
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, TSI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D - 16bit; D/A - 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-VFQFN Exposed Pad
Supplier Device Package	48-QFN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl16z32vft4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information¹

Part Number	Ме	emory	Maximum number of I\O's
	Flash (KB)	SRAM (KB)	
MKL16Z32VFM4	32	4	28
MKL16Z64VFM4	64	8	28
MKL16Z128VFM4	128	16	28
MKL16Z32VFT4	32	4	40
MKL16Z64VFT4	64	8	40
MKL16Z128VFT4	128	16	40
MKL16Z32VLH4	32	4	54
MKL16Z64VLH4	64	8	54
MKL16Z128VLH4	128	16	54

1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number search.

Related Resources

Туре	Description	Resource
Selector Guide	The Freescale Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector.	Solution Advisor
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	KL16P64M48SF5RM ¹
Data Sheet	The Data Sheet includes electrical characteristics and signal connections.	KL16P64M48SF5 ¹
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_L_xN15J ²
Package	Package dimensions are provided in package drawings.	QFN 32-pin: 98ASA00473D ¹
drawing		QFN 48-pin: 98ASA00466D ¹
		LQFP 64-pin: 98ASS23234W ¹

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

To find the associated resource, go to http://www.freescale.com and perform a search using this term with the "x" replaced by the revision of the device you are using.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V_{LVW2H}	 Level 2 falling (LVWV = 01) 	2.72	2.80	2.88	V	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	V	
V_{LVW4H}	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	 Level 1 falling (LVWV = 00) 	1.74	1.80	1.86	v	
V _{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V _{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	—	±40	—	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

 Table 6.
 V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET_b) • 2.7 V ≤ V _{DD} ≤ 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	1, 2
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -2.5 \text{ mA}$	V _{DD} – 0.5	—	V	
V _{OH}	Output high voltage — High drive pad (except RESET_b) • 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -20 mA • 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -10 mA	$V_{DD} - 0.5$ $V_{DD} - 0.5$		V V	1, 2
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — Normal drive pad • 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA • 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 2.5 mA		0.5 0.5	V V	1

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• VLLS1 → RUN	—	105	117	μs	
	• VLLS3 \rightarrow RUN	_	47	54	μs	
	• LLS \rightarrow RUN	_	4.5	5.0	μs	
	• VLPS → RUN		4.5	5.0	μs	
	• STOP → RUN		4.5	5.0	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DDA}	Analog supply current	—	_	See note	mA	1
IDD_RUNCO_ CM	Run mode current in compute operation - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V		6.1	_	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V	_	3.8	4.4	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	-	4.6	5.2	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24	at 25 °C	6.0	6.2	mA	3, 4
	MHz bus and flash, all peripheral clocks enabled, code executing from flash, at 3.0 V	at 70 °C	6.2	6.4	mA	
		at 125 °C	6.2	6.5	mA	

Table 9. Power consumption operating behaviors

Table continues on the next page...

9

Symbol	Description	Temp.	Тур.	Мах	Unit	Note
		at 70 °C	5.65	8.34	μA	
		at 85 °C	9.58	14.29	μA	
		at 105 °C	20.52	31.74	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current	at 25 °C	1.46	2.06	μA	—
	at 3.0 V	at 50 °C	2.29	3.22	μA	
		at 70 °C	4.10	5.90	μA	
		at 85 °C	6.93	10.02	μA	
		at 105 °C	14.80	22.12	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current	at 25 °C	0.71	1.20	μA	—
	at 3.0V	at 50 °C	1.10	1.71	μA	
		at 70 °C	2.09	3.03	μA	
		at 85 °C	3.80	5.42	μA	
		at 105 °C	8.84	12.98	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.40	0.88	μA	—
	(SMC_STOPCTRL[PORPO] = 0) at 3.0 V	at 50 °C	0.80	1.40	μA	
	3.0 V	at 70 °C	1.79	2.72	μA	
		at 85 °C	3.50	5.10	μA	
		at 105 °C	8.54	12.63	μA	
I _{DD_VLLS0}	Very low-leakage stop mode 0 current	at 25 °C	0.23	0.69	μA	7
	(SMC_STOPCTRL[PORPO] = 1) at 3.0 V	at 50 °C	0.61	1.19	μA	
		at 70 °C	1.59	2.50	μA]
		at 85 °C	3.30	4.89	μA	1
		at 105 °C	8.36	12.41	μA	

Table 9. Power consumption operating behaviors (continued)

- 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current.
- 2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 3. MCG configured for FEI mode.
- 4. Incremental current consumption from peripheral activity is not included.
- 5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced.
- 6. MCG configured for BLPI mode.
- 7. No brownout.

Symbol	Description	Temperature (°C)						Unit
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA

Table continues on the next page ...

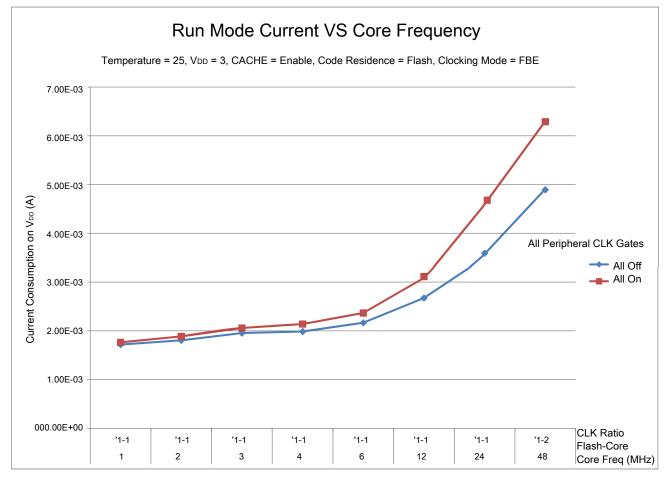

Symbol	Description	Temperature (°C)					Unit	
		-40	25	50	70	85	105	
	placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.							

 Table 10.
 Low power mode peripheral adders — typical value

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.

- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 8 MHz (crystal), f_{SYS} = 48 MHz, f_{BUS} = 24 MHz
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions TEM Cell and Wideband TEM Cell Method

2.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

2.2.8 Capacitance attributes

Table 12. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN}	Input capacitance	—	7	pF

2.3 Switching specifications

2.3.1 Device clock specifications

Table 13. Device clock specifications

Symbol	Description	Min.	Max.	Unit
	Normal run mode	•	•	•
f _{SYS}	System and core clock	_	48	MHz
f _{BUS}	Bus clock	—	24	MHz
f _{FLASH}	Flash clock	_	24	MHz
f _{LPTMR}	LPTMR clock	_	24	MHz
	VLPR and VLPS modes ¹	•	•	
f _{SYS}	System and core clock	_	4	MHz
f _{BUS}	Bus clock	_	1	MHz
f _{FLASH}	Flash clock	—	1	MHz
f _{LPTMR}	LPTMR clock ²	_	24	MHz
f _{ERCLK}	External reference clock	_	16	MHz

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit
f _{LPTMR_ERCLK}	LPTMR external reference clock	—	16	MHz
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)		16	MHz
f _{TPM}	TPM asynchronous clock	—	8	MHz
f _{UART0}	UART0 asynchronous clock	—	8	MHz

Table 13. Device clock specifications (continued)

 The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR.

2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.

2.3.2 General switching specifications

These general-purpose specifications apply to all signals configured for GPIO and UART signals.

 Table 14. General switching specifications

Description	Min.	Max.	Unit	Notes
GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	—	Bus clock cycles	1
External RESET and NMI pin interrupt pulse width — Asynchronous path	100		ns	2
GPIO pin interrupt pulse width — Asynchronous path	16	—	ns	2
Port rise and fall time	_	36	ns	3

1. The greater synchronous and asynchronous timing must be met.

2. This is the shortest pulse that is guaranteed to be recognized.

3. 75 pF load

2.4 Thermal specifications

2.4.1 Thermal operating requirements

Table 15. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	۵°

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71		3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz		1.2	_	mA	
	• 32 MHz		1.5	-	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_		—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—		—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_		-	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	-	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	-	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	-	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	-	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Table continues on the next page ...

Peripheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		_	0	—	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 19. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)		_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	—	ms	

Peripheral operating requirements and behaviors

- 1. Assumes 25 MHz flash clock frequency.
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation	—	2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation	—	1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes	
Program Flash							
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years	—	
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	—	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2	

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

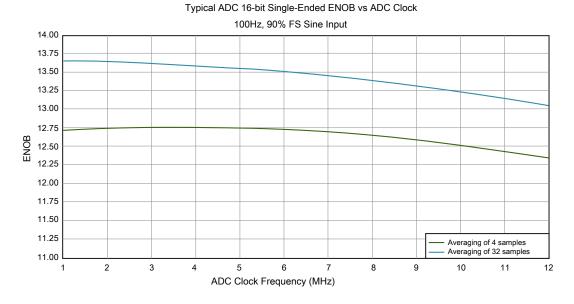


Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 27. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	—	200	μA
IDDLS	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3		V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	—	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	—		0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_		40	μs

Table continues on the next page...

Peripheral operating requirements and behaviors

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
 The standard mode I²C bus specification are the standard mode I²C bus specification.
- 7. $C_b = total capacitance of the one bus line in pF.$

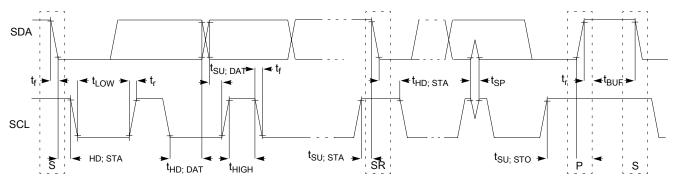
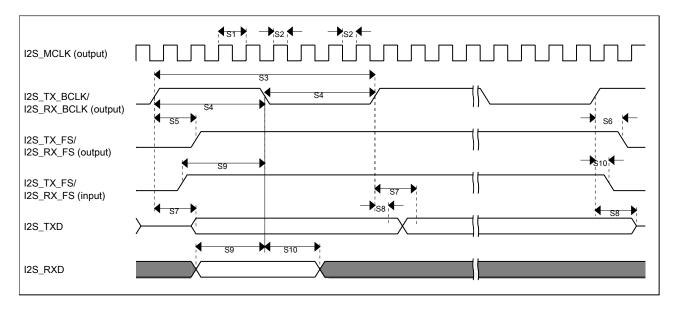


Figure 17. Timing definition for fast and standard mode devices on the I²C bus

3.8.3 UART

See General switching specifications.


3.8.4 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	-	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid		-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid		—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK		-	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	-	ns

Table 37. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Figure 20. I2S/SAI timing — master modes

Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	250	_	ns

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit
TSI_RUNV	Variable power consumption in run mode (depends on oscillator's current selection)	1.0	—	128	μA
TSI_EN	Power consumption in enable mode	_	100	_	μA
TSI_DIS	Power consumption in disable mode		1.2	—	μA
TSI_TEN	TSI analog enable time		66		μs
TSI_CREF	TSI reference capacitor		1.0		pF
TSI_DVOLT	Voltage variation of VP & VM around nominal values	0.19	—	1.03	V

Table 39. TSI electrical specifications (contin

4 Dimensions

4.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to **freescale.com** and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number		
32-pin QFN	98ASA00473D		
48-pin QFN	98ASA00466D		
64-pin LQFP	98ASS23234W		

5 Pinout

5.1 KL16 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

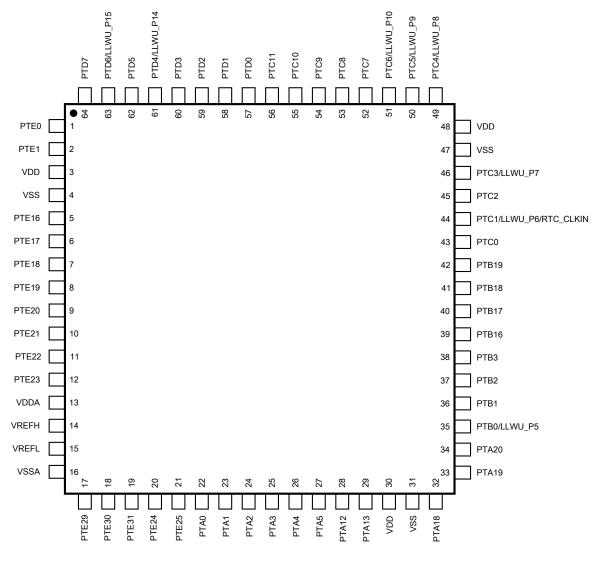


Figure 22. KL16 64-pin LQFP pinout diagram

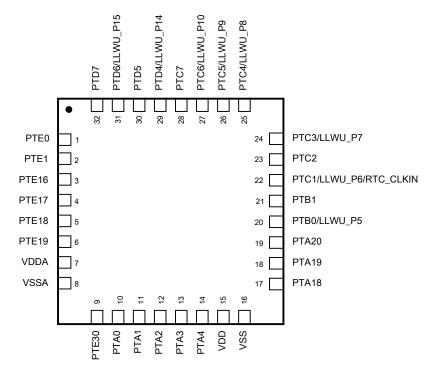


Figure 24. KL16 32-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL16 and MKL16

7 Part identification

Kinetis KL16 Sub-Family, Rev5 08/2014.

7.1 Description

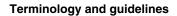
Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields


This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values	
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification 	
KL##	Kinetis family	• KL16	
A	Key attribute	• Z = Cortex-M0+	
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 	
R	Silicon revision	 (Blank) = Main A = Revision after main 	
Т	Temperature range (°C)	• V = -40 to 105	
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) 	
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz	
N	Packaging type	R = Tape and reel	

7.4 Example

This is an example part number:

MKL16Z128VFM4

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

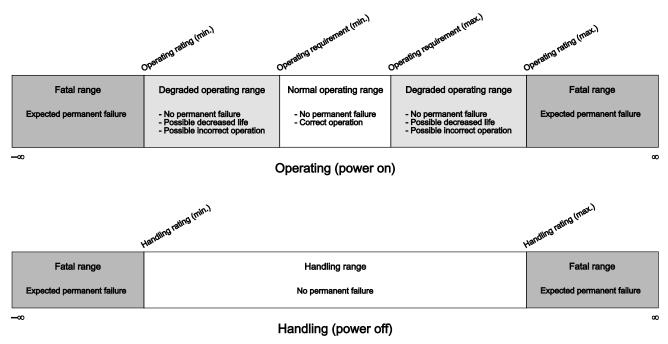
This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

8.3 Definition: Attribute


An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

8.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL16P64M48SF5 Revision 5 08/2014

