E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, TSI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D - 16bit; D/A - 12bit
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl16z64vlh4r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ratings 1

Thermal handling ratings 1.1

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

Moisture handling ratings 1.2

Table 2. Moisture handling ratings

Symbol	Description		Max.	Unit	Notes
MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{LVW1H}	Level 1 falling (LVWV = 00)	2.62	2.70	2.78	V	
V_{LVW2H}	 Level 2 falling (LVWV = 01) 	2.72	2.80	2.88	V	
V _{LVW3H}	 Level 3 falling (LVWV = 10) 	2.82	2.90	2.98	V	
V_{LVW4H}	• Level 4 falling (LVWV = 11)	2.92	3.00	3.08	V	
V _{HYSH}	Low-voltage inhibit reset/recover hysteresis — high range	_	±60	_	mV	_
V _{LVDL}	Falling low-voltage detect threshold — low range (LVDV=00)	1.54	1.60	1.66	V	_
	Low-voltage warning thresholds — low range					1
V _{LVW1L}	 Level 1 falling (LVWV = 00) 	1.74	1.80	1.86	v	
V _{LVW2L}	 Level 2 falling (LVWV = 01) 	1.84	1.90	1.96	v	
V _{LVW3L}	 Level 3 falling (LVWV = 10) 	1.94	2.00	2.06	v	
V_{LVW4L}	• Level 4 falling (LVWV = 11)	2.04	2.10	2.16	v	
V _{HYSL}	Low-voltage inhibit reset/recover hysteresis — low range	—	±40	—	mV	_
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	—
t _{LPO}	Internal low power oscillator period — factory trimmed	900	1000	1100	μs	_

 Table 6.
 V_{DD} supply LVD and POR operating requirements (continued)

1. Rising thresholds are falling threshold + hysteresis voltage

2.2.3 Voltage and current operating behaviors Table 7. Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — Normal drive pad (except RESET_b) • 2.7 V ≤ V _{DD} ≤ 3.6 V, I _{OH} = -5 mA	V _{DD} – 0.5	_	V	1, 2
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -2.5 \text{ mA}$	V _{DD} – 0.5	—	V	
V _{OH}	Output high voltage — High drive pad (except RESET_b) • 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -20 mA • 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -10 mA	$V_{DD} - 0.5$ $V_{DD} - 0.5$		V V	1, 2
I _{OHT}	Output high current total for all ports	—	100	mA	
V _{OL}	Output low voltage — Normal drive pad • 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 5 mA • 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 2.5 mA		0.5 0.5	V V	1

Table continues on the next page...

Board type	Symbol	Description	64 LQFP	48 QFN	32 QFN	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	71	83	98	°C/W	1
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	30	34	°C/W	
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	59	68	82	°C/W	
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	24	28	°C/W	
_	R _{θJB}	Thermal resistance, junction to board	35	12	13	°C/W	2
_	R _{θJC}	Thermal resistance, junction to case	21	2.3	2.3	°C/W	3
_	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	6	5	8	°C/W	4

2.4.2 Thermal attributes

Table 16. Thermal attributes

- 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).
- 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board.
- 3. Determined according to Method 1012.1 of MIL-STD 883, *Test Method Standard, Microcircuits*, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.
- 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 17. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit
J1	SWD_CLK frequency of operation			
	Serial wire debug	0	25	MHz
J2	SWD_CLK cycle period	1/J1	_	ns
J3	SWD_CLK clock pulse width			
	Serial wire debug	20		ns
J4	SWD_CLK rise and fall times	—	3	ns
J9	SWD_DIO input data setup time to SWD_CLK rise	10	_	ns
J10	SWD_DIO input data hold time after SWD_CLK rise	0	_	ns
J11	SWD_CLK high to SWD_DIO data valid	_	32	ns
J12	SWD_CLK high to SWD_DIO high-Z	5	_	ns

Table 17.	SWD full voltage range electricals ((continued)
-----------	--------------------------------------	-------------

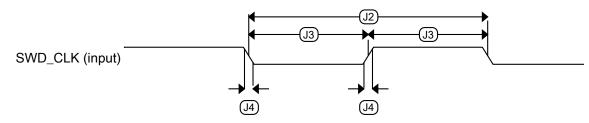
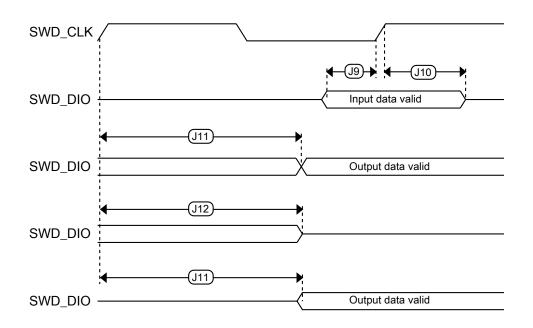



Figure 4. Serial wire clock input timing

3.2 System modules

There are no specifications necessary for the device's system modules.

3.3 Clock modules

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — t nominal V _{DD} and 25 °C	—	32.768	—	kHz	
f _{ints_t}	Internal reference user trimmed	frequency (slow clock) —	31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	frequency at fixed	med average DCO output voltage and temperature — I] and C4[SCFTRIM]	_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}		trimmed average DCO output Itage and temperature	_	+0.5/-0.7	± 3	%f _{dco}	1, 2
Δf_{dco_t}		trimmed average DCO output ed voltage and temperature	_	± 0.4	± 1.5	%f _{dco}	1, 2
f _{intf_ft}		frequency (fast clock) — t nominal V _{DD} and 25 °C	—	4	—	MHz	
∆f _{intf_ft}	Frequency deviati (fast clock) over to factory trimmed a	_	+1/-2	± 3	%f _{intf_ft}	2	
f _{intf_t}		frequency (fast clock) — ominal V _{DD} and 25 °C	3	—	5	MHz	
f _{loc_low}	Loss of external c RANGE = 00	lock minimum frequency —	(3/5) x f _{ints_t}	—	—	kHz	
f _{loc_high}	Loss of external c RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	—	_	kHz	
		FL	L				
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS = 00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS = 01) $1280 \times f_{fll_ref}$	40	41.94	48	MHz	
f _{dco_t_DMX3} 2	DCO output frequency	Low range (DRS = 00)	_	23.99		MHz	5, 6

Table 18. MCG specifications

Table continues on the next page...

Kinetis KL16 Sub-Family, Rev5 08/2014.

19

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$732 \times f_{fll_ref}$					
		Mid range (DRS = 01)	_	47.97	—	MHz]
		$1464 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	—	ps	7
	• f _{VCO} = 48 M	1Hz					
t _{fll_acquire}	FLL target freque	FLL target frequency acquisition time		_	1	ms	8
		PL	L				1
f _{vco}	VCO operating fre	equency	48.0	_	100	MHz	
I _{pli}	PLL operating curves PLL at 96 N 2 MHz, VDI	_	1060	—	μΑ	9	
I _{pli}	PLL operating cur PLL at 48 N 2 MHz, VDI	_	600	_	μΑ	9	
f _{pll_ref}	PLL reference fre	quency range	2.0	_	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					10
	• f _{vco} = 48 Mł	Hz	—	120	_	ps	
	• f _{vco} = 100 N	ЛНz	—	50	_	ps	
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)					10
	• f _{vco} = 48 MI	Hz	—	1350	_	ps	
	• f _{vco} = 100 M	ЛНz	—	600	_	ps	
D _{lock}	Lock entry freque	ncy tolerance	± 1.49		± 2.98	%	
D _{unl}	Lock exit frequen	cy tolerance	± 4.47	_	± 5.97	%	
t _{pll_lock}	Lock detector det	ection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	11

Table 18. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. The deviation is relative to the factory trimmed frequency at nominal V_{DD} and 25 °C, $f_{ints_{ft}}$.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
- The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature must be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification is based on standard deviation (RMS) of period or frequency.
- 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

20

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71		3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz		1.2	_	mA	
	• 32 MHz		1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_		—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—		—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_		-	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	-	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	-	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	-	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	-	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
		_	0	—	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

Table 19. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x, C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications Table 20. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)		_	48	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750	_	ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	—	ms	

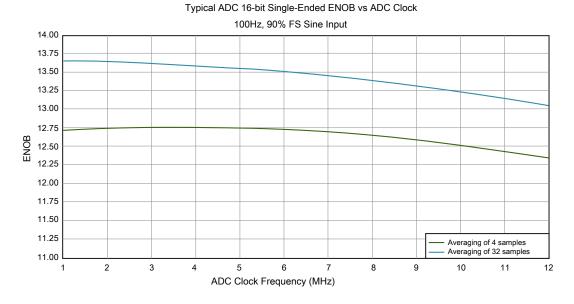


Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

3.6.2 CMP and 6-bit DAC electrical specifications Table 27. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	_	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	—	200	μA
IDDLS	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20	μA
V _{AIN}	Analog input voltage	V _{SS} – 0.3		V _{DD}	V
V _{AIO}	Analog input offset voltage	—	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	—	5	_	mV
	• CR0[HYSTCTR] = 01	_	10	_	mV
	• CR0[HYSTCTR] = 10	—	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_	_	V
V _{CMPOI}	Output low	—		0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_		40	μs

Table continues on the next page...

Table 27.	Comparator and	6-bit DAC electrical	I specifications	(continued)
-----------	----------------	----------------------	------------------	-------------

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DAC6b}	6-bit DAC current adder (enabled)	—	7	—	μA
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3	—	0.3	LSB

^{1.} Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}-0.6 V.

- Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.
- 3. 1 LSB = $V_{reference}/64$

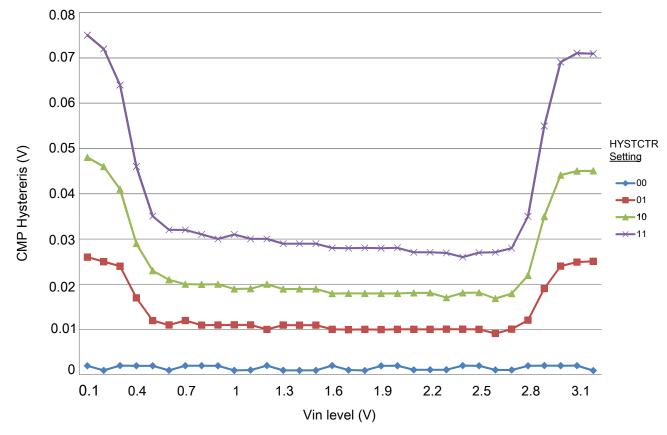


Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

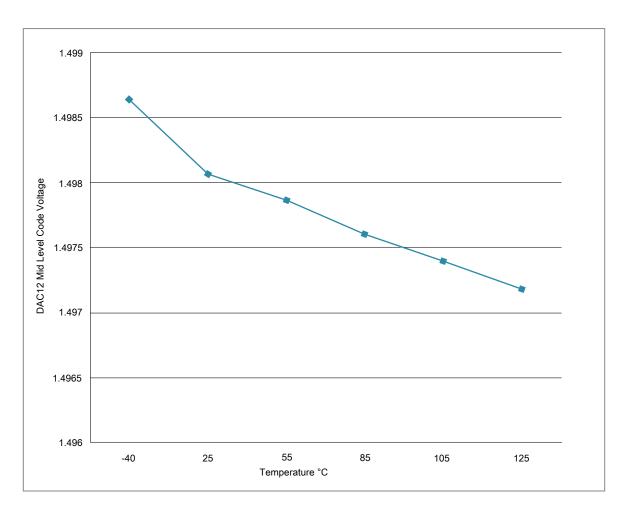


Figure 12. Offset at half scale vs. temperature

3.7 Timers

See General switching specifications.

3.8 Communication interfaces

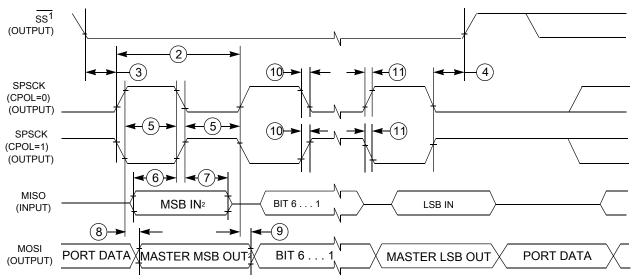
3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	18	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	—	15	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	-
	t _{FO}	Fall time output				

Table 30. SPI master mode timing on slew rate disabled pads


1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_

Table continues on the next page...

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 1)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2.5	—	ns	—
7	t _{HI}	Data hold time (inputs)	3.5	—	ns	
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	31	ns	
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	_
	t _{FO}	Fall time output]			

Table 32. SPI slave mode timing on slew rate disabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

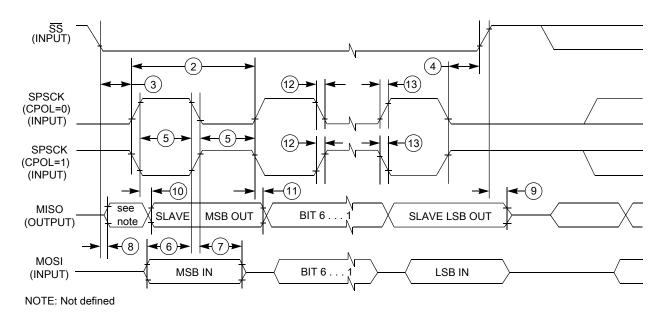


Figure 16. SPI slave mode timing (CPHA = 1)

3.8.2 Inter-Integrated Circuit Interface (I2C) timing Table 34. I2C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.3	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	—	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ³ , ⁶	—	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	_	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	—	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	10	—	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	—	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	33	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	_	ns
S17	I2S_RXD setup before I2S_RX_BCLK	10	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹		28	ns

Table 36. I2S/SAI slave mode timing

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

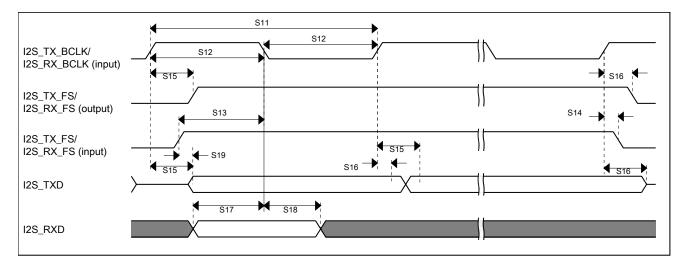


Figure 19. I2S/SAI timing — slave modes

3.8.4.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Num.	Characteristic	Min.	Max.	Unit
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	-	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after — ns I2S_TX_BCLK/I2S_RX_BCLK — —		ns	
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — ns		ns	
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	-	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK		—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	—	72	ns

Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

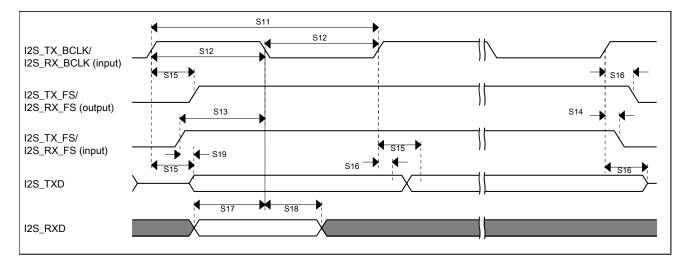


Figure 21. I2S/SAI timing — slave modes

3.9 Human-machine interfaces (HMI)

3.9.1 TSI electrical specifications

Table 39. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
TSI_RUNF	Fixed power consumption in run mode	_	100	_	μA

Table continues on the next page...

44

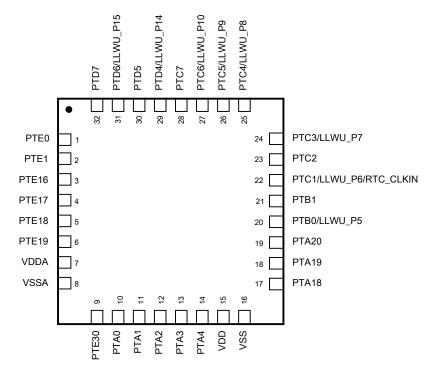


Figure 24. KL16 32-pin QFN pinout diagram

6 Ordering parts

6.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to **freescale.com** and perform a part number search for the following device numbers: PKL16 and MKL16

7 Part identification

Kinetis KL16 Sub-Family, Rev5 08/2014.

7.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values	
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification 	
KL##	Kinetis family	• KL16	
A	Key attribute	• Z = Cortex-M0+	
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB 	
R	Silicon revision	 (Blank) = Main A = Revision after main 	
Т	Temperature range (°C)	• V = -40 to 105	
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm) 	
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz	
N	Packaging type	R = Tape and reel	

7.4 Example

This is an example part number:

MKL16Z128VFM4

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

Table 40.	Typical value conditions	
-----------	--------------------------	--

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes
3	3/2014	Updated the front page and restructured the chapters
4	5/2014	Updated Power consumption operating behaviorsUpdated Definition: Operating behavior
5	08/2014	 Updated related source in the front page Updated Power consumption operating behaviors

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL16P64M48SF5 Revision 5 08/2014

