

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	36MHz
Connectivity	EBI/EMI, IOM-2/PCM, SPI, UART/USART, USB
Peripherals	DMA, POR, PWM, WDT
Number of I/O	72
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	3K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	PG-TQFP-144
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-c165utah-lf-v1-3

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- S/G access support
- Four On-Chip Independent Full-Duplex HDLC Formatters
- 8 independent 8-byte FIFOs for each transmit and receive channel
- USART Interface with AutoBaud Support (1,200 bit/s 230,400 bit/s)
 - AT-Command sensitive AutoBaud Detection

1.1 Key Features

The C165UTAH is a new low-cost member of the Infineon Communication Controller family. The device has the following features:

- C166 Static Core with Peripherals including:
 - Full-static core up to 18 MIPS (@36 MHz)
 - Peripheral Event Controller (PEC) for 8 independent DMA channels
 - 16 Dynamically Programmable Priority-Level Interrupt System
 - Eight External Interrupts
 - Up to 72 SW-configurative Input/Output (I/O) Ports, some with Interrupt Capabilities
 - 8-bit or 16-bit External Data Bus
 - Multiplexed or Demultiplexed Address/Data Bus
 - Up to 8-Mbyte Linear Address Space for Code and Data
 - Five Programmable Chip-Select Lines with Wait-State Generator Logic
 - On-Chip 3,072-Byte Dual-Port SRAM for user applications
 - On-Chip 1,024-Byte Special Function Register Area
 - On-Chip PLL with Output Clock Signal
 - Five Multimode General Purpose Timers
 - On-Chip Programmable Watchdog Timer
 - Glueless Interface to EPROM, Flash EPROM and SRAM
 - Low-Power Management Supporting Idle-, Power-Down- and Sleep-Mode and additional CPU clock slow-down mode with mode control for each peripheral
 - USART interface with Auto Baud Rate detection up to 230,400 kbit/s
 - USART Baud Rate generation in asynchronous mode up to 2.25 MBaud @ 36 MHz
 - USART Baud Rate generation in synchronous mode up to 4.5 MBaud @ 36 MHz
 - USART standard Baud Rates generation with very small deviation (230.4 kBaud < 0.01%, 460.8 kBaud < 0.15 %, 691.2 kBaud < 0.04 %, 921.6 kBaud < 0.15 %) @ 36 MHz
 - High speed Serial Synchronous Channel Interface (SSC) with ALIS-3.0 and AC97 compatibility up to 18 MBaud in SSC Master Mode and up to 9 MBaud in SSC Slave Mode @ 36 MHz

C165UTAH

Pin Descriptions

Table 8	Power/Ground Signals						
Pin No.	Symbol	Input (I) Output (O)	Function				
130	VDDU	-	Digital Supply Voltage for USB Transceiver VDDU supplies the USB transceiver only and is internally not connected to VDD in order to separate possible noise influence. External, on board level, the VDDU can be connected to the same power supply as VDD.				
127	VSSU	-	Digital Ground for USB Transceiver VSSU is connected to the USB transceiver only and is internally not connected to the common ground in order to separate possible noise influence. External, on board level, the VSSU can be connected to the same ground as VSS.				

Table 9Unconnected Pins

Pin No.	Symbol	Input (I) Output (O)	Function
1, 2, 36, 72, 73, 74, 106, 107, 108	unconnected	-	These pins are unconnected - no function. Reserved for future use.

Architectural Overview

a memory table. The C165UTAH has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

Memory Areas

The memory space of the C165UTAH is configured in a Von Neumann architecture which means that code memory, data memory, registers and I/O ports are organized within the same linear address space which covers up to 8 MBytes. The entire memory space can be accessed bytewise or wordwise. Particular portions of the on-chip memory have additionally been made directly bit addressable.

A 16-bit wide internal RAM (IRAM) provides fast access to General Purpose Registers (GPRs), user data (variables) and system stack. The internal RAM may also be used for code. A unique decoding scheme provides flexible user register banks in the internal memory while optimizing the remaining RAM for user data. The size of the internal RAM is 3 KByte.

The CPU disposes of an actual register context consisting of up to 16 wordwide and/or bytewide GPRs, which are physically located within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at a time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is also located within the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

Hardware detection of the selected memory space is placed at the internal memory decoders and allows the user to specify any address directly or indirectly and obtain the desired data without using temporary registers or special instructions.

For Special Function Registers 1024 Bytes of the address space are reserved. The standard Special Function Register area (SFR) uses 512 bytes, while the Extended Special Function Register area (ESFR) uses the other 512 bytes. (E)SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused (E)SFR addresses are reserved for future members of the C165UTAH family with enhanced functionality.

External Bus Interface

In order to meet the needs of designs where more memory is required than is provided on chip, up to 8 MBytes of external RAM and/or ROM can be connected to the microcontroller via its external bus interface. The integrated External Bus Controller (EBC) allows to access external memory and/or peripheral resources in a very flexible

Memory Organization

Note: The upper 256 Bytes of SFR area, ESFR area and internal RAM are bitaddressable (see shaded blocks in **Figure 10**).

Code accesses are always made on even byte addresses. The highest possible code storage location in the internal RAM is either 00'FDFE_H for single word instructions or 00'FDFC_H for double word instructions. The respective location must contain a branch instruction (unconditional), because sequential boundary crossing from internal RAM to the SFR area is not supported and causes erroneous results.

Any word and byte data in the internal RAM can be accessed via indirect or long 16-bit addressing modes, if the selected DPP register points to data page 3. Any word data access is made on an even byte address. The highest possible word data storage location in the internal RAM is $00^{\circ}FDFE_{H}$. For PEC data transfers, the internal RAM can be accessed independent of the contents of the DPP registers via the PEC source and destination pointers.

The upper 256 Byte of the internal RAM (00'FD00_H through 00'FDFF_H) and the GPRs of the current bank are provided for single bit storage, and thus they are bit addressable.

System Stack

<stksz></stksz>	Stack Size (Words) Internal RAM Addresses (Words)			
000 _B	256	00'FBFE _H 00'FA00 _H (Default after Reset)		
001 _B	128	00'FBFE _H 00'FB00 _H		
010 _B	64	00'FBFE _H 00'FB80 _H		
011 _B	32	00'FBFE _H 00'FBC0 _H		
100 _B	512	00'FBFE _H 00'F800 _H		
101 _B		Reserved. Do not use this combination.		
110 _B		Reserved. Do not use this combination.		
111 _B	1024	00'FDFE _H 00'F600 _H (Note: No circular stack)		

The system stack may be defined within the internal RAM. The size of the system stack is controlled by bitfield STKSZ in register SYSCON (see table below).

For all system stack operations the on-chip RAM is accessed via the Stack Pointer (SP) register. The stack grows downward from higher towards lower RAM address locations. Only word accesses are supported to the system stack. A stack overflow (STKOV) and a stack underflow (STKUN) register are provided to control the lower and upper limits of the selected stack area. These two stack boundary registers can be used not only for protection against data destruction, but also allow to implement a circular stack with hardware supported system stack flushing and filling (except for option '111').

The technique of implementing this circular stack is described in chapter "System Programming".

Central Processor Unit

- Jumps to non-aligned double word instructions in the internal ROM space
- Testing Branch Conditions immediately after PSW writes

5.4 CPU Special Function Registers

The core CPU requires a set of Special Function Registers (SFRs) to maintain the system state information, to supply the ALU with register-addressable constants and to control system and bus configuration, multiply and divide ALU operations, code memory segmentation, data memory paging, and accesses to the General Purpose Registers and the System Stack.

The access mechanism for these SFRs in the CPU core is identical to the access mechanism for any other SFR. Since all SFRs can simply be controlled by means of any instruction, which is capable of addressing the SFR memory space, a lot of flexibility has been gained, without the need to create a set of system-specific instructions.

Note, however, that there are user access restrictions for some of the CPU core SFRs to ensure proper processor operations. The instruction pointer IP and code segment pointer CSP cannot be accessed directly at all. They can only be changed indirectly via branch instructions.

The PSW, SP, and MDC registers can be modified not only explicitly by the programmer, but also implicitly by the CPU during normal instruction processing. Note that any explicit write request (via software) to an SFR supersedes a simultaneous modification by hardware of the same register.

Note: Any write operation to a single byte of an SFR clears the non-addressed complementary byte within the specified SFR. Non-implemented (reserved) SFR bits cannot be modified, and will always supply a read value of '0'.

The System Configuration Register SYSCON

This bit-addressable register provides general system configuration and control functions. The reset value for register SYSCON depends on the state of the PORT0 pins during reset (see hardware effectable bits).

Central Processor Unit

most significant bits are ignored. The respective physical GPR address calculation is identical to that for the short 4-bit GPR addresses. For single bit accesses on a GPR, the GPR's word address is calculated as just described, but the position of the bit within the word is specified by a separate additional 4-bit value.

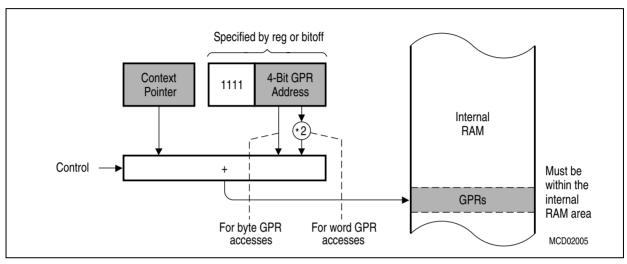


Figure 19 Implicit CP Use by Short GPR Addressing Modes

Stack Pointer SP

This non-bit addressable register is used to point to the top of the internal system stack (TOS). The SP register is pre-decremented whenever data is to be pushed onto the stack, and it is post-incremented whenever data is to be popped from the stack. Thus, the system stack grows from higher toward lower memory locations.

Since the least significant bit of register SP is tied to '0' and bits 15 through 12 are tied to '1' by hardware, the SP register can only contain values from $F000_H$ to $FFFE_H$. This allows to access a physical stack within the internal RAM of the C165UTAH. A virtual stack (usually bigger) can be realized via software. This mechanism is supported by registers STKOV and STKUN (see respective descriptions below).

The SP register can be updated via any instruction, which is capable of modifying an SFR.

Note: Due to the internal instruction pipeline, a POP or RETURN instruction must not immediately follow an instruction updating the SP register.

DMA - External PEC (EPEC)

6 DMA - External PEC (EPEC)

The EPEC provides fast and easy means to transfer single data between any memory location within the address space by using the XBUS. The advantages are reduced XBUS protocol handling and capability of addressing all system resources including internal RAM and SFR.

6.1 EPEC Functionality

The EPEC provides a DMA controller for the USB device core to provide fast and flexible data tranfer capability. The EPEC is implemented as a 16 channel controller with a 24-bit source pointer, a 24-bit destination pointer and a 10-bit Transmit Byte Length Counter with auto-increment support of two bytes (one word) per channel with Terminal Count (TC) indication (Interrupt pulse valid for one clock cycle). After TC is reached, the counter stops itself.

The EPEC is connected to the XBUS and to a proprietary 24-bit bus connected directly to the C166 CBC. The EPEC has the highest priority among other interrupts and PECs and does not participate in the interrupt priorization round. In case of an DPEC/EPEC collision, the DPEC will get priority and one instruction cycle later the EPEC is processed. The EPEC provides DMA like functionality by injecting a memory transfer instruction (mov [dest], [src]) into the decode stage of the pipeline and thus only needs one additional instruction cycle. Even in IDLE mode, the EPEC will be processed waking up the CPU for one instruction cycle and immediately going back to IDLE state.

6.2 EPEC Implementation

The EPEC control block is located in the CBC core with its main purpose to synchronize the external EPEC request to the internal T1-T4 states of the CPU and the priorization between DPEC and EPEC. It also drives the externally provided 24-bit source and destination pointer values on the internal memory address bus, thus controlling the whole timing with respect to the CPU.

The EPEC Block diagram is shown in **Figure 20** below.

DMA - External PEC (EPEC)

The EPEC Transmit Byte Length registers (x) provide the 10-bit Transmit bytes length of the actual packet to be send to the USB endpoint#x and the related bit. Each EPEC channel can be cleared by SW, if necessary.

All USB source and destination pointers will be used in either receive or transmit direction, since the USB endpoint's direction of data is SW-configurable as IN, OUT or bidirectional (except endpoint 0) after USB device controller reset.

EPEC_INT_REG Reset Value: 0000_H

Table 21	EPEC_INT_REG Interrupt Register
----------	---------------------------------

Bit No.	Name	Function
15:8	RxTxSTART	Rx / Tx Start Signal '1' indicates channel has started transfering data.
7:0	TXDONE_INTx (x=70)	TX packet transfer completed by EPEC '1': transfer complete '0': busy or idle

The EPEC interrupt register indicates the end of an TX-packet transfer for an USB endpoint.

EPEC_INTMSK_REG Reset Value: 0000_H

Table 22 EPEC_INTMSK_REG Interrupt Register

Bit No.	Name	Function
15:8	RxTxSTARTMSK	Rx / Tx Start Mask '1': masked '0': not masked
7:0	TXDONE_INTMSKx (x=70)	Mask interrupt TX packet transfer completed by EPEC '1': masked '0': not masked

The EPEC interrupt mask register masks out the end of an TX-packet transfer interrupt for an USB endpoint.

6.4 EPEC Transfer Example

The EPEC (external peripheral event controller, external in the sense that it is external to the CPU block) controls the transfer of data between the USB block and the external or internal RAM.

Interrupt and Trap Functions

Nr.	Source of Interrupt or PEC Service Request	Interrupt Name	Enable Flag	Vector Location	Trap Number	SFR hex Addr
irq(26)	UDC TX Done5	UTD5INT	UTD5IE	00'00C8 _H	32 _H / 50 _D	F164
irq(27)	UDC TX Done4	UTD4INT	UTD4IE	00'00C4 _H	31 _H / 49 _D	F162
irq(28)	UDC TX Done3	UTD3INT	UTD3IE	00'00C0 _H	30 _H / 48 _D	F160
irq(29)	UDC TX Done2	UTD2INT	UTD2IE	00'005C _H	17 _H / 23 _D	FF86
irq(30)	UDC TX Done1	UTD1INT	UTD1IE	00'0058 _H	16 _H / 22 _D	FF84
irq(31)	UDC TX Done0	UTD0INT	UTD0IE	00'0054 _H	15 _H / 21 _D	FF82
irq(32)	UDC RX Done7	URD7INT	URD7IE	00'0050 _H	14 _H / 20 _D	FF80
irq(33)	UDC RX Done6	URD6INT	URD6IE	00'004C _H	13 _H / 19 _D	FF7E
irq(34)	UDC RX Done5	URD5INT	URD5IE	00'0048 _H	12 _H / 18 _D	FF7C
irq(35)	UDC RX Done4	URD4INT	URD4IE	00'0044 _H	11 _H / 17 _D	FF7A
irq(36)	UDC RX Done3	URD3INT	URD3IE	00'0040 _H	10 _H / 16 _D	FF78
irq(37)	UDC RX Done2	URD2INT	URD2IE	00'0080 _H	20 _H / 32 _D	FF9C
irq(38)	UDC RX Done1	URD1INT	URD1IE	00'0084 _H	21 _H / 33 _D	FF9E
irq(39)	UDC RX Done0	URD0INT	URD0IE	00'00F4 _H	3D _H / 61 _D	F17A
irq(40)	EPEC	EPECINT	EPECIE	00'00F8 _H	3E _H / 62 _D	F17C
irq(41)	reserved			00'00A0 _H	28 _H / 40 _D	FF98
irq(42)	IOM-2 I/O	IOMIOINT	IOMIOIE	00'00A4 _H	29 _H / 41 _D	FF9A
irq(43)	IOM-2 Channel0 TX	IOMC0TINT	IOMC0TIE	00'00FC _H	3F _H / 63 _D	F17E
irq(44)	IOM-2 Channel0 RX	IOMCORINT	IOMC0RIE	00'0120 _H	48 _H / 72 _D	F182
irq(45)	IOM-2 Channel1 TX	IOMC1TINT	IOMC1TIE	00'0124 _H	49 _H / 73 _D	F18A
irq(46)	IOM-2 Channel1 RX	IOMC1RINT	IOMC1RIE	00'0128 _H	4A _H / 74 _D	F192
irq(47)	reserved			00'012C _H	4B _H / 75 _D	F19A
firq(0)	Fast ext. Interrupt	EX0INT	EX0IE	00'0060 _H	18 _H / 24 _D	FF88
firq(1)	Fast ext. Interrupt	EX1INT	EX1IE	00'0064 _H	19 _H / 25 _D	FF8A
firq(2)	Fast ext. Interrupt	EX2INT	EX2IE	00'0068 _H	1A _H / 26 _D	FF8C
firq(3)	Fast ext. Interrupt	EX3INT	EX3IE	00'006C _H	1B _H / 27 _D	FF8E
firq(4)	Fast ext. Interrupt	EX4INT	EX4IE	00'0070 _H	1C _H / 28 _D	FF90
firq(5)	Fast ext. Interrupt	EX5INT	EX5IE	00'0074 _H	1D _H / 29 _D	FF92

Interrupt and Trap Functions

Table 26 Software controlled Interrupt Classes (Example)

ILVL		Gl	_VL		Interpretation	
(Priority)	3	2	1	0		
15					PEC service on up to 8 channels	
14						
13						
12	Х	Х	Х	Х	Interrupt Class 1	
11	Х				5 sources on 2 levels	
10						
9						
8	Х	Х	Х	Х	Interrupt Class 2	
7	Х	Х	Х	Х	9 sources on 3 levels	
6	Х					
5	Х	Х	Х	Х	Interrupt Class 3	
4	Х				5 sources on 2 levels	
3						
2						
1						
0					No service!	

Parallel Ports

Port 3 Pin	Alternate Function		
P3.0		No pin assigned	
P3.1		No pin assigned	
P3.2		No pin assigned	
P3.3	T3OUT	Timer 3 Toggle Output	
P3.4		No pin assigned!	
P3.5	T4IN	Timer 4 Count Input (T3EUD Input, T2EUD Input)	
P3.6	T3IN	Timer 3 Count Input	
P3.7	T2IN	Timer 2 Count Input	
P3.8	MRST	SSC Master Receive / Slave Transmit	
P3.9	MTSR	SSC Master Transmit / Slave Receive	
P3.10	TxD0	ASC Transmit Data Output	
P3.11	RxD0	ASC Receive Data Input	
P3.12	BHE/WRH	Byte High Enable / Write High Output	
P3.13	SCLK	SSC Shift Clock Input/Output	
P3.14		No pin assigned	
P3.15	CLKOUT	System Clock Output	

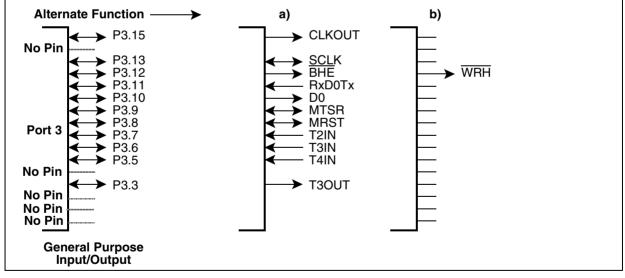


Figure 35 Port 3 I/O and Alternate Functions

The port structure of the Port 3 pins depends on their alternate function (see figures below).

When the on-chip peripheral associated with a Port 3 pin is configured to use the alternate input function, it reads the input latch, which represents the state of the pin, via

Asynchronous/Synchr. Serial Interface

the two fixed dividers a fractional divider prescaler unit is available which allows to select prescaler divider ratios of n/512 with n=0-511. Therefore, the baudrate of ASC is determined by the module clock, the content of S0FDV, the reload value of S0BG and the operating mode (asynchronous or synchronous).

Register S0BG is the dual-function Baudrate Generator/Reload register. Reading BG returns the content of the timer BR_VALUE (bits 15...13 return zero), while writing to S0BG always updates the reload register (bits 15...13 are insiginificant).

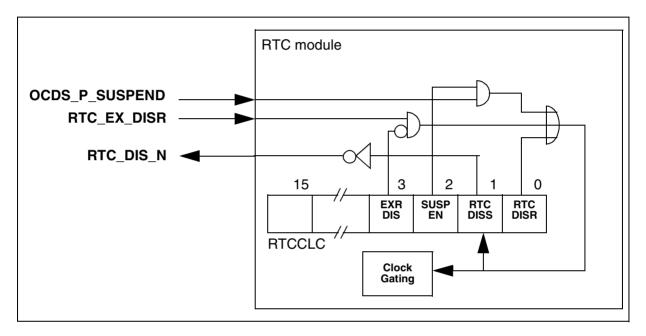
An auto-reload of the timer with the content of the reload register is performed each time CON_BG is written to. However, if CON_R='0' at the time the write operation to BG is performed, the timer will not be reloaded until the first instruction cycle after CON_R='1'. For a clean baudrate initialization S0BG should only be written if CON_R='0'. If S0BG is written with CON_R='1', an unpredicted behaviour of the ASC may occur during running transmit or receive operations.

12.1.7.1 Baudrates in Asynchronous Mode

For asynchronous operation, the baudrate generator provides a clock f_{BRT} with 16 times the rate of the established baudrate. Every received bit is sampled at the 7th, 8th and 9th cycle of this clock. The clock divider circuitry, which generates the input clock for the 13-bit baudrate timer, is extended by a fracxtional divider circuitry, which allows the adjustment of more accurate baudrates and the extension of the baudrate range.

The baudrate of the baudrate generator depends on the following input clock, bits and register values :

- Input clock f_{MOD}
- Selection of the baudrate timer input clock f_{DIV} by bits CON_FDE and CON_BRS
- If bit CON_FDE=1 (fractional divider) : value of register CON_FDV
- value of the 13-bit reload register S0BG


The output clock of the baudrate timer with the reload register is the sample clock in the asynchronous modes of the ASC. For baudrate calculations, this baudrate clock f_{BR} is derived from the sample clock f_{DIV} by a division by 16.

Real Time Clock (RTC)

request flags have to be cleared for enabling the RTC module. An activated request flag sets directly the disabling status flag RTCDISS inside the RTCCLC register and disables the clock within the Clock Gating Module. Since the RTCCLC register is clocked with the bus clock, the disabling status of the RTC can be read and the RTC can be enabled again.

The following figure shows the disabling mechanism of the RTC module:

Figure 96 Disabling Mechanism of the RTC

In disable state no write access to RTC registers is possible. The only exeption is the RTCCLC register.

13.2.12 Register Definition of RTC module

The following table shows the register addresses map:

Table 72Address Map Overview

SFR Address	b/p	Register Name
F0C8 _H		RTCCLC
F1CC _H	b	RTCCON
F0D0 _H		T14REL
F0D2 _H		T14
F0D4 _H		RTCL
F0D6 _H		RTCH

C165UTAH

USB Interface Controller

Table /5	JSBD Register Set	
00EE00 _H +	Register	Function
48 _H	USBD_TXEOD3	EPEC/SW End-of-packet indication for USBD.
4A _H	USBD_RXRR3	USB Receive FIFO data register
4C _H	USBD_RX_BYTECNT3	USB receive packet length in bytes
4E _H	USBD_TXWR4	USB Transmit FIFO data register
50 _H	USBD_TXEOD4	EPEC/SW End-of-packet indication for USBD.
52 _H	USBD_RXRR4	USB Receive FIFO data register
54 _H	USBD_RX_BYTECNT4	USB receive packet length in bytes
56 _H	USBD_TXWR5	USB Transmit FIFO data register
58 _H	USBD_TXEOD5	EPEC/SW End-of-packet indication for USBD.
5A _H	USBD_RXRR5	USB Receive FIFO data register
5C _H	USBD_RX_BYTECNT5	USB receive packet length in bytes
5E _H	USBD_TXWR6	USB Transmit FIFO data register
60 _H	USBD_TXEOD6	EPEC/SW End-of-packet indication for USBD.
62 _H	USBD_RXRR6	USB Receive FIFO data register
64 _H	USBD_RX_BYTECNT6	USB receive packet length in bytes
66 _H	USBD_TXWR7	USB Transmit FIFO data register
68 _H	USBD_TXEOD7	EPEC/SW End-of-packet indication for USBD.
6A _H	USBD_RXRR7	USB Receive FIFO data register
6C _H	USBD_RX_BYTECNT7	USB receive packet length in bytes
6E _H	USBD_CFGVAL	Current Configuration & Alternate Setting selected by Host
70 _H	USBC_CMD_RESET	USB Block Reset

 Table 75
 USBD Register Set

The detailed register description is shown below.

IOM-2 Interface Controller

Table 94 Reception of MONITOR Data

Control/ Status Bit	Register	Bit	Function
Control	MOCR	MRC	MR Bit Control
		MIE	MER Interrupt Enable
		MRE	MDR Interrupt Enable
Status	MOSR	MDR	Data Received Interrupt
_		MER	End of Reception Interrupt

IOM-2 Interface Controller

Transmit FIFO

Addro Name			dr_x ⁼O_x											
15	14	13	12	11	10	98	7	6	5	4	3	2	1	0
						DA	TA							
Field				Bits	Туре	Value	Des	cript	ion					
Data				15:0	W	0000 _H	TFIF can	O. L be w	Jp to	ten k to th	oytes le TF	of tra	ansmi	o the t data ng an
								wid				-		ide or t Low

Interrupt Status Register

Address: $s_adr_x + 04_H$ Name: ISTAH_x

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RME	RPF	RFO	FFO	F	RESEF	RVED		XPR	XMR	XDU	XDOV	R	ESE	RVE	D

Field	Bits	Туре	Value	Description
RME	15	R	0	Receive Message End The end of a frame has been received. The message length and additional information may be obtained from RBCH, RBCL and the STAR register.
RPF	14	R	0	Receive Pool Full A data word/byte has been received and is available in the RFIFO.

Power Reduction Modes

during Slow Down mode, automatically the standard Idle mode is selected as configured with SYSCON3 register.

The Sleep mode is controlled by bitfield SLEEPCON within register SYSCON1.

SYSC	ON1 (F1DC	; _н / ЕЕ	н)			ES	FR-b			ResetValue:0000 _H					
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	SLEE	PCON	
-	-	-	-	-	-	-	-	-	-	-	-	-	-	rw	rw	

Note: SYSCON1 is write protected after the execution of EINIT unless it is released via the unlock sequence.

General description of SYSCON1 bits:

Bit	Function								
SLEEPCON	SLEEP Mode Configuration								
	'0 0': normal IDLE mode								
	'0 1': SLEEP mode with running RTC								
	'1 0': reserved								
	'1 1': SLEEP mode with stopped RTC and stopped OSC								

Before entering Sleep mode with the IDLE instruction, the continuation of instruction processing **after** termination of Sleep mode must be prepared as known from standard Idle mode. For wakeup with interrupt, four general possibilities of continuation can be selected, which are controlled (prepared) as follows:

- Continuation with first instruction after the IDLE instruction will be enabled if

 interrupts are globally disabled with the Interrupt Enable bit in PSW, or
 - the interrupt is enabled by global (PSW) and by individual (interrupt control register) enable bit, but the current CPU priority level (in PSW) of IDLE instruction is higher than the interrupt level.
- Continuation with first instruction of dedicated interrupt service routine will be selected if

the interrupt is enabled by global (in PSW) and by individual (interrupt control register) enable bit, and the CPU priority level of IDLE instruction is lower than the interrupt level, thus the enabled interrupt has highest priority. Additionally, PEC Transfer for this interrupt is not enabled. The continuation with the dedicated service routine is **always** performed in case of NMI hardware traps, independently of any enable bit or CPU priority level.

• Execution of one PEC Transfer and resumption of Sleep mode will be selected if the interrupt is enabled by global (in PSW) and by individual (interrupt control register) enable bit, and the CPU priority level of IDLE instruction is lower than the interrupt

System Control Unit (CSCU)

21.5 Peripheral Management Module

This module especially serves for power management support, controlling dynamically the operation and thus the power consumption of the different peripherals on PD Bus and XBUS. In each situation (eg. several system operating modes, standby, etc.) only those peripherals may be kept running which are required for the respective functionality. All others can be switched off. It also allows the operation control of whole groups of peripherals.

Peripheral's operation is disabled or enabled by controlling the specific clock input. This function also is supported in idle and/or slow down mode.

The Real Time Clock (RTC) may be fed by a separate clock driver, so it can be kept running even in power down mode.

While a peripheral is disabled its output pins remain in the state they had at the time of disabling.

Note: In contrast to the peripheral management of Infineon's 16x family the registers of a **disabled** module are not accessable. Only the clock control register of the platform peripheral is accessable. Note, the register access is not compatible to the C167CS.

The user gets access to the flexible operation control of peripherals via the SYSCON3 register. This register is defined as follows:

SYS	CON3	(F1D4	H / E4	۹ _H)		ESFR-b							Reset Value:0000 _H				
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
GRP DIS	re- serv ed	PLL DIS	USE	BTDIS	rese	rved	PER DIS8	PER DIS7	PER DIS6	rese	erved	PER DIS3	PER DIS2	PER DIS1	PER DIS0		
rw	-	rw	r	w	-	-	rw	rw	rw	-	-	rw	rw	rw	rw		

.

Bit	Function
PERDISx	Peripheral Disable Flag 0 - 14 '0': Module is enabled; the peripheral is supplied with the clock signal '1': Module is disabled; the clock input of peripheral is disabled
GRPDIS	Peripheral Group Disable Flag (PD-Bus and X-Bus Peripherals) '0': Peripheral clock driver for peripheral group is enabled '1': Peripheral clock driver for peripheral group is disabled

Register Set

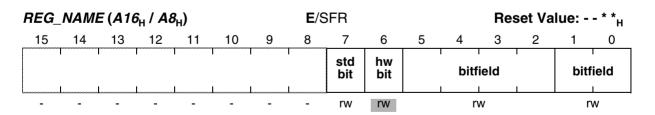
23 Register Set

This section summarizes all registers, which are implemented in the C165UTAH and explains the description format which is used in the chapters describing the function and layout of the SFRs.

For easy reference the registers are ordered according to two different keys (except for GPRs):

- Ordered by address, to check which register a given address references,
- Ordered by register name, to find the location of a specific register.

23.1 Register Description Format


In the respective chapters the function and the layout of the SFRs is described in a specific format which provides a number of details about the described special function register. The example below shows how to interpret these details.

A word register looks like this:

REG	<u>5 14 13 12 11 10 9 8</u>								SFR Res					set Value: * * * * _H		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
res.	res.	res.	res.	res.	write only	hw bit	read only	std bit	hw bit		bitfield	 		bitfield		
-	-	-	-	-	W	rw	r	rw	rw		rw			rw		

Bit	Function
bit(field)name	Explanation of bit(field)name
	Description of the functions controlled by this bit(field).

A byte register looks like this:

Elements:

REG_NAME	Name of this register
A16 / A8	Long 16-bit address / Short 8-bit address
SFR/ESFR/XReg	Register space (SFR, ESFR or External/XBUS Register)
(* *) * *	Register contents after reset
	0/1: defined value, 'X': undefined, 'U': unchanged (undefined ('X') after power up)
hwbit	Bits that are set/cleared by hardware are marked with a shaded access box

Register Set

Physical Addr	Register Name	Туре	8-bit Addr	Description	Reset Value
FE76 _H	P1HPHEN	SFR	3B _H	Port 1 High Pin Hold Enable Register	0000 _H
FE78 _H	P2PUDSEL	SFR	3C _H	Port 2 Pull-Up/Down Select Register	0000 _H
FE7A _H	P2PUDEN	SFR	3D _H	Port 2 Pull Switch On/Off Register	0000 _H
FE7C _H	P2PHEN	SFR	3E _H	Port 2 Pin Hold Enable Register	0000 _H
FE7E _H	P3PUDSEL	SFR	3F _H	Port 3 Pull-Up/Down Select Register	0000 _H
FE80 _H	P3PUDEN	SFR	40 _H	Port 3 Pull Switch On/Off Register	0000 _H
FE82 _H	P3PHEN	SFR	41 _H	Port 3 Pin Hold Enable Register	0000 _H
FE84 _H	P4PUDSEL	SFR	42 _H	Port 4 Pull-Up/Down Select Register	0000 _H
FE86 _H	P4PUDEN	SFR	43 _H	Port 4 Pull Switch On/Off Register	0000 _H
FE88 _H	P4PHEN	SFR	44 _H	Port 4 Pin Hold Enable Register	0000 _H
FE90 _H	P6PUDSEL	SFR	48 _H	Port 6 Pull-Up/Down Select Register	0000 _H
FE92 _H	P6PUDEN	SFR	49 _H	Port 6 Pull Switch On/Off Register	0000 _H
FE94 _H	P6PHEN	SFR	4A _H	Port 6 Pin Hold Enable Register	0000 _H
FE96 _H	P7PUDSEL	SFR	4B _H	Port 7 Pull-Up/Down Select Register	0000 _H
FE98 _H	P7PUDEN	SFR	4C _H	Port 7 Pull Switch On/Off Register	0000 _H
FE9A _H	P7PHEN	SFR	4D _H	Port 7 Pin Hold Enable Register	0000 _H
FEAA _H	S0PMW	SFR	55 _H	ASC IrDA PMW Control Register	0000 _H
FEAE _H	WDT	SFR	57 _H	Watchdog Timer Register (RO)	0000 _H
FEB0 _H	S0TBUF	SFR	58 _H	Serial Channel 0 Transmit Buffer Register (WO)	0000 _H
FEB2 _H	SORBUF	SFR	59 _H	Serial Channel 0 Receive Buffer Register (RO)	xxxx _H
FEB4 _H	SOBG	SFR	5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H
FEB6 _H	S0FDV	SFR	5B _H	ASC Fractional Divide Register	0000 _H
FEC0 _H	PECC0	SFR	60 _H	PEC Channel 0 Control Register	0000 _H
FEC2 _H	PECC1	SFR	61 _H	PEC Channel 1 Control Register	0000 _H
FEC4 _H	PECC2	SFR	62 _H	PEC Channel 2 Control Register	0000 _H
FEC6 _H	PECC3	SFR	63 _H	PEC Channel 3 Control Register	0000 _H
FEC8 _H	PECC4	SFR	64 _H	PEC Channel 4 Control Register	0000 _H
FECA _H	PECC5	SFR	65 _H	PEC Channel 5 Control Register	0000 _H
FECC _H	PECC6	SFR	66 _H	PEC Channel 6 Control Register	0000 _H
FECE _H	PECC7	SFR	67 _H	PEC Channel 7 Control Register	0000 _H
FED0 _H	PECSN0	SFR	68 _H	PEC Segment No Register	
FED2 _H	PECSN1	SFR	69 _H	PEC Segment No Register	
FED4 _H	PECSN2	SFR	6A _H	PEC Segment No Register	
FED6 _H	PECSN3	SFR	6B _H	PEC Segment No Register	
FED8 _H	PECSN4	SFR	6C _H	PEC Segment No Register	