

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusActiveCore ProcessorMSP430 CPU16Core Size16-BitSpeed8MHzConnectivity-PeripheralsBrown-out Detect/Reset, LCD, POR, PWM, WDTNumber of I/O48Program Memory Size32KB (32K x 8 + 256B)Program Memory TypeFLASHEEPROM Size-Nufsze1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalMounting TypeSurface MountPackage / Case64-LQFP (10x10)		
Core Size16-BitSpeed8MHzConnectivity-PeripheralsBrown-out Detect/Reset, LCD, POR, PWM, WDTNumber of I/O48Program Memory Size32KB (32K x 8 + 256B)Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Product Status	Active
Speed8MHzConnectivity-PeripheralsBrown-out Detect/Reset, LCD, POR, PWM, WDTNumber of I/O48Program Memory Size32KB (32K x 8 + 256B)Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Core Processor	MSP430 CPU16
Connectivity-PeripheralsBrown-out Detect/Reset, LCD, POR, PWM, WDTNumber of I/O48Program Memory Size32KB (32K x 8 + 256B)Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Core Size	16-Bit
PeripheralsBrown-out Detect/Reset, LCD, POR, PWM, WDTNumber of I/O48Program Memory Size32KB (32K x 8 + 256B)Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Speed	8MHz
Number of I/O48Program Memory Size32KB (32K × 8 + 256B)Program Memory TypeFLASHEEPROM Size-RAM Size1K × 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Connectivity	-
Program Memory Size32KB (32K x 8 + 256B)Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Peripherals	Brown-out Detect/Reset, LCD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Number of I/O	48
EEPROM Size-RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Program Memory Size	32KB (32K x 8 + 256B)
RAM Size1K x 8Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.8V ~ 3.6VData ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	EEPROM Size	<u> </u>
Data ConvertersSlope A/DOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	RAM Size	1K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP	Data Converters	Slope A/D
Mounting Type Surface Mount Package / Case 64-LQFP	Oscillator Type	Internal
Package / Case 64-LQFP	Operating Temperature	-40°C ~ 85°C (TA)
	Mounting Type	Surface Mount
Supplier Device Package64-LQFP (10x10)	Package / Case	64-LQFP
	Supplier Device Package	64-LQFP (10x10)
Purchase URL https://www.e-xfl.com/product-detail/texas-instruments/msp430f417ipm	Purchase URL	https://www.e-xfl.com/product-detail/texas-instruments/msp430f417ipm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ratings 1

Thermal handling ratings 1.1

Table 1. Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	_	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

Moisture handling ratings 1.2

Table 2. Moisture handling ratings

Symbol	Description		Max.	Unit	Notes
MSL	Moisture sensitivity level		3		1

1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

1.3 ESD handling ratings

Table 3. ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105 °C	-100	+100	mA	3

1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).

2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.

Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• VLLS1 → RUN	—	105	117	μs	
	• VLLS3 \rightarrow RUN	_	47	54	μs	
	• LLS \rightarrow RUN	_	4.5	5.0	μs	
	• VLPS → RUN		4.5	5.0	μs	
	• STOP → RUN		4.5	5.0	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11).

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

Symbol	Description	Temp.	Тур.	Max	Unit	Note
I _{DDA}	Analog supply current	—	_	See note	mA	1
IDD_RUNCO_ CM	Run mode current in compute operation - 48 MHz core / 24 MHz flash/ bus disabled, LPTMR running using 4 MHz internal reference clock, CoreMark® benchmark code executing from flash, at 3.0 V		6.1	_	mA	2
I _{DD_RUNCO}	Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash, at 3.0 V	_	3.8	4.4	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code executing from flash, at 3.0 V	-	4.6	5.2	mA	3
I _{DD_RUN}	Run mode current - 48 MHz core / 24	at 25 °C	6.0	6.2	mA	3, 4
	MHz bus and flash, all peripheral clocks enabled, code executing from	at 70 °C	6.2	6.4	mA	
	flash, at 3.0 V	at 125 °C	6.2	6.5	mA	

Table 9. Power consumption operating behaviors

Table continues on the next page...

9

Symbol	Description			Т	empera	ature (°	C)		Unit
			-40	25	50	70	85	105	
I _{IREFSTEN32KHz}	32 kHz internal reference cloc Measured by entering STOP i 32 kHz IRC enabled.		52	52	52	52	52	52	μA
I _{EREFSTEN4MHz}	External 4 MHz crystal clock a Measured by entering STOP of with the crystal enabled.		206	228	237	245	251	258	μA
I _{EREFSTEN32KHz}	External 32 kHz crystal clock	VLLS1	440	490	540	560	570	580	nA
	adder by means of the OSC0_CR[EREFSTEN and	VLLS3	440	490	540	560	570	580	
	EREFSTEN] bits. Measured	LLS	490	490	540	560	570	680	
	by entering all modes with	VLPS	510	560	560	560	610	680	
	the crystal enabled.	STOP	510	560	560	560	610	680	
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.		22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.			357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	115200 baud rate. Includes selected clock source power consumption.	OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{TPM}	TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output	MCGIRCLK (4 MHz internal reference clock)	86	86	86	86	86	86	μA
	compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents.	OSCERCLK (4 MHz external crystal)	235	256	265	274	280	287	
I _{BG}	Bandgap adder when BGEN b device is placed in VLPx, LLS mode.		45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combin measured values at V _{DD} and V		366	366	366	366	366	366	μA

Table 10. Low power mode peripheral adders — typical value (continued)

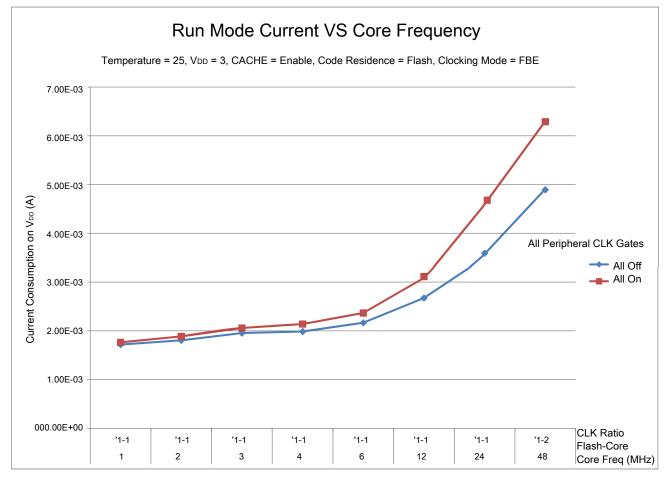

Symbol	Description		Temperature (°C)				Unit	
		-40	25	50	70	85	105	
	placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.							

 Table 10.
 Low power mode peripheral adders — typical value

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE for run mode, and BLPE for VLPR mode
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

3.3.2 Oscillator electrical specifications

3.3.2.1 Oscillator DC electrical specifications Table 19. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V_{DD}	Supply voltage	1.71		3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz		1.2	_	mA	
	• 32 MHz		1.5	_	mA	
IDDOSC	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
	• 4 MHz	_	400	_	μA	
	• 8 MHz (RANGE=01)	_	500	_	μA	
	• 16 MHz	_	2.5	_	mA	
	• 24 MHz	_	3	_	mA	
	• 32 MHz	_	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_		—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—		—	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low- power mode (HGO=0)	_		-	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1	-	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_	_	-	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	-	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	—	_	-	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					

Table continues on the next page ...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
		12-bit modes	_	±0.2	-0.3 to 0.5		
INL	Integral non- linearity	12-bit modes	_	±1.0	-2.7 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.5	-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes	_	-1 to 0	—	LSB ⁴	
	error	• ≤13-bit modes	_	—	±0.5		
ENOB	Effective number of bits	16-bit differential mode	12.8	14.5	_	bits	6
		• Avg = 32	11.9	13.8		bits	
		• Avg = 4					
		16-bit single-ended mode	12.2	13.9	-	bits	
		• Avg = 32	11.4	13.1	-	bits	
		• Avg = 4					
SINAD	Signal-to-noise plus distortion	See ENOB	6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic distortion	16-bit differential mode	_	-94	_	dB	7
		• Avg = 32	_	-85	_	dB	
		16-bit single-ended mode					
		• Avg = 32					
SFDR	Spurious free dynamic range	16-bit differential mode	82	95		dB	7
	aynamic range	• Avg = 32	78	90		dB	
		16-bit single-ended mode	10	30		чD	
		 Avg = 32 					
-		,					
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)

Table 26.	16-bit ADC characteristics	$(V_{REFH} = V)$	V _{DDA} , V _{REFL} :	= V _{SSA}) (continued)
-----------	----------------------------	------------------	--	----------------------------------

Table continues on the next page...

Peripheral operating requirements and behaviors

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 26. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{\text{REFH}} V_{\text{REFL}})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

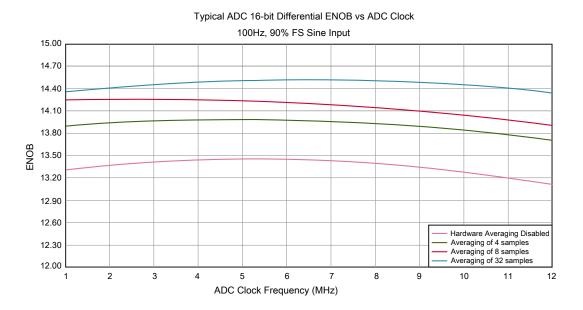


Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Peripheral operating requirements and behaviors

3.6.3.2 12-bit DAC operating behaviors Table 29. 12-bit DAC operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA_DACL} P	Supply current — low-power mode		—	250	μΑ	
I _{DDA_DACH} P	Supply current — high-speed mode	_	—	900	μA	
t _{DACLP}	Full-scale settling time (0x080 to 0xF7F) — low-power mode	_	100	200	μs	1
t _{DACHP}	Full-scale settling time (0x080 to 0xF7F) — high-power mode	—	15	30	μs	1
t _{CCDACLP}	Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode	_	0.7	1	μs	1
V _{dacoutl}	DAC output voltage range low — high- speed mode, no load, DAC set to 0x000	_	—	100	mV	
V _{dacouth}	DAC output voltage range high — high- speed mode, no load, DAC set to 0xFFF	V _{DACR} -100	—	V _{DACR}	mV	
INL	Integral non-linearity error — high speed mode	—	—	±8	LSB	2
DNL	Differential non-linearity error — V _{DACR} > 2 V	—	—	±1	LSB	3
DNL	Differential non-linearity error — V _{DACR} = VREF_OUT	_	—	±1	LSB	4
V _{OFFSET}	Offset error	_	±0.4	±0.8	%FSR	5
E _G	Gain error	_	±0.1	±0.6	%FSR	5
PSRR	Power supply rejection ratio, $V_{DDA} \ge 2.4 V$	60	—	90	dB	
T _{CO}	Temperature coefficient offset voltage	—	3.7	—	μV/C	6
T_{GE}	Temperature coefficient gain error	—	0.000421	—	%FSR/C	
Rop	Output resistance (load = $3 \text{ k}\Omega$)	—	—	250	Ω	
SR	Slew rate -80h→ F7Fh→ 80h				V/µs	
	 High power (SP_{HP}) 	1.2	1.7	—		
	 Low power (SP_{LP}) 	0.05	0.12	—		
BW	3dB bandwidth				kHz	
	 High power (SP_{HP}) 	550		_		
	• Low power (SP _{LP})	40		_		

1. Settling within ± 1 LSB

2. The INL is measured for 0 + 100 mV to V_{DACR} –100 mV

3. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV

4. The DNL is measured for 0 + 100 mV to V_{DACR} –100 mV with V_{DDA} > 2.4 V 5. Calculated by a best fit curve from V_{SS} + 100 mV to V_{DACR} – 100 mV

6. V_{DDA} = 3.0 V, reference select set for V_{DDA} (DACx_CO:DACRFS = 1), high power mode (DACx_CO:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device

32

3.8.1 SPI switching specifications

The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices.

All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x	ns	2
				t _{periph}		
3	t _{Lead}	Enable lead time	1/2		t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	—	t _{SPSCK}	—
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x	ns	—
				t _{periph}		
6	t _{SU}	Data setup time (inputs)	18	—	ns	—
7	t _{HI}	Data hold time (inputs)	0	—	ns	—
8	t _v	Data valid (after SPSCK edge)	—	15	ns	—
9	t _{HO}	Data hold time (outputs)	0	_	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	_
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	25	ns	-
	t _{FO}	Fall time output				

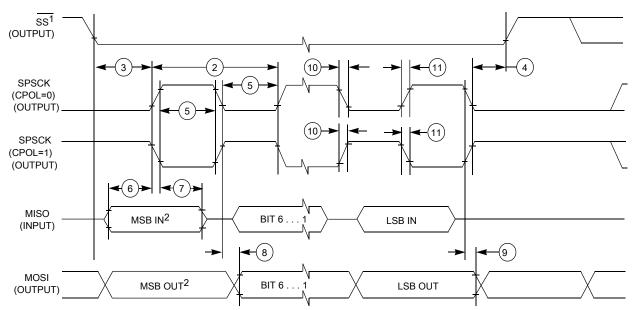
Table 30. SPI master mode timing on slew rate disabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	f _{periph} /2048	f _{periph} /2	Hz	1
2	t _{SPSCK}	SPSCK period	2 x t _{periph}	2048 x t _{periph}	ns	2
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	twspsck	Clock (SPSCK) high or low time	t _{periph} - 30	1024 x t _{periph}	ns	_
6	t _{SU}	Data setup time (inputs)	96	_	ns	_
7	t _{HI}	Data hold time (inputs)	0		ns	_

Table continues on the next page...

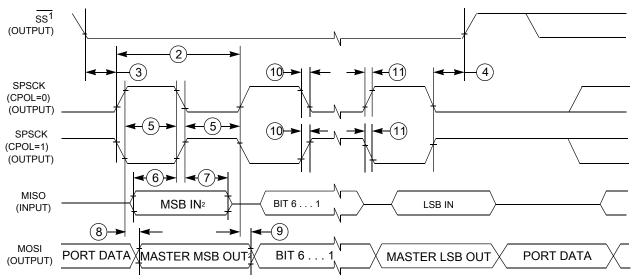

Peripheral operating requirements and behaviors

Num.	Symbol	Description	Min.	Max.	Unit	Note
8	t _v	Data valid (after SPSCK edge)	—	52	ns	—
9	t _{HO}	Data hold time (outputs)	0	—	ns	—
10	t _{RI}	Rise time input	—	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
11	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

 Table 31. SPI master mode timing on slew rate enabled pads (continued)

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2. $t_{periph} = 1/f_{periph}$



1. If configured as an output.

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 13. SPI master mode timing (CPHA = 0)

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 14. SPI master mode timing (CPHA = 1)

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	—	ns	2
3	t _{Lead}	Enable lead time	1	—	t _{periph}	—
4	t _{Lag}	Enable lag time	1	—	t _{periph}	
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	—	ns	—
6	t _{SU}	Data setup time (inputs)	2.5	—	ns	—
7	t _{HI}	Data hold time (inputs)	3.5	—	ns	
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	—	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	31	ns	
11	t _{HO}	Data hold time (outputs)	0	—	ns	—
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	25	ns	_
	t _{FO}	Fall time output]			

Table 32. SPI slave mode timing on slew rate disabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

- 2. $t_{periph} = 1/f_{periph}$
- 3. Time to data active from high-impedance state
- 4. Hold time to high-impedance state

Peripheral operating requirements and behaviors

- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
 The standard mode I²C bus specification are the standard mode I²C bus specification.
- 7. $C_b = total capacitance of the one bus line in pF.$

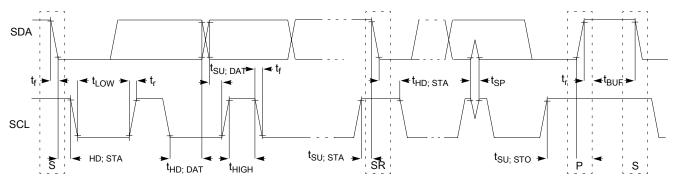


Figure 17. Timing definition for fast and standard mode devices on the I²C bus

3.8.3 UART

See General switching specifications.

3.8.4 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

Pinout

64 LQFP	48 QFN	32 QFN	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
1	-	1	PTE0	DISABLED		PTE0	SPI1_MISO	UART1_TX	RTC_ CLKOUT	CMP0_OUT	I2C1_SDA	
2	_	2	PTE1	DISABLED		PTE1	SPI1_MOSI	UART1_RX		SPI1_MISO	I2C1_SCL	
3	1	_	VDD	VDD	VDD							
4	2	-	VSS	VSS	VSS							
5	3	3	PTE16	ADC0_DP1/ ADC0_SE1	ADC0_DP1/ ADC0_SE1	PTE16	SPI0_PCS0	UART2_TX	TPM_CLKIN0			
6	4	4	PTE17	ADC0_DM1/ ADC0_SE5a	ADC0_DM1/ ADC0_SE5a	PTE17	SPI0_SCK	UART2_RX	TPM_CLKIN1		LPTMR0_ ALT3	
7	5	5	PTE18	ADC0_DP2/ ADC0_SE2	ADC0_DP2/ ADC0_SE2	PTE18	SPI0_MOSI		I2C0_SDA	SPI0_MISO		
8	6	6	PTE19	ADC0_DM2/ ADC0_SE6a	ADC0_DM2/ ADC0_SE6a	PTE19	SPI0_MISO		I2C0_SCL	SPI0_MOSI		
9	7	-	PTE20	ADC0_DP0/ ADC0_SE0	ADC0_DP0/ ADC0_SE0	PTE20		TPM1_CH0	UART0_TX			
10	8	-	PTE21	ADC0_DM0/ ADC0_SE4a	ADC0_DM0/ ADC0_SE4a	PTE21		TPM1_CH1	UART0_RX			
11	-	-	PTE22	ADC0_DP3/ ADC0_SE3	ADC0_DP3/ ADC0_SE3	PTE22		TPM2_CH0	UART2_TX			
12	-	-	PTE23	ADC0_DM3/ ADC0_SE7a	ADC0_DM3/ ADC0_SE7a	PTE23		TPM2_CH1	UART2_RX			
13	9	7	VDDA	VDDA	VDDA							
14	10	_	VREFH	VREFH	VREFH							
15	11	-	VREFL	VREFL	VREFL							
16	12	8	VSSA	VSSA	VSSA							
17	13	_	PTE29	CMP0_IN5/ ADC0_SE4b	CMP0_IN5/ ADC0_SE4b	PTE29		TPM0_CH2	TPM_CLKIN0			
18	14	9	PTE30	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	DAC0_OUT/ ADC0_SE23/ CMP0_IN4	PTE30		TPM0_CH3	TPM_CLKIN1			
19	_	-	PTE31	DISABLED		PTE31		TPM0_CH4				
20	15	_	PTE24	DISABLED		PTE24		TPM0_CH0		I2C0_SCL		
21	16	_	PTE25	DISABLED		PTE25		TPM0_CH1		I2C0_SDA		
22	17	10	PTA0	SWD_CLK	TSI0_CH1	PTA0		TPM0_CH5				SWD_CLK
23	18	11	PTA1	DISABLED	TSI0_CH2	PTA1	UART0_RX	TPM2_CH0				
24	19	12	PTA2	DISABLED	TSI0_CH3	PTA2	UART0_TX	TPM2_CH1				
25	20	13	PTA3	SWD_DIO	TSI0_CH4	PTA3	I2C1_SCL	TPM0_CH0				SWD_DIO
26	21	14	PTA4	NMI_b	TSI0_CH5	PTA4	I2C1_SDA	TPM0_CH1				NMI_b
27	—	—	PTA5	DISABLED		PTA5		TPM0_CH2			I2S0_TX_ BCLK	
28	-	_	PTA12	DISABLED		PTA12		TPM1_CH0			I2S0_TXD0	
29	_	_	PTA13	DISABLED		PTA13		TPM1_CH1			I2S0_TX_FS	
30	22	15	VDD	VDD	VDD							

7.1 Description

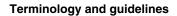
Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

7.2 Format

Part numbers for this device have the following format:

Q KL## A FFF R T PP CC N

7.3 Fields


This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow P = Prequalification
KL##	Kinetis family	• KL16
A	Key attribute	• Z = Cortex-M0+
FFF	Program flash memory size	 32 = 32 KB 64 = 64 KB 128 = 128 KB
R	Silicon revision	 (Blank) = Main A = Revision after main
Т	Temperature range (°C)	• V = -40 to 105
PP	Package identifier	 FM = 32 QFN (5 mm x 5 mm) FT = 48 QFN (7 mm x 7 mm) LH = 64 LQFP (10 mm x 10 mm)
CC	Maximum CPU frequency (MHz)	• 4 = 48 MHz
N	Packaging type	R = Tape and reel

7.4 Example

This is an example part number:

MKL16Z128VFM4

8 Terminology and guidelines

8.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

8.1.1 Example

This is an example of an operating requirement:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

8.2 Definition: Operating behavior

Unless otherwise specified, an *operating behavior* is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.

8.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

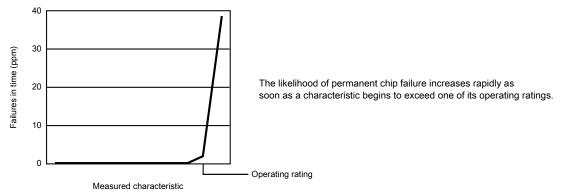
8.3.1 Example

This is an example of an attribute:

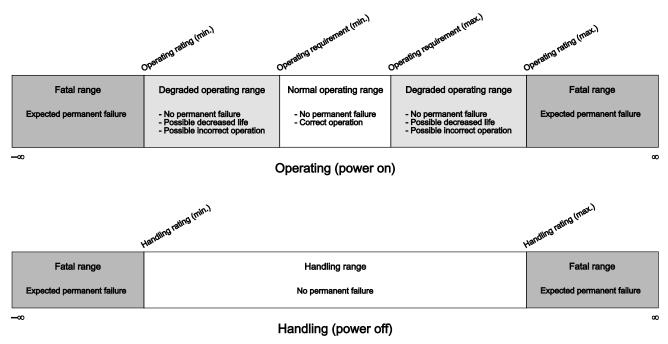
Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	_	7	pF

8.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:


- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

8.4.1 Example


This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V

8.5 Result of exceeding a rating

8.6 Relationship between ratings and operating requirements

8.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

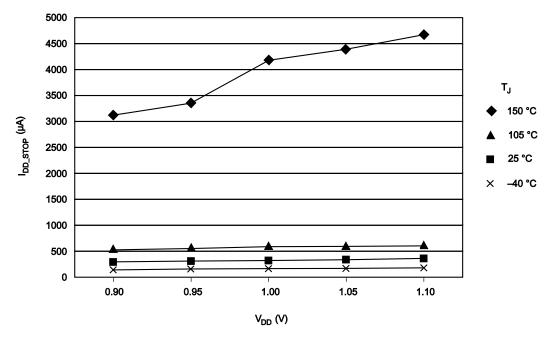
- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

8.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.


8.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

Symbol	Description	Min.	Тур.	Max.	Unit
1	Digital I/O weak pullup/pulldown current	10	70	130	μΑ

8.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:

8.9 Typical value conditions

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	3.3 V supply voltage	3.3	V

Table 40.	Typical value conditions	
-----------	--------------------------	--

9 Revision history

The following table provides a revision history for this document.

Rev. No.	Date	Substantial Changes	
3	3/2014	Updated the front page and restructured the chapters	
4	5/2014	Updated Power consumption operating behaviorsUpdated Definition: Operating behavior	
5	08/2014	 Updated related source in the front page Updated Power consumption operating behaviors 	

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012-2014 Freescale Semiconductor, Inc.

Document Number KL16P64M48SF5 Revision 5 08/2014

