

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, SIO, SSU, UART/USART
Peripherals	LED, POR, Voltage Detect, WDT
Number of I/O	13
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-LSSOP (0.173", 4.40mm Width)
Supplier Device Package	20-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f211b4sp-w4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

1.3 Block Diagram

Figure 1.1 shows a Block Diagram.

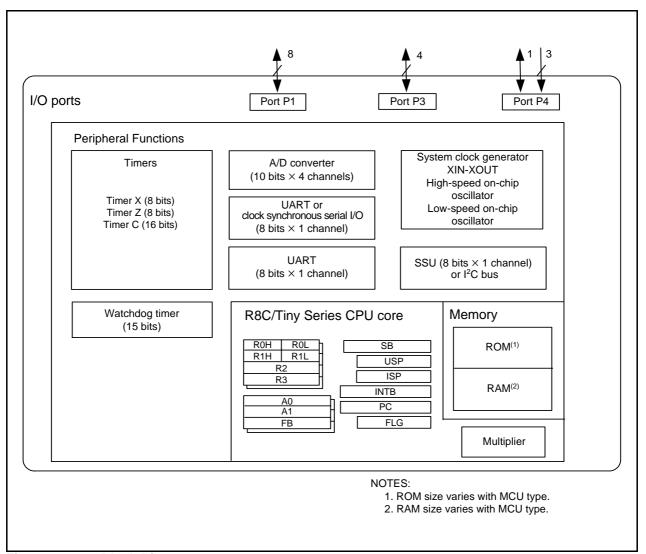


Figure 1.1 Block Diagram

1.4 Product Information

Table 1.3 lists Product Information for R8C/1A Group and Table 1.4 lists Product Information for R8C/1B Group.

Table 1.3 Product Information for R8C/1A Group

Current of October 2006

Type No.	ROM Capacity	RAM Capacity	Package Type	Rema	arks
R5F211A1SP	4 Kbytes	384 bytes	PLSP0020JB-A		
R5F211A2SP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3SP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4SP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DSP	4 Kbytes	384 bytes	PLSP0020JB-A	D version	
R5F211A2DSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3DSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4DSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DD	4 Kbytes	384 bytes	PRDP0020BA-A		
R5F211A2DD	8 Kbytes	512 bytes	PRDP0020BA-A		
R5F211A3DD	12 Kbytes	768 bytes	PRDP0020BA-A		
R5F211A4DD	16 Kbytes	1 Kbyte	PRDP0020BA-A		
R5F211A2NP	8 Kbytes	512 bytes	PWQN0028KA-B		
R5F211A3NP	12 Kbytes	768 bytes	PWQN0028KA-B		
R5F211A4NP	16 Kbytes	1 Kbyte	PWQN0028KA-B		
R5F211A1XXXSP	4 Kbytes	384 bytes	PLSP0020JB-A	Factory programm	ming product (1)
R5F211A2XXXSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3XXXSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4XXXSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1DXXXSP	4 Kbytes	384 bytes	PLSP0020JB-A	D version	
R5F211A2DXXXSP	8 Kbytes	512 bytes	PLSP0020JB-A		
R5F211A3DXXXSP	12 Kbytes	768 bytes	PLSP0020JB-A		
R5F211A4DXXXSP	16 Kbytes	1 Kbyte	PLSP0020JB-A		
R5F211A1XXXDD	4 Kbytes	384 bytes	PRDP0020BA-A	Factory programm	ming product (1)
R5F211A2XXXDD	8 Kbytes	512 bytes	PRDP0020BA-A		
R5F211A3XXXDD	12 Kbytes	768 bytes	PRDP0020BA-A		
R5F211A4XXXDD	16 Kbytes	1 Kbyte	PRDP0020BA-A		
R5F211A2XXXNP	8 Kbytes	512 bytes	PWQN0028KA-B		
R5F211A3XXXNP	12 Kbytes	768 bytes	PWQN0028KA-B		
R5F211A4XXXNP	16 Kbytes	1 Kbyte	PWQN0028KA-B		

NOTE:

1. The user ROM is programmed before shipment.

Table 1.4 Product Information for R8C/1B Group

Current of October 2006

Type No	ROM C	apacity	RAM	Dookogo Typo	Domorko
Type No.	Program ROM	Data Flash	Capacity	Package Type	Remarks
R5F211B1SP	4 Kbytes	1 Kbyte × 2	384 bytes	PLSP0020JB-A	
R5F211B2SP	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	
R5F211B3SP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F211B4SP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PLSP0020JB-A	
R5F211B1DSP	4 Kbytes	1 Kbyte × 2	384 bytes	PLSP0020JB-A	D version
R5F211B2DSP	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	
R5F211B3DSP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F211B4DSP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLSP0020JB-A	
R5F211B1DD	4 Kbytes	1 Kbyte × 2	384 bytes	PRDP0020BA-A	
R5F211B2DD	8 Kbytes	1 Kbyte × 2	512 bytes	PRDP0020BA-A	
R5F211B3DD	12 Kbytes	1 Kbyte × 2	768 bytes	PRDP0020BA-A	
R5F211B4DD	16 Kbytes	1 Kbyte × 2	1 Kbyte	PRDP0020BA-A	
R5F211B2NP	8 Kbytes	1 Kbyte × 2	512 bytes	PWQN0028KA-B	
R5F211B3NP	12 Kbytes	1 Kbyte × 2	768 bytes	PWQN0028KA-B	
R5F211B4NP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PWQN0028KA-B	
R5F211B1XXXSP	4 Kbytes	1 Kbyte × 2	384 bytes	PLSP0020JB-A	Factory programming
R5F211B2XXXSP	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	product (1)
R5F211B3XXXSP	12 Kbytes	1 Kbyte × 2	768 bytes	PLSP0020JB-A	
R5F211B4XXXSP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PLSP0020JB-A	
R5F211B1DXXXSP	4 Kbytes	1 Kbyte x 2	384 bytes	PLSP0020JB-A	D version
R5F211B2DXXXSP	8 Kbytes	1 Kbyte × 2	512 bytes	PLSP0020JB-A	
R5F211B3DXXXSP	12 Kbytes	1 Kbyte x 2	768 bytes	PLSP0020JB-A	
R5F211B4DXXXSP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PLSP0020JB-A	
R5F211B1XXXDD	4 Kbytes	1 Kbyte × 2	384 bytes	PRDP0020BA-A	Factory programming
R5F211B2XXXDD	8 Kbytes	1 Kbyte × 2	512 bytes	PRDP0020BA-A	product (1)
R5F211B3XXXDD	12 Kbytes	1 Kbyte × 2	768 bytes	PRDP0020BA-A	
R5F211B4XXXDD	16 Kbytes	1 Kbyte × 2	1 Kbyte	PRDP0020BA-A	
R5F211B2XXXNP	8 Kbytes	1 Kbyte × 2	512 bytes	PWQN0028KA-B	
R5F211B3XXXNP	12 Kbytes	1 Kbyte × 2	768 bytes	PWQN0028KA-B	
R5F211B4XXXNP	16 Kbytes	1 Kbyte × 2	1 Kbyte	PWQN0028KA-B	

^{1.} The user ROM is programmed before shipment.

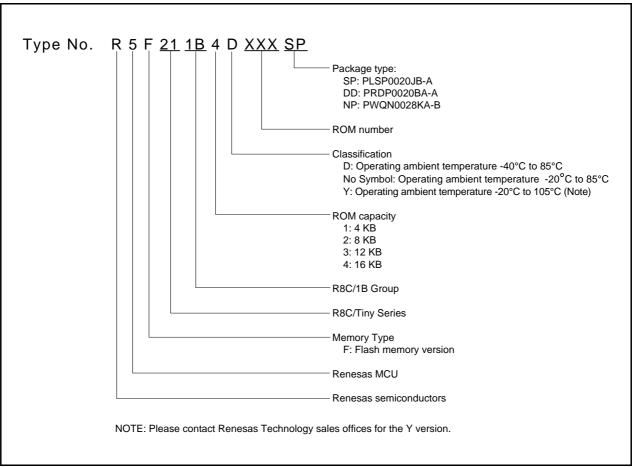


Figure 1.3 Type Number, Memory Size, and Package of R8C/1B Group

Table 1.6 Pin Name Information by Pin Number of PLSP0020JB-A, PRDP0020BA-A Packages

			i					
				I/O Pin	Functions	for Peripheral N	/lodules	
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	I ² C bus Interface	A/D Converter
1		P3_5		CMP1_2		SSCK	SCL	
2		P3_7		CNTR0	TXD1	SSO		
3	RESET							
4	XOUT	P4_7						
5	VSS/AVSS							
6	XIN	P4_6						
7	VCC/AVCC							
8	MODE							
9		P4_5	ĪNT0		RXD1			
10		P1_7	INT10	CNTR00				
11		P1_6			CLK0	SSI01		
12		P1_5	INT11	CNTR01	RXD0			
13		P1_4			TXD0			
14		P1_3	KI3	TZOUT				AN11
15		P1_2	KI2	CMP0_2				AN10
16	VREF	P4_2						
17		P1_1	KI1	CMP0_1				AN9
18		P1_0	KI0	CMP0_0				AN8
19		P3_3	ĪNT3	TCIN/ CMP1_0		SSI00		
20		P3_4		CMP1_1		SCS	SDA	

Table 1.7 Pin Name Information by Pin Number of PWQN0028KA-B Package

				I/O Pin Fu	unctions fo	r Peripheral Mo	dules	
Pin Number	Control Pin	Port	Interrupt	Timer	Serial Interface	Clock Synchronous Serial I/O with Chip Select	I ² C bus Interface	A/D Converter
1	NC							
2	XOUT	P4_7						
3	VSS/AVSS							
4	NC							
5	NC							
6	XIN	P4_6						
7	NC							
8	VCC/AVCC							
9	MODE							
10		P4_5	INT0		RXD1			
11		P1_7	ĪNT10	CNTR00				
12		P1_6			CLK0	SSI01		
13		P1_5	INT11	CNTR01	RXD0			
14		P1_4			TXD0			
15	NC							
16		P1_3	KI3	TZOUT				AN11
17		P1_2	KI2	CMP0_2				AN10
18	NC							
19	NC							
20	VREF	P4_2						
21	NC							
22		P1_1	KI1	CMP0_1				AN9
23		P1_0	KI0	CMP0_0				AN8
24		P3_3	ĪNT3	TCIN/CMP1_0		SSI00		
25		P3_4		CMP1_1		SCS	SDA	
26		P3_5		CMP1_2		SSCK	SCL	
27		P3_7		CNTR0	TXD1	SSO		
28	RESET							

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupts are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

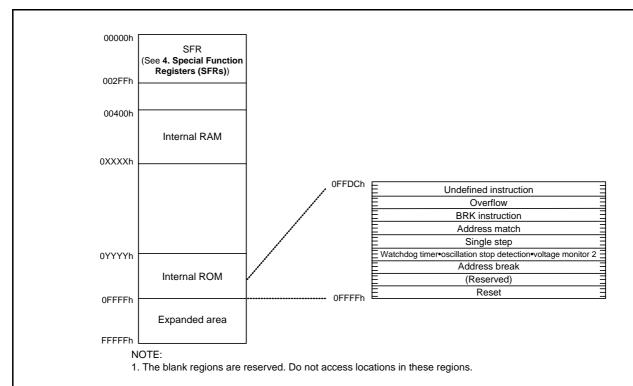
IPL is 3 bits wide, assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. **Memory**

3.1 **R8C/1A Group**


Figure 3.1 is a Memory Map of R8C/1A Group. The R8C/1A Group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 16-Kbyte internal ROM area is allocated addresses 0C000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 1-Kbyte internal RAM area is allocated addresses 00400h to 007FFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

B	Interna	al ROM	Internal RAM		
Part Number	Size	Address 0YYYYh	Size	Address 0XXXXh	
R5F211A4SP, R5F211A4DSP, R5F211A4DD, R5F211A4NP, R5F211A4XXXSP, R5F211A4XXXDD, R5F211A4XXXNP	16 Kbytes	0C000h	1 Kbyte	007FFh	
R5F211A3SP, R5F211A3DSP, R5F211A3DD, R5F211A3NP, R5F211A3XXXSP, R5F211A3XXXSP, R5F211A3XXXDD, R5F211A3XXXNP	12 Kbytes	0D000h	768 bytes	006FFh	
R5F211A2SP, R5F211A2DSP, R5F211A2DD, R5F211A2NP, R5F211A2XXXSP, R5F211A2XXXSP, R5F211A2XXXDD, R5F211A2XXXNP	8 Kbytes	0E000h	512 bytes	005FFh	
R5F211A1SP, R5F211A1DSP, R5F211A1DD, R5F211A1XXXSP, R5F211A1DXXXSP, R5F211A1XXXDD	4 Kbytes	0F000h	384 bytes	0057Fh	

Figure 3.1 Memory Map of R8C/1A Group

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

Cumbal	Parameter	Conditions		Unit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
=	Program/erase endurance ⁽²⁾	R8C/1A Group	100(3)	=	=	times
		R8C/1B Group	1,000(3)	-	-	times
_	Byte program time		-	50	400	μS
_	Block erase time		=	0.4	9	S
td(SR-SUS)	Time delay from suspend request until suspend		_	_	97+CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	_	_	ns
_	Time from suspend until program/erase restart		-	_	3+CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	_	5.5	V
_	Read voltage		2.7	-	5.5	V
_	Program, erase temperature		0	-	60	°C
=	Data hold time ⁽⁸⁾	Ambient temperature = 55 °C	20	-	=	year

- 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance
 - The programming and erasure endurance is defined on a per-block basis.
 - If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting
- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 µs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. In addition, averaging the number of erase operations between block A and block B can further reduce the effective number of rewrites. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. The data hold time includes time that the power supply is off or the clock is not supplied.

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics

Symbol	Parameter	Conditions		Unit		
Symbol	Faranielei	Conditions	Min.	Тур.	Max.	Offic
_	Program/erase endurance ⁽²⁾		10,000(3)	-	_	times
-	Byte program time (Program/erase endurance ≤ 1,000 times)		-	50	400	μS
_	Byte program time (Program/erase endurance > 1,000 times)		-	65	_	μS
_	Block erase time (Program/erase endurance ≤ 1,000 times)		-	0.2	9	S
_	Block erase time (Program/erase endurance > 1,000 times)		_	0.3	_	S
td(SR-SUS)	Time Delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
_	Interval from erase start/restart until following suspend request		650	-	_	μS
_	Interval from program start/restart until following suspend request		0	_	_	ns
_	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
_	Program, erase voltage		2.7	-	5.5	V
=	Read voltage		2.7	-	5.5	V
_	Program, erase temperature		-20 ⁽⁸⁾	_	85	°C
_	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	_	-	year

- 1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85 °C / -40 to 85 °C, unless otherwise specified.
- 2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one. However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

- 3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).
- 4. If emergency processing is required, a suspend request can be generated independent of this characteristic. In that case the normal time delay to suspend can be applied to the request. However, we recommend that a suspend request with an interval of less than 650 μs is only used once because, if the suspend state continues, erasure cannot operate and the incidence of erasure error rises.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring programming/erasure failure rate information should contact their Renesas technical support representative.
- 8. -40 °C for D version.
- 9. The data hold time includes time that the power supply is off or the clock is not supplied.

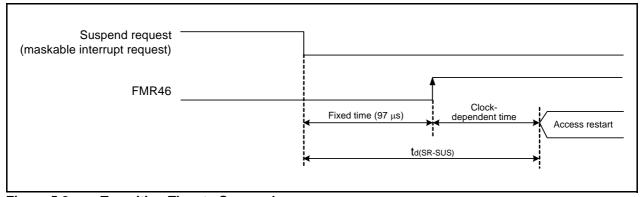


Figure 5.2 **Transition Time to Suspend**

Table 5.6 **Voltage Detection 1 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet1	Voltage detection level ⁽³⁾		2.70	2.85	3.00	V
=	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	=	600	=	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		=	=	100	μS
Vccmin	MCU operating voltage minimum value		2.7	=	=	V

- 1. The measurement condition is Vcc = 2.7 V to 5.5 V and T_{opr} = -40°C to 85 °C.
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.
- 3. Ensure that Vdet2 > Vdet1.

Table 5.7 **Voltage Detection 2 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Offic
Vdet2	Voltage detection level ⁽⁴⁾		3.00	3.30	3.60	V
_	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	_	μS
_	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	600	-	nA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		ı	=	100	μS

- The measurement condition is Vcc = 2.7 V to 5.5 V and Topr = -40°C to 85 °C.
 Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.
- 4. Ensure that Vdet2 > Vdet1.

Table 5.8 Reset Circuit Electrical Characteristics (When Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition	,	Standard Typ. Max. - Vdet1 - 100		Unit
			Min.	Тур.	Max.	
Vpor2	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	Vdet1	V
tw(Vpor2-Vdet1)	Supply voltage rising time when power-on reset is deasserted ⁽¹⁾	$ \begin{array}{l} -20^{\circ}C \leq Topr \leq 85^{\circ}C, \\ tw(por2) \geq 0s^{(3)} \end{array} $	-	-	100	ms

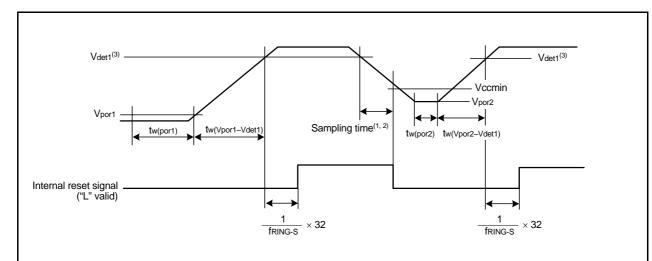

- 1. This condition is not applicable when using with $Vcc \ge 1.0 \text{ V}$.
- 2. When turning power on after the time to hold the external power below effective voltage (Vport) exceeds10 s, refer to Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset).
- 3. tw(por2) is the time to hold the external power below effective voltage (Vpor2).

Table 5.9 Reset Circuit Electrical Characteristics (When Not Using Voltage Monitor 1 Reset)

Symbol	Parameter	Condition		Standar	d	Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage	-20°C ≤ Topr ≤ 85°C	=	=	0.1	V
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \le Topr \le 85^{\circ}C,$ $tw(por1) \ge 10 \ s^{(2)}$	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$ -20^{\circ}C \leq Topr < 0^{\circ}C, \\ tw(por1) \geq 30 \ s^{(2)} $	-	-	100	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$\begin{aligned} -20^{\circ}C &\leq Topr < 0^{\circ}C, \\ tw(por1) &\geq 10 \ s^{(2)} \end{aligned}$	-	_	1	ms
tw(Vpor1-Vdet1)	Supply voltage rising time when power-on reset is deasserted	$0^{\circ}C \leq Topr \leq 85^{\circ}C,$ $tw(por1) \geq 1 \ s^{(2)}$	-	-	0.5	ms

NOTES:

- 1. When not using voltage monitor 1, use with Vcc≥ 2.7 V.
- 2. tw(por1) is the time to hold the external power below effective voltage (Vpor1).

- Hold the voltage inside the MCU operation voltage range (Vccmin or above) within the sampling time.
 The sampling clock can be selected. Refer to 7. Voltage Detection Circuit for details.
- 3. Vdet1 indicates the voltage detection level of the voltage detection 1 circuit. Refer to 7. Voltage Detection Circuit for details.

Figure 5.3 **Reset Circuit Electrical Characteristics**

Table 5.12 Timing Requirements of Clock Synchronous Serial I/O with Chip Select(1)

Symbol	Parameter		Conditions	Standard			1.1-4:4
Symbol	Parameter	Min.		Тур.	Max.	Unit	
tsucyc	SSCK clock cycle time			4	-	=	tcyc(2)
tHI	SSCK clock "H" width			0.4	-	0.6	tsucyc
tLO	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising time	Master		=	-	1	tcyc(2)
		Slave		-	-	1	μS
tFALL	SSCK clock falling time	Master		=	-	1	tcyc(2)
		Slave		-	-	1	μS
tsu	SSO, SSI data input setup time	•		100	-	-	ns
tH	SSO, SSI data input hold time			1	=	=	tcyc(2)
tLEAD	SCS setup time	Slave		1tcyc+50	-	-	ns
tLAG	SCS hold time	Slave		1tcyc+50	=	=	ns
top	SSO, SSI data output delay time			-	-	1	tcyc(2)
tsa	SSI slave access time			-	-	1.5tcyc+100	ns
tor	SSI slave out open time			-	-	1.5tcyc+100	ns

- 1. Vcc = 2.7 to 5.5V, Vss = 0V at Ta = -20 to 85 °C / -40 to 85 °C, unless otherwise specified. 2. 1tcyc = 1/f1(s)

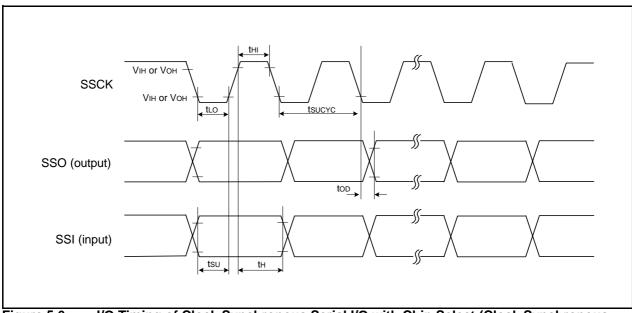
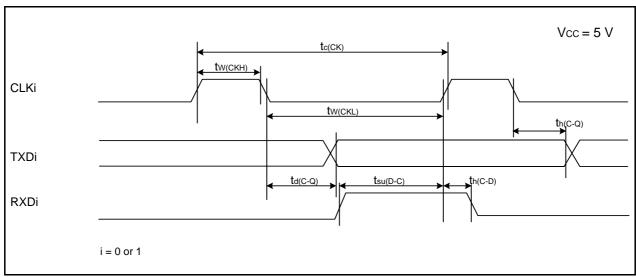
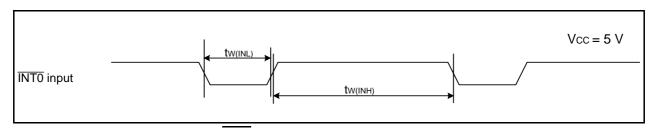



Figure 5.6 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Clock Synchronous Communication Mode)

Table 5.19 Serial Interface

Symbol	Parameter		Standard	
			Max.	Unit
tc(CK)	CLKi input cycle time	200	=	ns
tW(CKH)	CLKi input "H" width	100	-	ns
tW(CKL)	CLKi input "L" width	100	-	ns
td(C-Q)	TXDi output delay time	-	50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	50	=	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1



Serial Interface Timing Diagram when Vcc = 5 V Figure 5.11

Table 5.20 External Interrupt INTO Input

Symbol	Parameter		Standard	
			Max.	Unit
tw(INH)	INTO input "H" width	250 ⁽¹⁾	-	ns
tw(INL)	INTO input "L" width	250 ⁽²⁾	=	ns

- 1. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input HIGH width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INT0 input filter select bit, use an INT0 input LOW width of either (1/digital filter clock frequency x 3) or the minimum value of standard, whichever is greater.

External Interrupt INTO Input Timing Diagram when Vcc = 5 V Figure 5.12

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Ta = 25 °C) [Vcc = 3 V]

Table 5.23 XIN Input

Symbol	Parameter		Standard	
			Max.	Unit
tc(XIN)	XIN input cycle time	100	=	ns
twh(xin)	XIN input "H" width	40	=	ns
twl(xin)	XIN input "L" width	40	-	ns

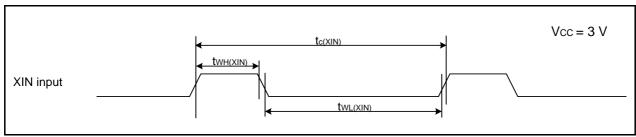
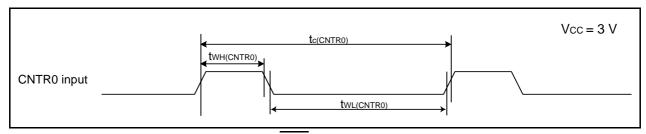
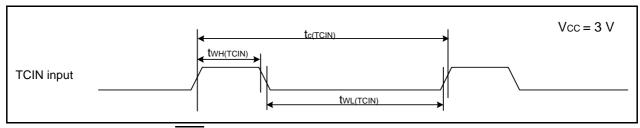



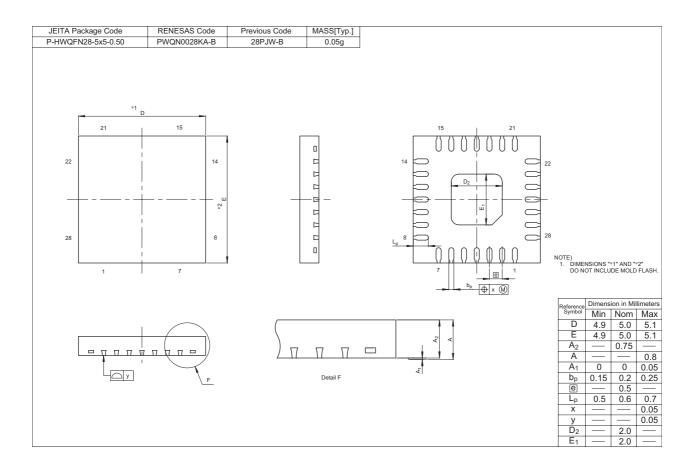
Figure 5.13 XIN Input Timing Diagram when Vcc = 3 V

CNTR0 Input, CNTR1 Input, INT1 Input **Table 5.24**

Symbol	Parameter		Standard	
Symbol			Max.	Unit
tc(CNTR0)	CNTR0 input cycle time		=	ns
tWH(CNTR0)	CNTR0 input "H" width		=	ns
tWL(CNTR0)	CNTR0 input "L" width	120		ns



CNTR0 Input, CNTR1 Input, INT1 Input Timing Diagram when Vcc = 3 V Figure 5.14


TCIN Input, INT3 Input **Table 5.25**

Symbol	Parameter		Standard	
			Max.	Unit
tc(TCIN)	TCIN input cycle time	1,200(1)	_	ns
twh(TCIN)	TCIN input "H" width	600(2)	_	ns
tWL(TCIN)	TCIN input "L" width	600(2)	1	ns

- 1. When using the timer C input capture mode, adjust the cycle time to (1/timer C count source frequency x 3) or above.
- 2. When using the timer C input capture mode, adjust the width to (1/timer C count source frequency x 1.5) or above.

TCIN Input, INT3 Input Timing Diagram when Vcc = 3 V Figure 5.15

REVISION HISTORY	R8C/1A Group, R8C/1B Group Datasheet
------------------	--------------------------------------

Rev.	Date		Description
Nev.	Date	Page	Summary
1.30	Oct 03, 2006	1	1.1 "portable equipment" added
		2, 3	Table 1.1, Table 1.2; Specification Interrupts: "Internal: 9 sources" → "Internal: 11 sources"
		24	Table 5.2; Parameter: System clock added
		45	Package Dimensions; PWQN0028KA-B revised
1.40	Dec 08, 2006	20	Table 4.1; 000Fh: After reset "000XXXXXb" → "00X11111b"
		24	Table 19.2; Parameter: OCD2 = 1 On-chip oscillator clock selected revised

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510