flash Memory: (Data area) → (Data flash) (Program area) → (Program ROM) revised
		4	Figure 1.1 Block Diagram; "Peripheral Function" added, "System Clock Generation" → "System Clock Generator" revised
		5	Table 1.3 Product Information of R8C/1A Group; "(D)" and "(D): Under development" deleted
		6	Table 1.4 Product Information of R8C/1B Group; "(D)" and "(D): Under development" deleted ROM capacity: (Program area) → (Program ROM), (Data area) → (Data flash) revised
		9	Table 1.5 Pin Description; Power Supply Input: "VCC/AVCC" → "VCC", "VSS/AVSS" → "VSS" revised Analog Power Supply Input: added
		11	Figure 2.1 CPU Register; "Reserved Area" → "Reserved Bit" revised
		13	2.8.10 Reserved Area; "Reserved Area" → "Reserved Bit" revised
		15	3.2 R8C/1B Group, Figure 3.2 Memory Map of R8C/1B Group; "Data area" → "Data flash", "Program area" → "Program ROM" revised

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510