NXP USA Inc. - MM908E622ACDWB Datasheet

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are Embedded - Microcontrollers -**Application Specific**?

Application charific microcontrollars are angineered to

Detalls	
Product Status	Obsolete
Applications	Automotive Mirror Control
Core Processor	HC08
Program Memory Type	FLASH (16kB)
Controller Series	908E
RAM Size	512 x 8
Interface	SCI, SPI
Number of I/O	12
Voltage - Supply	9V ~ 16V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	54-SSOP (0.295", 7.50mm Width) Exposed Pad
Supplier Device Package	54-SOIC-EP
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mm908e622acdwb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 1. Pin Definitions (continued)

A functional description of each pin can be found in the Functional Pin Description section beginning on page 20.

Die	Pin	Pin Name	Formal Name	Definition
MCU / Analog	44	(PTE1/RXD <- RXD)	LIN Transceiver Output	This pin is the LIN Transceiver output test pin. It internally connects the MCU PTE1/RXD pin with the Analog die LIN transceiver output pin RXD.
				Note: Do not connect in the application.
MCU	45 48	VSSA/VREFL VDDA/VREFH	ADC Supply and Reference Pins	These pins are the power supply and voltage reference pins for the analog-to-digital converter (ADC).
MCU	46 47	EVSS EVDD	MCU Power Supply Pins	These pins are the ground and power supply pins, respectively. The MCU operates from a single power supply.
MCU	49 50 52 53 54	PTA4/KBD4 PTA3/KBD3 PTA2/KBD2 PTA1/KBD1 PTA0/KBD0	Port A I/Os	These pins are special function, bidirectional I/O port pins that are shared with other functional modules in the MCU.
MCU	51	FLSVPP	Test Pin	For test purposes only. Do not connect in the application.
Analog	11	RST_A	Internal Reset	This pin is the bidirectional reset pin of the analog die.
Analog	12	IRQ_A	Internal Interrupt Output	This pin is the interrupt output pin of the analog die indicating errors or wake-up events.
Analog	13	LIN	LIN Bus	This pin represents the single wire bus transmitter and receiver.
Analog	14	A0CST	Analog Input Trim Pin	This is the Analog Input Trim Pin for the A0 input. This is to connect a known fixed resistor value to trim the current source measurement.
Analog	15	A0	Analog Input Pin	This pin is an analog input port with selectable source values.
Analog	16 19 25 30	GND1 GND2 GND3 GND4	Power Ground Pins	These pins are device power ground connections.
Analog	29 26 20 17	HB1 HB2 HB3 HB4	Half-bridge Outputs	This device includes power MOSFETs configured as four half-bridge driver outputs. These outputs may be configured for DC motor drivers, or as high side and low side switches. Note: The HB3 and HB4 have a lower $R_{DS(ON)}$ then HB1 and HB2.
Analog	18 21 27 28 31 32 35	VSUP1 VSUP2 VSUP3 VSUP4 VSUP5 VSUP6 VSUP7	Power Supply Pins	These pins are device power supply pins.
Analog	22 23	EC ECR	EC Glass Pin EC Ballast Resistor Pin	These are the Electrochrome Circuitry Pins. The EC Pin has to be connected to the EC Glass and the ECR Pin has to be connected to the external ballast resistor.
Analog	24	TESTMODE	TESTMODE Input	Pin for test purpose only. In application, this pin needs to be tied GND.
Analog	34 35	HS1a HS1b	High Side HS1 Output	This output pin is a low $R_{DS(ON)}$ high side switch.
Analog	36	HS2	High Side HS2 Output High Side HS3 Output	These output pins are low $R_{DS(ON)}$ high side switches.
	38	HS3		
Analog	39	HO	Hall-effect Sensor / General Purpose Input	This pin provides an input for a Hall-effect sensor or general purpose input.

908E622

ELECTRICAL CHARACTERISTICS

MAXIMUM RATINGS

Table 2. Maximum Ratings

All voltages are with respect to ground unless otherwise noted. Exceeding limits on any pin may cause permanent damage to the device.

Rating	Symbol	Value	Unit
ELECTRICAL RATINGS			
Supply Voltage Analog Chip Supply Voltage under Normal Operation (Steady-state) Analog Chip Supply Voltage under Transient Conditions ⁽¹⁾ MCU Chip Supply Voltage	V _{SUP(SS)} V _{SUP(PK)} V _{DD}	-0.3 to 28 -0.3 to 40 -0.3 to 5.5	V
Input Pin Voltage Analog Chip Microcontroller Chip	V _{IN(ANALOG)} V _{IN(MCU)}	-0.3 to 5.5 V _{SS} -0.3 to V _{DD} +0.3	V
Maximum Microcontroller Current per Pin All Pins except VDD, VSS, PTA0:PTA4 PTA0:PTA4	I _{PIN(1)} I _{PIN(2)}	±15 ±25	mA
Maximum Microcontroller VSS Output Current	I _{MVSS}	100	mA
Maximum Microcontroller VDD Input Current	I _{MVDD}	100	mA
LIN Supply Voltage Normal Operation (Steady-state) Transient Input Voltage (per ISO7637 Specification) and with External Components (Figure 4, page <u>17</u>)	V _{BUS(SS)} V _{BUS(PK)}	-18 to 40 -150 to 100	V
ESD Voltage Human Body Model ⁽²⁾ H0 pin Human Body Model ⁽²⁾ all other pins Machine Model ⁽²⁾ Charge Device Model ⁽²⁾	V _{ESD1-1} V _{ESD1-2} V _{ESD2} V _{ESD3}	±1000 ±2000 ±200 ±750	V

Notes

1. Transient capability for pulses with a time of t < 0.5 sec.

2. ESD testing is performed in accordance with the Human Body Model (HBM) (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω), the Machine Model (MM) (C_{ZAP} = 200 pF, R_{ZAP} = 0 Ω), and the Charge Device Model (CDM), Robotic (C_{ZAP} = 4.0 pF).

Table 2. Maximum Ratings (continued)

All voltages are with respect to ground unless otherwise noted. Exceeding limits on any pin may cause permanent damage to the device.

Rating	Symbol	Value	Unit
THERMAL RATINGS			
Operating Ambient Temperature ⁽³⁾	T _A	-40 to 85	°C
Operating Junction Temperature ⁽⁴⁾	TJ	-40 to 125	°C
Storage Temperature	T _{STG}	-40 to 150	°C
Peak Package Reflow Temperature During Reflow ^{(5), (6)}	T _{PPRT}	Note 6	°C

Notes

- 3. The limiting factor is junction temperature; taking into account the power dissipation, thermal resistance, and heat sinking.
- 4. The temperature of analog and MCU die is strongly linked via the package, but can differ in dynamic load conditions, usually because of higher power dissipation on the analog die. The analog die temperature must not exceed 150 °C under these conditions.
- 5. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause malfunction or permanent damage to the device.
- 6. Freescale's Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and Moisture Sensitivity Levels (MSL), Go to www.freescale.com, search by part number [e.g. remove prefixes/suffixes and enter the core ID to view all orderable parts. (i.e. MC33xxxD enter 33xxx), and review parametrics.

Table 3. Static Electrical Characteristics (continued)

All characteristics are for the analog chip only. Refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit
LIN PHYSICAL LAYER					
LIN Transceiver Output Voltage					V
Recessive State, TXD HIGH, I_{OUT} = 1.0 μ A	V _{LIN_REC}	V _{SUP} -1	—	—	
Dominant State, TXD LOW, 500 Ω External Pull-up Resistor	$V_{\text{LIN}_{\text{DOM}}}$	—	—	1.4	
Normal Mode Pull-up Resistor to VSUP	R _{PU}	20	30	47	kΩ
Stop, Sleep Mode Pull-up Current Source	I _{PU}	—	20	—	μA
Output Current Shutdown Threshold	I _{BLIM}	100	230	280	mA
Output Current Shutdown Timing	I _{BLS}	5.0	-	40	μs
Leakage Current to GND					
V _{SUP} Disconnected, V _{BUS} at 18 V	I _{BUS}	-	1.0	10	μA
Recessive state, 8.0 V \leq V_{SUP} \leq 18 V, 8.0 V \leq V_{BUS} \leq 18 V, V_{BUS} \geq V_{SUP}	I _{BUS-PAS-REC}	0.0	3.0	20	μA
GND Disconnected, V_{GND} = V_{SUP} , V_{BUS} at -18 V	I _{BUS-NOGND}	-1.0	-	1.0	mA
LIN Receiver					VSUP
Receiver Threshold Dominant	V _{BUS DOM}	-	-	0.4	
Receiver Threshold Recessive	V _{BUS REC}	0.6	-	-	
Receiver Threshold Center	V _{BUS CNT}	0.475	0.5	0.525	
Receiver Threshold Hysteresis	V _{BUS_HYS}	-	-	0.175	

HIGH SIDE OUTPUT HS1

Switch On Resistance					mΩ
T _J = 25 °C, I _{LOAD} = 1.0 A	R _{DS(ON)-HS1}	-	185	225	
Over-current Shutdown	I _{HSOC1}	6.0	_	9.0	А
Over-current Shutdown blanking time ⁽¹⁴⁾	t _{осв}	_	4-8	Ι	μs
Current to Voltage Ratio ⁽¹⁵⁾ V_{ADOUT} [V] / I _{HS} [A], (measured and trimmed I _{HS} = 2.0 A)	CR _{RATIOHS1}	0.84	1.2	1.56	V/A
High Side Switching Frequency ⁽¹⁴⁾	f _{PWMHS}	-	-	25	kHz
High Side Freewheeling Diode Forward Voltage T_J = 25 °C, I _{LOAD} = 1.0 A	V _{HSF}	_	0.9	_	V
Leakage Current	I _{LeakHS}	_	<0.2	10	μA

Notes

14. This parameter is guaranteed by process monitoring but is not production tested.

15. This parameter is guaranteed only if correct trimming was applied.

DYNAMIC ELECTRICAL CHARACTERISTICS

Table 4. Dynamic Electrical Characteristics

All characteristics are for the analog chip only. Please refer to the 68HC908EY16 datasheet for characteristics of the microcontroller chip. Characteristics noted under conditions 9.0 V \leq V_{SUP} \leq 16 V, -40 °C \leq T_J \leq 125 °C, unless otherwise noted. Typical values noted reflect the approximate parameter mean at T_A = 25 °C under nominal conditions, unless otherwise noted.

Characteristic	Symbol	Min	Тур	Max	Unit		
LIN PHYSICAL LAYER							
Driver Characteristics for Normal Slew Rate ^{(26), (27)}							
Dominant Propagation Delay TXD to LIN	t _{DOM-MIN}	_	_	50	μS		
Dominant Propagation Delay TXD to LIN	t _{DOM-MAX}	—	_	50	μS		
Recessive Propagation Delay TXD to LIN	t _{REC-MIN}	—	_	50	μS		
Recessive Propagation Delay TXD to LIN	t _{REC-MAX}	—	_	50	μS		
Duty Cycle 1: D1 = $t_{BUS_REC(MIN)}$ / (2 x t_{BIT}), t_{BIT} = 50 µs, V_{SUP} = 7.0 V18 V	D1	0.396	-	-			
Duty Cycle 2: D2 = $t_{BUS_REC(MAX)} / (2 \times t_{BIT}), t_{BIT} = 50 \ \mu s, V_{SUP} = 7.6 \ V18 \ V$	D2	-	-	0.581			
Driver Characteristics for Slow Slew Rate ^{(26), (28)}							
Dominant Propagation Delay TXD to LIN	t _{DOM-MIN}	—	—	100	μS		
Dominant Propagation Delay TXD to LIN	t _{DOM-MAX}	—	_	100	μS		
Recessive Propagation Delay TXD to LIN	t _{REC-MIN}	—	_	100	μS		
Recessive Propagation Delay TXD to LIN	t _{REC-MAX}	—	_	100	μS		
Duty Cycle 3: D3 = $t_{BUS_REC(MIN)}$ / (2 x t_{BIT}), t_{BIT} = 96 µs, V_{SUP} = 7.0 V18 V	D3	0.417	-	-			
Duty Cycle4: D4 = $t_{BUS_REC(MAX)}$ / (2 x t_{BIT}), t_{BIT} = 96 µs, V_{SUP} = 7.6 V18 V	D4	-	-	0.590			
Driver Characteristics for Fast Slew Rate							
LIN High Slew Rate (Programming Mode)	SR _{FAST}	—	20	—	V/µs		
Receiver Characteristics and Wake-up Timings							
Receiver Dominant Propagation Delay ⁽²⁹⁾	t _{RL}	—	3.5	6.0	μS		
Receiver Recessive Propagation Delay ⁽²⁹⁾	t _{RH}	—	3.5	6.0	μS		
Receiver Propagation Delay Symmetry	t _{R-SYM}	-2.0	_	2.0	μS		
Bus Wake-up Deglitcher	tPROPWL	30	50	150	μS		
Bus Wake-up Event Reported ⁽³⁰⁾	t _{WAKE}	_	20	_	μS		

Notes

V_{SUP} from 7.0 to 18 V, bus load R0 and C0 1.0 nF/1.0 kΩ, 6.8 nF/660 Ω, 10 nF/500 Ω. Measurement thresholds: 50% of TXD signal to LIN signal threshold defined at each parameter.

27. See Figure 6, page 17.

28. See <u>Figure 7</u>, page <u>18</u>.

29. Measured between LIN signal threshold V_{IL} or V_{IH} and 50% of RXD signal.

30. t_{WAKE} is typically 2 internal clock cycles after LIN rising edge detected. See Figure 9 and Figure 8, page 18. In Sleep mode, the V_{DD} rise time is strongly dependent upon the decoupling capacitor at the VDD pin.

TIMING DIAGRAMS

Note: Waveform in accordance to ISO7637 part 1, test pulses 1, 2, 3a and 3b.

Figure 4. Test Circuit for Transient Test Pulses

Figure 5. Test Circuit for LIN Timing Measurements

Figure 6. LIN Timing Measurements for Normal Slew Rate

FUNCTIONAL INTERNAL BLOCK DESCRIPTION

SMARTMOS ANALOG CONTROL IC

INTERNAL REGULATORS & SAFETY:

VOLTAGE REGULATION

The voltage regulator circuitry provides the regulated voltage for the Analog IC, as well as the VDD/VSS rails for the core IC. The on-chip regulator consists of two elements, the main regulator, and the low voltage reset circuit. The V_{DD} regulator accepts an unregulated input supply and provides a regulated V_{DD} supply to all digital sections of the device. The output of the regulator is also connected to the VDD pin to provide the 5.0 V to the microcontroller.

SWITCHED VDD

This function provides a switchable +5.0 V V_{DD} rail for an external load.

WATCHDOG TIMER

The watchdog timer module generates a reset, in case of a watchdog timeout or wrong watchdog timer reset. A watchdog reset event will reset all registers in the SPI, excluding the RSR.

RESET, IRQ & WAKE-UP

There are several functions on the Analog IC that can generate a reset or wake-up signal to the core IC. There is a pin that is used to detect an external wake-up event. The Reset signal has many possible sources in the Analog IC circuitry. The IRQ function on the Analog IC will notify the core IC of pending system critical conditions.

up sources can be selected (maskable) which is not possible in Sleep mode.

Figure 12 show the procedure to enter the Stop mode and how the system wakes up.

Figure 12. STOP mode Wake-up Procedure

Sleep Mode

In Sleep mode, the voltage regulator is turned off and the MCU is not supplied ($V_{DD} = 0 V$), the RST_A pin also is pulled low.

To enter the Sleep mode, the Sleep bit in the System Control Register has to be set.

Wake-up from this mode is possible by LIN bus activity or the wake-up input L0, and is not maskable. The wake-up

behaves like a power on reset. The wake-up / reset source can be evaluated by the LOWF and/or LINWF bits in the Reset Status Register.

Sleep mode has a lower current consumption than Stop mode, but requires a longer time to wake-up. The wake-up sources can not be selected (not maskable).

Figure 13 show the procedure to enter the Sleep mode and how a wake-up is performed.

Figure 13. SLEEP Mode Wake-up Procedure Table 6 summarized the Operating modes.

908E622

ANALOG DIE INPUTS/OUTPUTS

LIN PHYSICAL LAYER

The LIN bus pin provides a physical layer for single-wire communication in automotive applications. The LIN physical layer is designed to meet the LIN physical layer specification.

The LIN driver is a low side MOSFET with internal current limitation and thermal shutdown. An internal pull-up resistor with a serial diode structure is integrated, so no external pullup components are required for the application in a slave mode. The fall time from dominant to recessive, and the rise time from recessive to dominant is controlled. The symmetry between both slew rate controls is guaranteed.

The slew rate can be selected for optimized operation at 10 and 20 kBit/s, as well as high baud rates for test and programming. The slew rate can be adapted with 2 bits SRS[1:0] in the System Control Register. The initial slew rate is optimized for 20 kBit/s.

The LIN pin offers high susceptibility immunity level from external disturbance, guaranteeing communication during external disturbance.

The LIN transmitter circuitry is enabled by setting the PSON bit in the System Control Register (SYSCTL).

If the transmitter works in the current limitation region, the LINCL bit in the System Status Register (SYSSTAT) is set and the LIN transceiver is disabled after a certain time.

For improved performance and safe behavior when the LIN bus shorts to Ground, or LIN bus leakage during low power mode, the internal pull-up resistor on the LIN pin is disconnected from VSUP and a small current source keeps the LIN bus at recessive level. In case of a LIN bus short to GND, this feature will reduce the current consumption in STOP and SLEEP modes.

Figure 16. LIN Interface

TXD Pin

The TXD pin is the MCU interface to control the state of the LIN transmitter (see Figure 2, page 2). When TXD is LOW, the LIN pin is low (dominant state). When TXD is HIGH, the LIN output MOSFET is turned off (recessive state). The TXD

pin has an internal pull-up current source in order to set the LIN bus to recessive state in the event, for instance, the microcontroller could not control it during system power-up or power-down.

To calibrate the current sources an extra pin (A0CST) is envisioned. On this pin, an accurate resistor can to be connected. Switching the current sources to this resistor allows the user to measure the current, and use the measured value for calculating the current on A0.

Analog Multiplexer / ADOUT Pin

The ADOUT pin is the analog output interface to the Analog-to-digital converter of the MCU. To be able to have different sources for the MCU with one single signal, an analog multiplexer is integrated in the analog die. This multiplexer has twelve different sources, which can be selected with the SS[3:0] bits in the A0MUCTL register.

Half-bridge (HB1:HB4) Current Recopy

The multiplexer is connected to the four current sense circuits on the low side FET of the half bridges. This sense circuits offers a voltage proportional to the current through the MOSFET. The resolution is depending on the CSA bit in the A0 and Multiplexer control register (A0MUCTL).

High Side (HS1:HS3) Current Recopy

The multiplexer is connected to the three high side switches. These sense circuits offer a voltage proportional to the current through the transistor.

Analog Input A0 and A0CST

A0 and A0CST are directly connected to the analog multiplexer. It offers the possibility to read analog values from the periphery.

Temperature Sensor

The analog die includes an on chip temperature sensor. This sensor offers a voltage which is proportional to the actual mean chip junction temperature.

VSUP Prescaler

The VSUP prescaler offers a possibility to measure the external supply voltage. The output of this voltage is V_{SUP} / RATIO_{VSUP}.

EC Output

The EC output is directly connected to the multiplexer to be able to read the actual voltage on the EC pin.

A0 and Multiplexer Control Register (A0MUCTL)

Register Name and	Address:	A0MUCTL	-	\$08
-------------------	----------	---------	---	------

	Bit7	6	5	4	3	2	1	Bit0
Read Write	CSON	CSSEL 1	CSSEL 0	CSA	SS3	SS2	SS1	SS0
Reset	0	0	0	0	0	0	0	0

CSON — Current Source on/off

This read/write bit enables the current source for the A0 or A0CST inputs. Reset clears CSON bit.

- 1 = Current Source enabled
- 0 = Current Source disabled

CSSEL[1:0] — Current Source Select Bits

These read/write bits select the current source values for A0 or A0CST input. Reset clears CSSEL[1:0] bits.

Table 7. A0 Current Source Level Selection Bits

CSSEL1	CSSEL0	Current Source Enable (typ.)
0	0	40 µA
0	1	120 µA
1	0	320 µA
1	1	Αμ 008

CSA — H-Bridges Current Sense Amplification Select Bit

This read/write bit selects the current sense amplification of the H-bridges HB1:HB4 current recopy. Reset clears the CSA bit.

1 = low current sense amplification

0 = high current sense amplification

SS[3:0] — Analog Source Input Select Bits

These read/write bits selects the analog input source for the ADOUT pin. Reset clears the SS[3:0] bits

Table 8. Analog Multiplexer Configuration Bits

SS3	SS2	SS1	SS0	Channel
0	0	0	0	current recopy HB1
0	0	0	1	current recopy HB2
0	0	1	0	current recopy HB3
0	0	1	1	current recopy HB4
0	1	0	0	current recopy HS1

CRM — Current Recirculation Mode bit

This read/write bit selects the recirculation mode during PWM. Reset clears the CRM bit.

1 = recirculation via switched on low side MOSFET

0 = recirculation via low side free wheeling diode

HBxOCF — Half-bridges Over-current Flag Bit

This read/write bit indicates that an over-current condition on either the LS or the HS FET on HBx has occurred. Clear HBxOCF and enable Half-bridge by writing a logic [1] to HBxOCF. Writing a logic [0] to HBxOCF has no effect. Reset clears the HBxOCF bit.

- 1 = over-current condition on HBx occurred
- 0 = no over-current condition on HBx

High Side Drivers

The high side outputs are low resistive high side switches targeted for driving lamps. The high sides are protected against over-temperature, over-current and over-voltage/ under-voltage.

Figure 23. HS Circuitry

HIGH SIDE OPERATING MODES

The high sides outputs are enabled if the PSON bit in the System Control Register (SYSCTL) is set.

Each high side output is permanently switched on, if the HSxON bit in the High Side Output Register (HSOUT) is set.

PWM control of the output is enabled, if the HSxPWM bit High Side Output Register (HSOUT) is set. In this operating mode, the high side MOSFET is on, if the input PWM signal (PWM pin) is high.

<u>Table</u> shows the behavior of the high side MOSFETs depending on the HSONx and PWMHSx bits.

HBF— HB1:4 Failure Bit

This read only bit is set if a fail condition on one of the halfbridge outputs is present.

- 1 = HB1:4 pin over-current fail
- 0 = HB1:4 normal operating

Figure 28. HBF Flag Generation

ECF— EC pin Failure Bit

This read only bit is set if a fail condition on the electrochrome output is present

1 = EC pin fail

0 = EC normal operating

Figure 29. ECF Flag Generation

WINDOW WATCHDOG

The window watchdog is to supervise the device and to recover from (e.g. code runaways) or similar conditions.

The use of a window watchdog adds additional safety as the watchdog clear has not only to occur, but to be done at a certain time frame / window.

Normal Mode

The window watchdog function is only available in Normal mode, and is halted in Stop and Sleep mode. Upon setting the WDRE bit, the watchdog functionality is activated. Once this function is enabled, it is not possible to disable it via software. Reset clears the WDRE bit.

To prevent a Watchdog reset, the Watchdog timer has to be cleared in the Window Open frame. This is done by writing a logic "1" to the WDRST bit in the Watchdog Control register (WDCTL). The actual reset of the watchdog counter occurs at the end of the corresponding SPI transmission, with the rising edge of the SS signal.

If the watchdog is enabled, it will generate a system reset when the timer has reached its end value, or if a watchdog reset (WDRST) has occurred in the closed window.

The watchdog period can be selected with 2 bits in the WDCTL, in order to get 10 ms, 20 ms, 40 ms, and 80 ms periods.

Figure 30. Window Watchdog Period

Stop Mode

Operations of the watchdog function is ceased in stop mode (counter/oscillator stopped). After a wake-up, the watchdog timer **is automatically cleared**, in order to give the MCU the full time to reset the watchdog.

Sleep Mode

Operations of the watchdog function are halted in sleep mode. Due to the main voltage regulator asserting an LVR reset, the Watchdog functionality is disabled, and the WDRE bit is cleared as soon as sleep mode is entered. To reenable this function bit WDRE has to be set after wake-up.

Watchdog Control Register (WDCTL)

Register Name and Address: WDCTL - \$0B

WDRE - Watchdog Reset Enable Bit

This read/write (write once) bit activates the watchdog The WDRE can only be set and can't be cleared by software. Reset clears the WDRE bit.

- 1 = Watchdog enabled
- 0 = Watchdog disabled

WDP1:0 - Watchdog Period Select Bits

This read/write bit select the clock rate of the Watchdog. Reset clears the WDP1:0 bits.

Table 12. Watchdog Period Selection Bits

WDP1	WDP0	Mode
0	0	80 ms window watchdog period
0	1	40 ms window watchdog period

- Register read data is internally latched into the SPI, at the time when the parity bit is transferred
- SS high will force MISO to a high-impedance

Master Address Byte

A4 - A0

includes the address of the desired register.

R/W

includes the information if it is a read or a write operation.

- If R/W = 1 (read operation), second byte of master contains no valid information, slave just transmits back register data.
- If R/W = 0 (write operation), master sends data to be written in the second byte, slave sends concurrently contents of selected register prior to write operation, write data is latched in the SMARTMOS registers on rising edge of SS.

Parity P

completes the total number of 1 bits of (R/W,A[4-0]) to an even number. e.g. $(R/W,A[4-0]) = 100001 \rightarrow P0 = 0$.

The parity bit is only evaluated during write operations and ignored for read operations.

Bit X

not used

Master Data Byte

This byte includes data to be written or no valid data during a read operation.

Slave Status Byte

This byte always includes the contents of the system status register (\$0C), independent if it is a write or read operation, or which register was selected.

Slave Data Byte

This byte includes the contents of selected register, during write operation in includes the register content prior to write operation.

SPI REGISTER OVERVIEW

Table 13 SUMMARIZES THE SPI REGISTER ADDRESSES AND THE BIT NAMES OF EACH REGISTER.

Addr	Register Name	R/W				В	it			
Audi	Register Name	1	7	6	5	4	3	2	1	0
\$00	System Control	R	PSON	0	0	HTIS1	HTIS0	VIS	SRS1	SRS0
	(SYSCIL)	W		STOP	SLEEP					
\$01	Half-bridge Output	R	HB4_H	HB4_L	HB3_H	HB3_L	HB2_H	HB2_L	HB1_H	HB1_L
	(HBOUT)	W								
\$02	High Side Output	R	HVDDON	0	HS3PWM	HS2PWM	HS1PWM	HS3ON	HS2ON	HS10N
	(HSOUT)	W								
\$03	Half-bridge Status and	R	CRM	0	0	0	HB4OCF	HB3OCF	HB2OCF	HB10CF
	Control (HBSCTL)	W								
\$04	High Side Status and	R	HVDDOCF	0	0	0	0	HS3OCF	HS2OCF	HS10CF
	Control (HSSCIL)	W								
\$05	EC Status and Control	R	ECON	ECOLT	ECRON	0	0	0	ECOCF	ECOLF
	(ECSCTL)	W								
\$06	EC Digital to Analog	R	0	0	ECDAC5	ECDAC4	ECDAC3	ECDAC2	ECDAC1	ECDAC0
	Control (ECDACC)	W								
\$07	H0/L0 Status and	R	LOF	0	0	H0OCF	H0F	H0EN	H0PD	H0MS
	Control (HLSCTL)	W								

Table 13. SPI Register Overview

Table 13. SPI Register Overview

\$08	A0 and Multiplexer	R	CSON	CSSEL1	CSSEL0	CSA	SS3	SS2	SS1	SS0
	Control (A0MUCTL)	W								
\$09	Interrupt Mask	R	LOIE	H0IE	LINIE	HTRD	HTIE	LVIE	HVIE	PSFIE
	(IMR)	W								
\$0A	Interrupt Flag	R	LOIF	H0IF	LINIF	0	HTIF	LVIF	HVIF	PSFIF
	(IFR)	W								
\$0B	Watchdog Control	R	WDRE	WDP1	WDP0	0	0	0	0	0
	(WDCTL)	W								WDRST
\$0C	System Status	R	LINCL	HTIF	VF	H0F	HVDDF	HSF	HBF	ECF
	(SYSSIAI)	W								
\$0D	Reset Status	R	POR	PINR	WDR	HTR	LVR	0	LINWF	LOWF
	(RSR)	W								
\$0E	System Test	R				rese	rved			
	(SYSTEST)	W								
\$0F	System Trim 1	R	HVDDT1	HVDDT0	reserved	reserved	itrim3	itrim2	itrim1	itrim0
	(SYSTRIMT)	W								
\$10	System Trim 2	R	0	0	0	0	0	0	0	0
	(SYSTRIM2)	W	CRHBHC1	CRHBHC0	CRHB5	CRHB4	CRHB3	CRHB2	CRHB1	CRHB0
\$11	System Trim 3	R	0	0	0	0	0	0	0	0
	(SYSTRIM3)	W	CRHBHC3	CRHBHC2	CRHS5	CRHS4	CRHS3	CRHS2	CRHS1	CRHS0

Factory TRIMMING AND CALIBRATION

To enhance the ease-of-use of the 908E622, various parameters (e.g. ICG trim value) are stored in the flash memory of the device. The following flash memory locations are reserved for this purpose and might have a value different from the "empty" (\$FF) state:

- \$FD80:\$FDDF Trim and Calibration Values
- \$FFFE:\$FFFF Reset Vector

In the event the application uses these parameters, one has to take care not to erase or override these values. If these parameters are not used, these flash locations can be erased and otherwise used.

Trim Values

The usage of the trim values located in the flash memory is explained by the following.

Internal Clock Generator (ICG) Trim Value

The internal clock generator (ICG) module is used to create a stable clock source for the microcontroller, without using any external components. The untrimmed frequency of the low frequency base clock (IBASE) will vary as much as ± 25 percent due to process, temperature, and voltage dependencies. To compensate these dependencies, a ICG trim value is located at address \$FDC2. After trimming, the ICG is in a range of typ. $\pm 2\%$ ($\pm 3\%$ max.) at nominal conditions (filtered (100 nF), and stabilized (4.7 μ F)

908E622

 V_{DD} = 5.0 V, $T_{AMBIENT}$ ~25°C), and will vary over temperature and voltage (V_{DD}), as indicated in the 68HC908EY16 datasheet.

To trim the ICG, this value has to be copied to the ICG Trim Register ICGTR at address \$38 of the MCU.

Important The value has to copied after every reset.

Watchdog Period Range Value (AWD Trim)

The window watchdog supervises device recovery (e.g. from code runaways).

The application software has to clear the watchdog within the open window. Due to the high variation of the watchdog period, and therefore the reduced width of the watchdog window, a value is stored at address FDCF. This value classifies the watchdog period into 3 ranges (Range 0, 1, 2). It allows the application software to select one of three time intervals to clear the watchdog based on the stored value. The classification is done in a way that the application software can have up to ±19% variation of the of optimal clear interval, e.g. caused by ICG variation.

Effective Open Window

Having a variation in the watchdog period in conjunction with a 50% open window, results in an effective open window, which can be calculated by:

latest window open time: t_open = t_wd max / 2 earliest window closed time: t_closed = t_wd min

	Bit7	6	5	4	3	2	1	Bit0
Read	0	0	0	0	0	0	0	0
Write	CRH BHC 3	CRH BHC 2	CRH S5	CRH S4	CRH S3	CRH S2	CRH S1	CRH S0
Reset	0	0	0	0	0	0	0	0

Register Name and Address: IFBHSTRIM - \$11

CRHBHC3:2 - Current Recopy HB3:4 Trim Bits

These write only bits are for trimming the current recopy of the half-bridge HB3 and HB4 (CSA=0). The provided trim values have to be copied into these bits after every reset. Reset clears the CRHBHC3:2 bits.

Table 20.	Current R	ecopy Trim	for HB3:4	(CSA=0)
-----------	-----------	------------	-----------	---------

CRHBHC3	CRHBHC2	Adjustment
0	0	0
0	1	-10%
1	0	5%
1	1	10%

CRHS5:3 - Current Recopy HS2:3 Trim Bits

These write only bits are for trimming the current recopy of the high side HS2 and HS3. The provided trim values have to be copied into these bits after every reset. Reset clears the CRHS5:3 bits.

Table 21.	Current	Recopy	Trim	for	HS2:3
-----------	---------	--------	------	-----	-------

CRHS5	CRHS4	CRHS3	Adjustment
0	0	0	0
0	0	1	-5%
0	1	0	-10%
0	1	1	-15%
1	0	0	reserved
1	0	1	5%
1	1	0	10%
1	1	1	15%

CRHS2:0 - Current Recopy HS1 Trim Bits

These write only bits are for trimming the current recopy of the high side HS1. The provided Trim values have to be copied into these bits after every reset. Reset clears the CRHS2:0 bits.

Table 22. Current Recopy Trim for HS1

CRHS2	CRHS1	CRHS0	Adjustment
0	0	0	0
0	0	1	-5%
0	1	0	-10%
0	1	1	-15%
1	0	0	reserved
1	0	1	5%
1	1	0	10%
1	1	1	15%

Figure 33. Normal Monitor Mode Circuit

<u>Table 23</u> summarizes the possible configurations and the necessary setups.

Table 23. Monitor Mode Signal Requirements and Options

Mode	IRO	RST	TEST	Reset	Se Commu	erial inication	Mode Selection		ICG COP	tion ICG		n ICG	COP	Normal	Communication Speed			
mouo			MODE	Vector	PTA0	PTA1	PTB3	PTB4			Time-out	External Clock	Bus Frequency	Baud Rate				
Normal Monitor	V_{TST}	V _{DD}	1	х	1	0	0	1	OFF	disabled	disabled	9.8304 MHz	2.4576 MHz	9600				
Forced	V_{DD}	Voo	1	\$FFFF	1	0	x	x	OFF	disabled	disabled	9.8304 MHz	2.4576 MHz	9600				
Monitor	GND	٥U	-	(blank)		Ŭ	^	^	ON	disabled	disabled	_	Nominal 1.6MHz	Nominal 6300				
User	V _{DD}	V _{DD}	0	not \$FFFF (not blank)	х	x	х	х	ON	enabled	enabled	_	Nominal 1.6MHz	Nominal 6300				

Notes

34. PTA0 must have a pullup resistor to V_{DD} in monitor mode

35. External clock is a 4.9152 MHz, 9.8304 MHz or 19.6608 MHz canned oscillator on OCS1

36. Communication speed with external clock is depending on external clock value. Baud rate is bus frequency / 256

37. X = don't care

38. V_{TST} is a high voltage V_{DD} + 3.5 V \leq V_{TST} \leq V_{DD} + 4.5 V

EMC/EMI RECOMMENDATIONS

This paragraph gives some device specific recommendations to improve EMC/EMI performance. Further generic design recommendations can be e.g. found on the Freescale web site www.freescale.com.

VSUP Pins (VSUP[1:8])

Its recommended to place a high quality ceramic decoupling capacitor close to the VSUP pins to improve EMC/EMI behavior.

Figure 35. PCB Layout Recommendations

Table 24. Component Value Recommendation

Component	Recommended Value ⁽³⁹⁾	Comments / Signal routing
D1		reverse battery protection
C1	Bulk Capacitor	
C2	100 nF, SMD Ceramic, Low ESR	Close to VSUP pins with good ground return
C3	100 nF, SMD Ceramic, Low ESR	Close (<3.0 mm) to digital supply pins (EVDD, EVSS) with good ground return.
		The positive analog (VREFH/ VDDA) and the digital (EVDD) supply should be connected right at the C3.
C4	4,7 uF, SMD Ceramic, Low ESR	Bulk Capacitor
C5	180 pF, SMD Ceramic, Low ESR	Close (<5.0 mm) to LIN pin.
		Total Capacitance on LIN has to be below 220pF.
		$(C_{total} = C_{LIN-Pin} + C5 + C_{Varistor} \sim 10 \text{ pF} + 180 \text{ pF} + 15 \text{ pF})$
V1 ⁽⁴⁰⁾	Varistor Type TDK AVR-M1608C270MBAAB	Optional (close to LIN connector)
L1 ⁽⁴⁰⁾	SMD Ferrite Bead Type TDK MMZ2012Y202B	Optional, (close to LIN connector)

Notes

39. Freescale does not assume liability, endorse, or want components from external manufactures that are referenced in circuit drawings or tables. While Freescale offers component recommendations in this configuration, it is the customer's responsibility to validate their application.

40. Components are recommended to improve EMC and ESD performance.

FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	AL OUTLINE	PRINT VERSION NC	T TO SCALE
TITLE: 54LD SOIC W/B. 0.6	5 PITCH	DOCUMENT NO): 98ASA10712D	REV: O
4.5 X 9.8 EXPOSED	D PAD,	CASE NUMBER	2: 1823–01	17 NOV 2005
CASE-OUTLIN	IE	STANDARD' NO		•

EK SUFFIX (Pb-free) 54-PIN SOICW-EP 98ASA10712D ISSUE 0

ADDITIONAL INFORMATION

THERMAL ADDENDUM

INTEGRATED QUAD H-BRIDGE, TRIPLE HIGH-SIDE AND EC GLASS DRIVER WITH EMBEDDED MCU AND LIN FOR MIRROR

Thermal Addendum

Introduction

This thermal addendum ia provided as a supplement to the MM908E622 technical data sheet. The addendum provides thermal performance information that may be critical in the design and development of system applications. All electrical, application and packaging information is provided in the data sheet.

Package and Thermal Considerations

This MM908E622 is a dual die package. There are two heat sources in the package independently heating with P₁ and P₂. This results in two junction temperatures, T_{J1} and T_{J2}, and a thermal resistance matrix with R_{θ JAmn}.

For m, n = 1, $R_{\theta JA11}$ is the thermal resistance from Junction 1 to the reference temperature while only heat source 1 is heating with P_1 .

For m = 1, n = 2, $R_{\theta,JA12}$ is the thermal resistance from Junction 1 to the reference temperature while heat source 2 is heating with P_2 . This applies to $R_{\theta,J21}$ and $R_{\theta,J22}$, respectively.

 $\begin{cases} T_{J1} \\ T_{J2} \end{cases} = \begin{bmatrix} R_{\theta JA11} & R_{\theta JA12} \\ R_{\theta JA21} & R_{\theta JA22} \end{bmatrix} \cdot \begin{cases} P_1 \\ P_2 \end{cases}$

The stated values are solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment. Stated values were obtained by measurement and simulation according to the standards listed below.

Standards

Table 25. Thermal Performance Comparison

Thermal Resistance	1 = Power Chip, 2 = Logic Chip [°C/W]		
	m = 1, n = 1	m = 1, n = 2 m = 2, n = 1	m = 2, n = 2
R _{θJAmn} ⁽¹⁾⁽²⁾	23	20	24
R _{θJBmn} ⁽²⁾⁽³⁾	9.0	6.0	10
R _{θJAmn} ⁽¹⁾⁽⁴⁾	52	47	52
R _{0JCmn} ⁽⁵⁾	1.0	0	2.0

Notes

- 1. Per JEDEC JESD51-2 at natural convection, still air condition.
- 2s2p thermal test board per JEDEC JESD51-7and JESD51-5.
- 3. Per JEDEC JESD51-8, with the board temperature on the center trace near the power outputs.
- 4. Single layer thermal test board per JEDEC JESD51-3 and JESD51-5.
- Thermal resistance between the die junction and the exposed pad, "infinite" heat sink attached to exposed pad.

Figure 36. Thermal Land Pattern for Direct Thermal Attachment Per JEDEC JESD51-5

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm

Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, mobileGT, PowerQUICC, QorlQ, Qorivva, StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, Flexis, MagniV, MXC, Platform in a Package, Processor expert, QorlQ Qonverge, QUICC Engine, Ready Play, SMARTMOS, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

Document Number: MM908E622 Rev. 3.0 4/2012