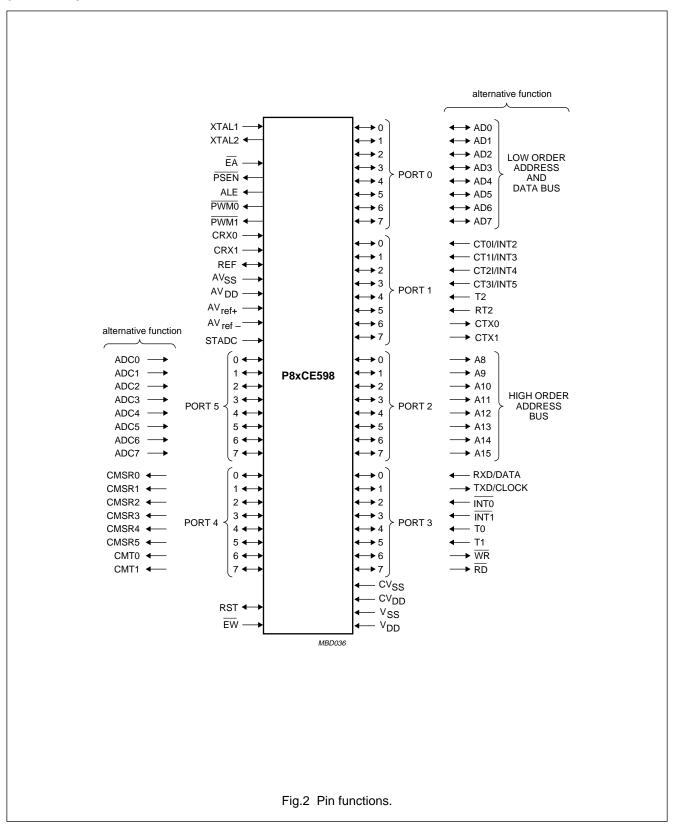


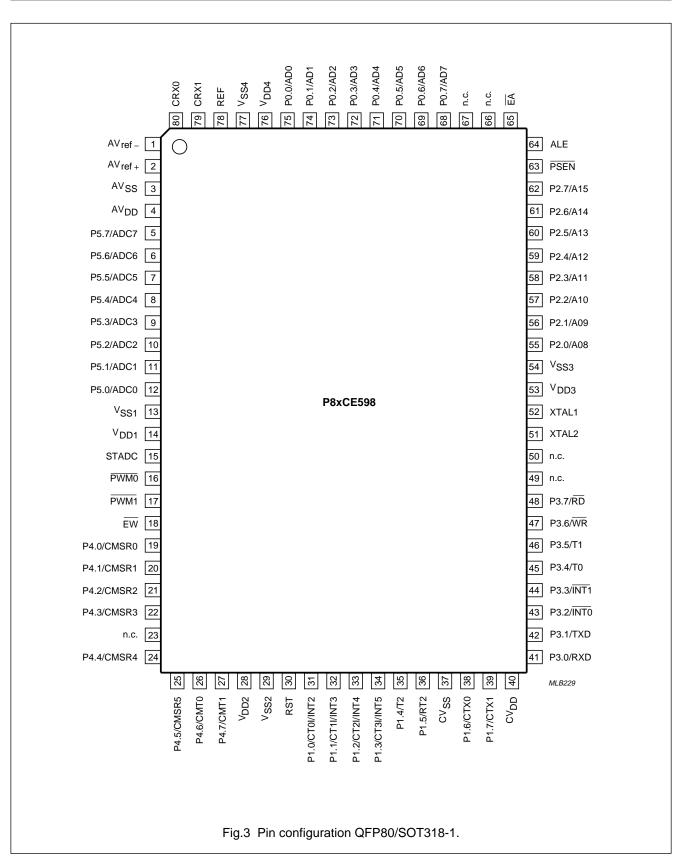
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

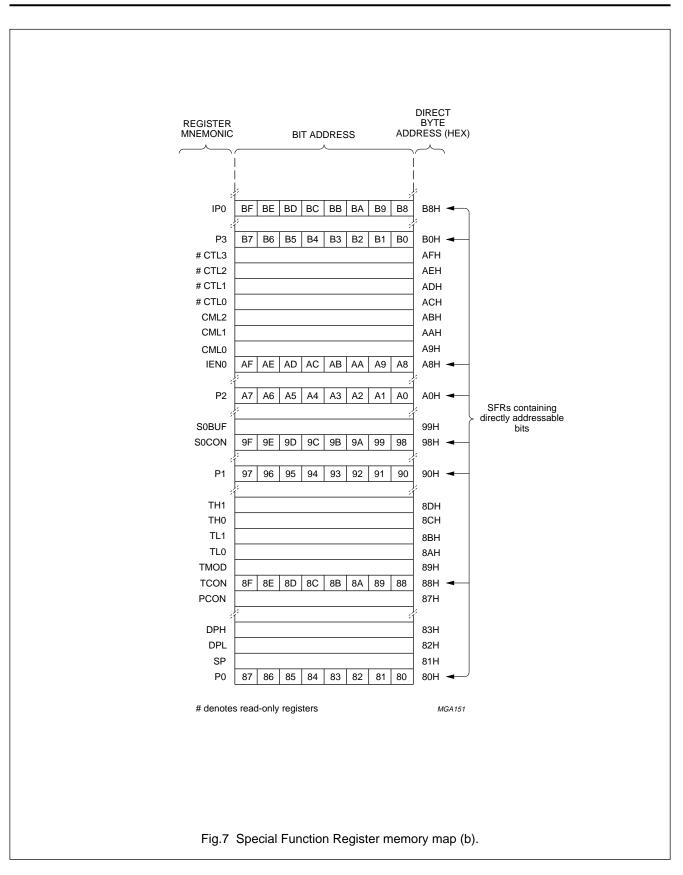

Details


Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	16MHz
Connectivity	CANbus, EBI/EMI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	48
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-BQFP
Supplier Device Package	80-PQFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/p80ce598ffb-00-518

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5 PINNING


P8xCE598

	SYMBOL	BINI	DECODIDION				
DEFAULT	ALTERNATIVE	PIN	DESCRIPTION				
Port 3		1					
P3.0 to P3.7		41 to 48	8-bit quasi-bidirectional I/O port.				
	RXD	41	Serial Input Port.				
	TXD	42	Serial Output Port.				
	INT0	43	External interrupt input 0.				
	INT1	44	External interrupt input 1.				
	ТО	45	Timer 0 external input.				
Ī	T1	46	Timer 1 external input.				
	WR	47	External Data Memory Write strobe.				
	RD	48	External Data Memory Read strobe.				
Port 2 (Sink/	/source: 1 × TTL = 4 >	LSTTL inputs)					
P2.0 to P2.7		55 to 62	8-bit quasi-bidirectional I/O port.				
	A08 to A15		High-order address byte for external memory.				
Port 0 (Sink/	source: 8 × LSTTL in	puts)					
P0.7 to P0.0		68 to 75	8-bit open drain bidirectional I/O port.				
	AD7 to AD0		Multiplexed Low-order address and Data bus for external memory.				
Port 5	•						
P5.7 to P5.0		5 to 12	8-bit input port.				
	1		8 input channels to ADC.				

Notes

1. To avoid a 'latch up' effect at power-on: $V_{SS} - 0.5 V <$ 'voltage on any pin at any time' $< V_{DD} + 0.5 V$.

2. If the CAN-controller is in the reset state (e.g. after a power-up reset; CAN Control Register bit CR.0; see Section 13.5.3 Table 32, the CAN transmitter outputs are floating and the pins P1.6 and P1.7 can be used as open-drain port pins. After a power-up reset the port data is HIGH, leaving the pins P1.6 and P1.7 floating.

P8xCE598

11 TIMERS/COUNTERS

The P8xCE598 contains:

- Three 16-bit timer/event counters: Timer 0, Timer 1 and Timer 2
- One 8-bit timer, T3 (Watchdog WDT).

11.1 Timer 0 and Timer 1

Timer 0 and Timer 1 may be programmed to carry out the following functions:

- · Measure time intervals and pulse durations
- Count events
- Generate interrupt requests.

Timer 0 and Timer 1 can be programmed independently to operate in 3 modes:

- Mode 0 8-bit timer or 8-bit counter each with divide-by-32 prescaler.
- Mode 1 16-bit timer-interval or event counter.
- Mode 2 8-bit timer-interval or event counter with automatic reload upon overflow.

Timer 0 can be programmed to operate in an additional mode as follows:

Mode 3 one 8-bit time-interval or event counter and one 8-bit timer-interval counter.

When Timer 0 is in Mode 3, Timer 1 can be programmed to operate in Modes 0, 1 or 2 but cannot set an interrupt flag or generate an interrupt. However, the overflow from Timer 1 can be used to pulse the Serial Port baud-rate generator.

The frequency handling range of these counters with a 16 MHz crystal is as follows:

- In the timer function, the timer is incremented at a frequency of 1.33 MHz (¹/₁₂ of the oscillator frequency)
- 0 Hz to an upper limit of 0.66 MHz (¹/₂₄ of the oscillator frequency) when programmed for external inputs.

Both internal and external inputs can be gated to the counter by a second external source for directly measuring pulse durations. When configured as a counter, the register is incremented on every falling edge on the corresponding input pin, T0 or T1.

The earliest moment, when the incremented register value can be read is during the second machine cycle following the machine cycle within which the incrementing pulse occurred. The counters are started and stopped under software control. Each one sets its interrupt request flag when it overflows from all HIGHs to all LOWs (or automatic reload value), with the exception of Mode 3 as previously described.

11.2 Timer T2 Capture and Compare Logic

Timer T2 is a 16-bit timer/counter which has capture and compare facilities (see Fig.11).

The 16-bit timer/counter is clocked via a prescaler with a programmable division factor of 1, 2, 4 or 8. The input of the prescaler is clocked with $\frac{1}{12}$ of the oscillator frequency, or by an external source connected to the T2 input, or it is switched off. The maximum repetition rate of the external clock source is $\frac{1}{12}f_{CLK}$, twice that of Timer 0 and Timer 1. The prescaler is incremented on a rising edge. It is cleared if its division factor or its input source is changed, or if the timer/counter is reset.

T2 is readable 'on the fly', without any extra read latches; this means that software precautions have to be taken against misinterpretation at overflow from least to most significant byte while T2 is being read. T2 is not loadable and is reset by the RST signal or at the positive edge of the input signal RT2, if enabled. In the Idle mode the timer/counter and prescaler are reset and halted.

T2 is connected to four 16-bit Capture Registers: CT0, CT1, CT2 and CT3. A rising or falling edge on the inputs CT0I, CT1I, CT2I or CT3I (alternative function of Port 1) results in loading the contents of T2 into the respective Capture Registers and an interrupt request.

Using the Capture Register CTCON, these inputs may invoke capture and interrupt request on a positive edge, a negative edge or on both edges. If neither a positive nor a negative edge is selected for capture input, no capture or interrupt request can be generated by this input.

The contents of the Compare Registers CM0, CM1 and CM2 are continually compared with the counter value of Timer T2. When a match occurs, an interrupt may be invoked. A match of CM0 sets the bits 0 to 5 of Port 4, a CM1 match resets these bits and a CM2 match toggles bits 6 and 7 of Port 4, provided these functions are enabled by the STE/RTE registers. A match of CM0 and CM1 at the same time results in resetting bits 0 to 5 of Port 4. CM0, CM1 and CM2 are reset by the RST signal.

Port 4 can be read and written by software without affecting the toggle, set and reset signals. At a byte overflow of the least significant byte, or at a 16-bit overflow of the timer/counter, an interrupt sharing the same interrupt vector is requested. Either one or both of these overflows can be programmed to request an interrupt. All interrupt flags must be reset by software.

Table 30 CPU/CAN Register	map
---------------------------	-----

	BIT							
7	6	5	4	3	2	1	0	
Control Seg	ment				ł	•		
ADDRESS 0: C	ONTROL REGIS	TER						
ТМ	S	RA	OIE	EIE	TIE	RIE	RR	
ADDRESS 1: C	COMMAND REGIS	STER						
RX0A	RX1A	WUM	SLP	COS	RRB	AT	TR	
ADDRESS 2: S	TATUS REGISTE	R					•	
BS	ES	TS	RS	TCS	TBS	DO	RBS	
ADDRESS 3: IN	NTERRUPT REG	ISTER					•	
Reserved	Reserved	Reserved	WUI	OI	EI	TI	RI	
ADDRESS 4: A	CCEPTANCE CO	DE REGISTER					•	
AC.7	AC.6	AC.5	AC.4	AC.3	AC.2	AC.1	AC.0	
ADDRESS 5: A	CCEPTANCE MA	ASK REGISTER						
AM.7	AM.6	AM.5	AM.4	AM.3	AM.2	AM.1	AM.0	
ADDRESS 6: E	BUS TIMING REG	GISTER 0						
SJW.1	SJW.0	BRP.5	BRP.4	BRP.3	BRP.2	BRP.1	BRP.0	
ADDRESS 7: E	BUS TIMING REG	BISTER 1						
SAM	TSEG2.2	TSEG2.1	TESG2.0	TSEG1.3	TSEG1.2	TSEG1.1	TSEG1.0	
ADDRESS 8: C	UTPUT CONTRO	OL REGISTER			·		·	
OCTP1	OCTN1	OCPOL1	OCTP0	OCTN0	OCPOL0	OCMODE1	OCMODE0	
ADDRESS 9: T	EST REGISTER	(note 1)						
Reserved	Reserved	Map Internal Register	Connect RX Buffer 0 CPU	Connect TX Buffer CPU	Access Internal Bus	Normal RAM Connect	Float Output Driver	

TYPE	BIT	SYMBOL	FUNCTION	EFFECT
Control	CR.7	ТМ	Test Mode	LOW (disabled)
	CR.5	RA	Reference Active	HIGH (output); note 1
Command	CMR.7	RX0A	RX0 Active	HIGH (RX0 = CRX0); note 1
	CMR.6	RX1A	RX1 Active	HIGH (RX1 = CRX1); note 1
	CMR.4	SLP	Sleep	LOW (wake-up)
	CMR.3	COS	Clear Overrun Status	HIGH (clear)
	CMR.2	RRB	Release Receive Buffer	HIGH (released)
	CMR.1	AT	Abort Transmission	LOW (absent)
	CMR.0	TR	Transmission Request	LOW (absent)
Status	SR.7	BS	Bus Status	LOW (Bus-On); note 1
	SR.6	ES	Error Status	LOW (no error); note 1
	SR.5	TS	Transmit Status	LOW (idle)
	SR.4	RS	Receive Status	LOW (idle)
	SR.3	TCS	Transmission Complete Status	HIGH (complete)
	SR.2	TBS	Transmit Buffer Access	HIGH (released)
	SR.1	DO	Data Overrun	LOW (absent)
	SR.0	RBS	Receive Buffer Status	LOW (empty)
Interrupt	IR.3	OI	Overrun Interrupt	LOW (reset)
	IR.1	ТІ	Transmit Interrupt	LOW (reset)
	IR.0	RI	Receive Interrupt	LOW (reset)

Table 40 Effects of setting the Reset Request bit HIGH (present)

Note

1. Only after an external reset; see note 5 to Table 37 "Description of the SR bits".

P8xCE598

13.5.15.3 Special Function Register CANCON

Table 63 SFR CANCON in Read access (address D9H)

7	6	5	4	3	2	1	0
_	_	—	WUI	OI	EI	TI	RI

Table 64 Description of the CANCON bits in Read access

When reading CANCON the Interrupt Register of the CAN-controller is accessed.

BIT	SYMBOL	FUNCTION
7	-	Reserved; bits are read as HIGH.
6	—	
5	—	
4	WUI	Wake-Up Interrupt (see Table 39).
3	OI	Overrun Interrupt (see Table 39).
2	EI	Error Interrupt (see Table 39).
1	ТІ	Transmit Interrupt (see Table 39).
0	RI	Receive Interrupt (see Table 39).

Table 65 SFR CANCON in Write access (address D9H)

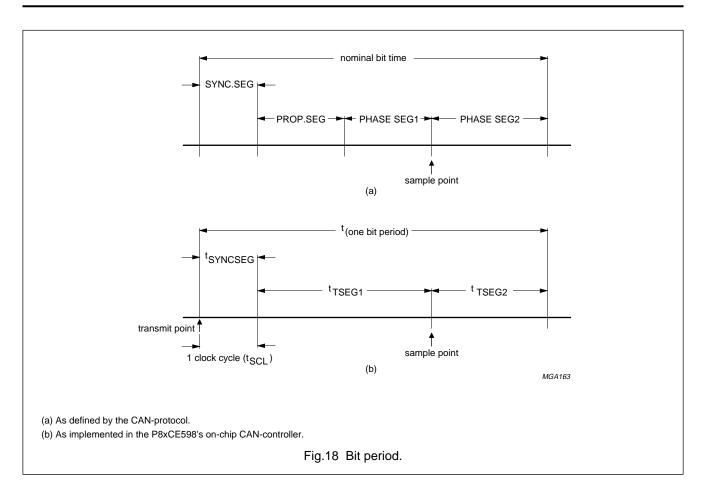

7	6	5	4	3	2	1	0
RX0A	RX1A	WUM	SLP	COS	RRB	AT	TR

Table 66 Description of the CANCON bits in Write access

When writing to CANCON then the Command Register of the CAN-controller is accessed.

BIT	SYMBOL	FUNCTION
7	RX0A	RX0 Active (see Table 34).
6	RX1A	RX1 Active (see Table 34).
5	WUM	Wake-Up Mode (see Table 34).
4	SLP	Sleep (see Table 34).
3	COS	Clear Overrun Status (see Table 34).
2	RRB	Release Receive Buffer (see Table 34).
1	AT	Abort Transmission (see Table 34).
0	TR	Transmission Request (see Table 34).

P8xCE598

13.5.19.2 Time Segment 1 (TSEG1)

This segment determines the location of the sampling point within a bit period, which is at the end of TSEG1. TSEG1 is programmable from 1 to 16 system clock cycles (see Section 13.5.10).

The correct location of the sample point is essential for the correct functioning of a transmission. The following points must be taken into consideration:

- A Start-Of-Frame (see Section 13.6.2) causes all CAN-controllers to perform a 'hard synchronization' (see Section 13.5.20) on the first recessive-to-dominant edge. During arbitration, however, several CAN-controllers may simultaneously transmit. Therefore it may require twice the sum of bus-line, input comparator and the output driver delay times until the bus is stable. This is the propagation delay time.
- To avoid sampling at an incorrect position, it is necessary to include an additional synchronization buffer on both sides of the sample point. The main reasons for incorrect sampling are:
 - incorrect synchronization due to spikes on the bus-line
 - slight variations in the oscillator frequency of each CAN-controller in the network, which results in a phase error.
- Time Segment 1 consists of the segment for compensation of propagation delays and the synchronization buffer segment directly before the sample point (see Fig.18).

P8xCE598

13.5.19.3 Time Segment 2 (TSEG2)

This time segment provides:

- additional time at the sample point for calculation of the subsequent bit levels (e.g. arbitration)
- synchronization buffer segment directly after the sample point.

TSEG2 is programmable from 1 to 8 system clock cycles (see Section 13.5.10.

13.5.19.4 Synchronisation Jump Width (SJW)

SJW defines the maximum number of clock cycles (t_{SCL}) a period may be reduced or increased by one resynchronization. SJW is programmable from 1 to 4 system clock cycles, see Section 13.5.2.

13.5.19.5 Propagation Delay Time (t_{prop})

The Propagation Delay Time is:

- $t_{prop} = 2 \times (physical bus delay)$
 - + input comparator delay
 - + output driver delay).

tprop is rounded up to the nearest multiple of t_{SCL}.

13.5.19.6 Bit Timing Restrictions

Restrictions on the configuration of the bit timing are based on internal processing. The restrictions are:

- t_{TSEG2} ≥ 2t_{SCL}
- $t_{TSEG2} \ge t_{SJW}$
- $t_{TSEG1} \ge t_{SEG2}$
- $t_{TSEG1} \ge t_{SJW} + t_{prop}$.

The three sample mode (SAM = HIGH) has the effect of introducing a delay of one system clock cycle on the bus-line. This must be taken into account for the correct calculation of TSEG1 and TSEG2:

- $t_{TSEG1} \ge t_{SJW} + t_{prop} + 2t_{SCL}$
- $t_{TSEG2} \ge 3t_{SCL}$.

13.5.20 SYNCHRONIZATION

Synchronization is performed by a state machine which compares the incoming edge with its actual bit timing and adapts the bit timing by hard synchronization or resynchronization. This type of synchronization occurs only at the beginning of a message.

The CAN-controller synchronizes on the first incoming recessive-to-dominant edge of a message (being the leading edge of a message's Start-Of-Frame bit; see Section 13.6.2.

Resynchronization occurs during the transmission of a message's bit stream to compensate for:

- Variations in individual CAN-controller oscillator frequencies
- Changes introduced by switching from one transmitter to another (e.g. during arbitration).

As a result of resynchronization either t_{TSEG1} may be increased by up to a maximum of t_{SJW} or t_{TSEG2} may be decreased by up to a maximum of t_{SJW} :

- $t_{TSEG1} \le t_{SCL} [(TSEG1 + 1) + (SJW + 1)]$
- $t_{TSEG2} \ge t_{SCL} [(TSEG2 + 1) (SJW + 1)].$

TSEG1, TSEG2 and SJW are the programmed numerical values.

The phase error (e) of an edge is given by the position of the edge relative to SYNCSEG, measured in system clock cycles (t_{SCL}).

The value of the phase error is defined as:

- e = 0, if the edge occurs within SYNCSEG
- e > 0, if the edge occurs within TSEG1
- e < 0, if the edge occurs within TSEG2.

The effect of resynchronization is:

- The same as that of a hard synchronization, if the magnitude of the phase error (e) is less or equal to the programmed value of t_{SJW}
- To increase a bit period by the amount of t_{SJW}, if the phase error is positive and the magnitude of the phase error is larger than t_{SJW}
- To decrease a bit period by the amount of t_{SJW} if the phase error is negative and the magnitude of the phase error is larger than t_{SJW}.

13.5.20.1 Synchronization Rules

The synchronization rules are as follows:

- Only one synchronization within one bit time is used.
- An edge is used for synchronization only if the value detected at the previous sample point differs from the bus value immediately after the edge.
- Hard synchronization is performed whenever there is a recessive-to-dominant edge during Bus-Idle (see Section 13.6.6).
- All other edges (recessive-to-dominant and optionally dominant-to recessive edges if the Sync bit is set HIGH (see Section 13.5.3) which are candidates for resynchronization will be used with the following exception:
 - A transmitting CAN-controller will not perform a resynchronization as a result of a recessive-to-dominant edge with positive phase error, if only these edges are used for resynchronization. This ensures that the delay times of the output driver and input comparator do not cause a permanent increase in the bit time.

13.6 CAN 2.0A Protocol description

13.6.1 FRAME TYPES

The P8xCE598's CAN-controller supports the four different CAN-protocol frame types for communication:

- Data Frame, to transfer data
- Remote Frame, request for data
- Error Frame, globally signal a (locally) detected error condition
- Overload Frame, to extend delay time of subsequent frames (an Overload Frame is not initiated by the P8xCE598 CAN-Controller).

13.6.1.1 Bit representation

There are two logical bit representations used in the CAN-protocol:

- A recessive bit on the bus-line appears only if all connected CAN-controllers send a recessive bit at that moment.
- Dominant bits always overwrite recessive bits i.e. the resulting bit level on the bus-line is dominant.

13.6.2 DATA FRAME

A Data Frame carries data from a transmitting CAN-controller to one or more receiving ones.

A Data Frame is composed of seven different bit-fields:

- Start-Of-Frame
- Arbitration Field
- Control Field
- Data Field (may have a length of zero)
- CRC Field
- Acknowledge Field
- End-Of-Frame.

13.6.2.1 Start-Of-Frame bit

Signals the start of a Data Frame or Remote Frame. It consists of a single dominant bit use for hard synchronization of a CAN-controller in receive mode.

13.6.2.2 Arbitration Field

Consists of the message Identifier and the RTR bit. In the case of simultaneous message transmissions by two or more CAN-controllers the bus access conflict is solved by bit-wise arbitration, which is active during the transmission of the Arbitration Field.

13.6.2.3 Identifier

This 11-bit field is used to provide information about the message, as well as the bus access priority. It is transmitted in the order ID.10 to ID.0 (LSB). The situation that the seven most significant bits (ID.10 to ID.4) are all recessive must not occur.

An Identifier does not define which particular CAN-controller will receive the frame because a CAN based communication network does not differentiate between a point-to-point, multicast or broadcast communication.

P8xCE598

13.6.8.3 CRC Error

To ensure the validity of a transmitted message all receivers perform a CRC check. Therefore, in addition to the (destuffed) information digits (Start-Of-Frame up to Data Field), every message includes some control digits (CRC Sequence; generated by the transmitting CAN-controller of the respective message) used for error detection.

The code used by all CAN-controllers is a (shortened) BCH code, extended by a parity check and has the following attributes:

- 127 bits as maximum length of the code.
- 112 bits as maximum number of information digits (max. 83 bits are used by the CAN-controller).
- Length of the CRC Sequence amounts to 15 bits.
- Hamming distance d = 6.

As a result, (d-1) random errors are detectable (some exceptions exist).

The CRC Sequence is determined (calculated) by the following procedure:

- 1. The destuffed bit stream consisting of Start-Of-Frame up to the Data Field (if present) is interpreted as polynomial with coefficients 0 or 1.
- 2. This polynomial is divided (modulo-2) by the following generator polynomial, which includes a parity check: $f(x) = (x^{14} + x^9 + x^8 + x^6 + x^5 + x^4 + x^2 + x + 1)$
 - (x + 1) = 1100010110011001 B.
- 3. The remainder of this polynomial division is the CRC sequence.

Burst errors are detected up to a length of 15 [degree of f(x)]. Multiple errors (number of disturbed bits at least d = 6) are not detected with a residual error probability of $2^{-15} (3 \times 10^{-5})$ by CRC check only.

13.6.8.4 Form Error

Form Errors result from violations of the fixed form of the following bit fields:

- CRC Delimiter
- Acknowledge Delimiter
- End-Of-Frame
- Error Delimiter
- Overload Delimiter.

During the transmission of these bit fields an error condition is recognized if a dominant bit level instead of a recessive one is detected.

13.6.8.5 Acknowledgement Error

This is detected by a transmitter whenever it does not monitor a dominant bit during the Acknowledge Slot.

13.6.8.6 Error detection by an Error Flag from another CAN-controller

The detection of an error is signalled by transmitting an Error Flag. An Active Error Flag causes a Stuff Error, a Bit Error or a Form Error at all other CAN-controllers.

13.6.8.7 Error Detection Capabilities

Errors which occur at all CAN-controllers (global errors) are 100% detected. For local errors, i.e. for errors occurring at some CAN-controllers only, the shortened BCH code, extended by a parity check, has the following error detection capabilities:

- Up to five single Bit Errors are 100% detected, even if they are distributed randomly within the code.
- All single Bit Errors are detected if their total number (within the code) is odd.
- The residual error probability of the CRC check amounts to (3×10^{-5}) . As an error may be detected not only by CRC check but also by other detection processes described above the residual error probability is several magnitudes less than (3×10^{-5}) .

13.6.9 ERROR CONFINEMENT DEFINITIONS

13.6.9.1 Bus-OFF

A CAN-controller which has too many unsuccessful transmissions, relative to the number of successful transmissions, will enter the Bus-OFF state. It remains in this state, neither receiving nor transmitting messages until the Reset Request bit is set LOW (absent) and both Error Counters set to 0 (see Section 13.6.10).

13.6.9.2 Acknowledge

A CAN-controller which has received a valid message correctly, indicates this to the transmitter by transmitting a dominant bit level on the bus during the Acknowledge Slot, independent of accepting or rejecting the message.

13.6.9.3 Error-Active

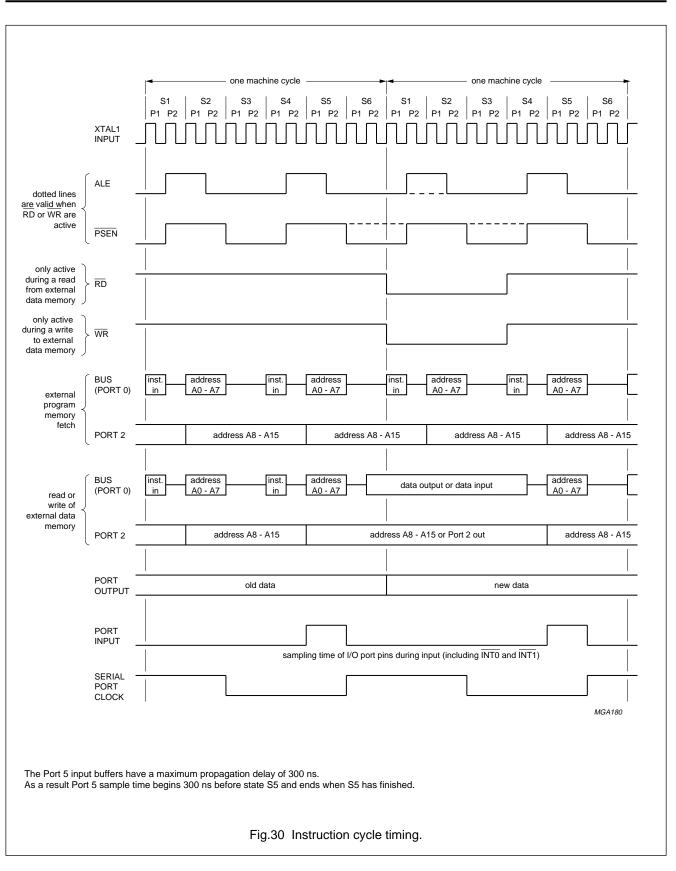
An error-active CAN-controller in its normal operating state is able to receive and to transmit normally and also to transmit an Active Error Flag (see Section 13.6.10).

P8xCE598

Table 88 Description of the mnemonics in the Instruction set

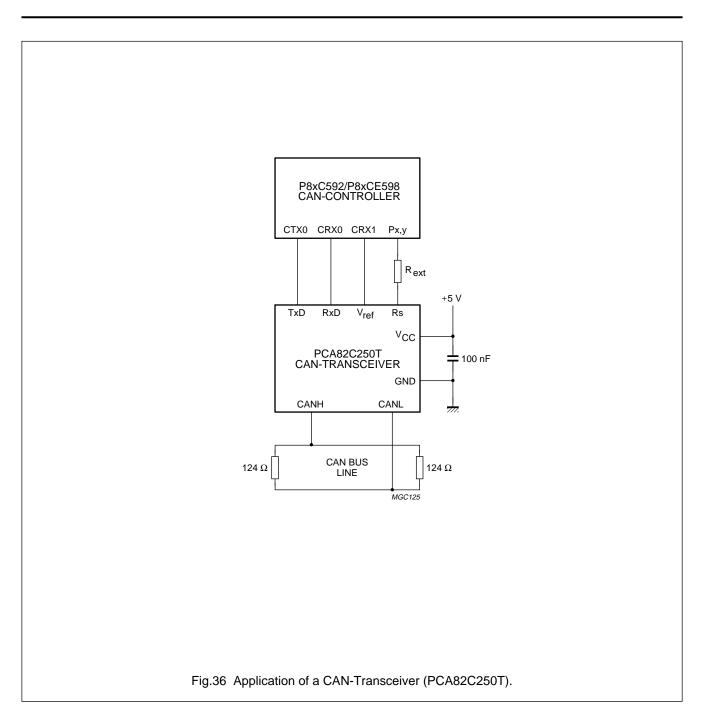
MNEMONIC	DESCRIPTION					
Data addressing modes						
Rr	Working register R0-R7.					
direct	128 internal RAM locations and any special function register (SFR).					
@Ri	Indirect internal RAM location addressed by register R0 or R1 of the actual register bank.					
#data	8-bit constant included in instruction.					
#data 16	16-bit constant included as bytes 2 and 3 of instruction.					
bit	Direct addressed bit in internal RAM or SFR.					
addr16	16-bit destination address. Used by LCALL and LJMP. The branch will be anywhere within the 64 kbytes Program Memory address space.					
addr11	11-bit destination address. Used by ACALL and AJMP. The branch will be within the same 2 kbytes page of Program Memory as the first byte of the following instruction.					
rel	Signed (two's complement) 8-bit offset byte. Used by SJMP and all conditional jumps. Range is –128 to +127 bytes relative to first byte of the following instruction.					
Hexadecima	l opcode cross-reference					
*	8, 9, A, B, C, D, E, F.					
•	1, 3, 5, 7, 9, B, D, F.					
•	0, 2, 4, 6, 8, A, C, E.					

P8xCE598

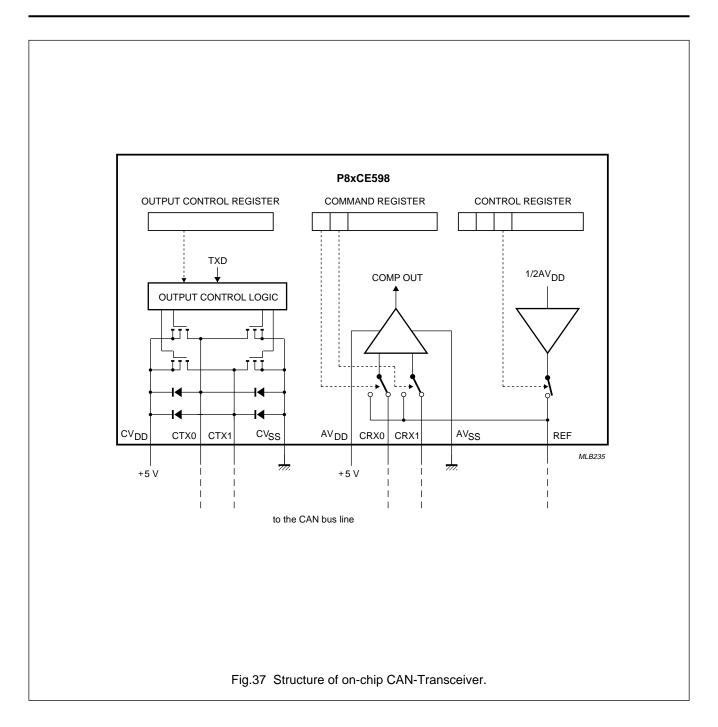

21 AC CHARACTERISTICS

See notes 1 and 2; $C_L = 100 \text{ pF}$ for Port 0, ALE and \overline{PSEN} ; $C_L = 80 \text{ pF}$ for all other outputs unless otherwise specified.

SYMBOL	PARAMETER	f _{CLK} =	16 MHz	f _{CLK} = 12 MHz		VARIABLE CLOCK 1.2 to 16 MHz		UNIT
		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.]
External P	rogram Memory	ŀ			·			1
t _{LHLL}	ALE pulse width	85	-	127	-	2t _{CLK} - 40	-	ns
t _{AVLL}	address valid to ALE LOW	8	-	28	-	t _{CLK} – 55	-	ns
t _{LLAX}	address hold after ALE LOW	28	-	48	-	t _{CLK} – 35	-	ns
t _{LLIV}	ALE LOW to valid instruction in	-	150	-	233	-	4t _{CLK} - 100	ns
t _{LLPL}	ALE LOW to PSEN LOW	23	_	43	_	t _{CLK} – 40	_	ns
t _{PLPH}	PSEN pulse width	143	-	205	-	3t _{CLK} – 45	-	ns
t _{PLIV}	PSEN LOW to valid instruction in	_	83	-	145	-	3t _{CLK} – 105	ns
t _{PXIX}	input instruction hold after PSEN	0	-	0	-	0	-	ns
t _{PXIZ}	input instruction float after PSEN	-	38	-	59	_	t _{CLK} – 25	ns
t _{AVIV}	address to valid instruction in	_	208	-	312	_	5t _{CLK} – 105	ns
t _{PLAZ}	PSEN LOW to address float	_	10	-	10	_	10	ns
External d	ata memory		P					1
t _{RLRH}	RD pulse width	275	-	400	-	6t _{CLK} – 100	-	ns
t _{WLWH}	WR pulse width	275	-	400	-	6t _{CLK} – 100	_	ns
t _{AVLL}	address valid to ALE LOW	8	-	28	-	t _{CLK} – 55	-	ns
t _{LLAX}	address hold after ALE LOW	33	-	53	-	t _{CLK} – 30	-	ns
t _{RLDV}	RD LOW to valid data in	-	148	-	252	_	5t _{CLK} -165	ns
t _{RHDX}	data hold after RD	0	-	0	-	0	-	ns
t _{RHDZ}	data float after RD	-	55	_	97	_	2t _{CLK} - 70	ns
t _{LLDV}	ALE LOW to valid data in	-	350	-	517	_	8t _{CLK} – 150	ns
t _{AVDV}	address to valid data in	-	398	-	585	-	9t _{CLK} – 165	ns
t _{LLWL}	ALE LOW to RD or WR LOW	138	238	200	300	3t _{CLK} – 50	3t _{CLK} + 50	ns
t _{AVWL}	address valid to \overline{RD} or \overline{WR} LOW	120	-	203	-	4t _{CLK} – 130	-	ns
t _{WHLH}	RD or WR HIGH to ALE HIGH	23	103	43	123	t _{CLK} – 40	t _{CLK} + 40	ns
t _{QVWX}	data valid to WR transition	3	-	23	-	t _{CLK} – 60	_	ns
t _{QVWH}	data valid time WR HIGH	288	-	433	-	7t _{CLK} – 150	-	ns
t _{WHQX}	data hold after WR	13	-	33	-	t _{CLK} – 50	-	ns
t _{RLAZ}	RD LOW to address float	_	0	_	0	_	0	ns


Notes

- 1. For the AC Characteristics the following conditions are valid: P8xCE598 FxB: $V_{DD} = 5 V \pm 10\%$; $T_{amb} = -40$ to +85 °C (125 °C); $f_{CLK} = 1.2$ to 16 MHz.
- 2. $t_{CLK} = \frac{1}{f_{CLK}}$ = one oscillator clock period; t_{CLK} = 62.5 ns at f_{CLK} = 16 MHz.


P8xCE598

8-bit microcontroller with on-chip CAN

P8xCE598

8-bit microcontroller with on-chip CAN

		SOURCE					
	1	\$TITLE 8X	(CE598 (CAN inte	errupt-handler)		
00A0	2		BOLS NOPAGING				
00A1	3	.		-			
	4	.***********	*****	*****	***************************************		
	5	;					
	6	, ;Very fast receive-routine for the 8XCE598 CAN Interface. It:					
	7				r the CAN Controller,		
	8		DMA-logic and	•			
	9	 handles 	up to eight differ	ent messages			
00A2	10	;(if these h	ave the same lea	ading 8 identifi	er-bits).		
	11	;					
	12	;To allow for faster receive-routine, it is assumed that all other routines					
	13	accessing the CAN Controller, disable the interrupt of the CAN Controller					
	14	;(IEN0.5) c	during their execu	ition.			
00A5	15	;					
00A7	16	;Version:	1.0				
	17	;Date:	12-April-90				
	18	;Author:	Bernhard Reck	els			
	19	;at:	Philips Compo	nents Applicat	ion Lab., Hamburg (PCALH)		
00A9	20						
00AB	21	•********** ,	*****	******	***************************************		
00AD	22						
	23	.*************************************					
	24	;initial stuff	f				
	25	.********* ,	**************	******	***************************************		
	26						
	27	;equatas					
	28						
	29		;addresses of \$	•	on Registers		
00AE	30		CANADR	EQU	0DBH		
00AF	31		CANDAT	EQU	0DAH		
	32		CANCON	EQU	0D9H		
00B0	33		CANSTA	EQU	0D8H		

.OC	OBJ	LINE	SOURCE					
0A0		72	CAN_INT_HANDLER:					
00A1		73						
		74	; first sa	ave used registers				
	C0D0	75	PUSH	PSW				
	C0E0	76	PUSH	ACC				
		77						
		78	; store the CAN Controller's Interrupt Register contents					
		79	; (here: at a bit-addressable location).					
00A2		80	; This is necessary because after reading the Interrupt Register					
		81	; its contents is cleared, but – on the other hand – several flags					
		82	; may be set in coincidence.					
	E5D9	83	MOV	A, CANON				
	541F	84	ANL	A, #INT_FLAG_MASK ; only interrupt-flags				
0A5	F520	85	MOV	CAN_INT_IMAGE, A				
00A7		86						
		87						
		88	;dispatcher					
		89	INT_TEST0:					
DA9	100000	90	JBC	CAN_INT_RX,CAN_RX_SERV ;receive-interrupt?				
DAB		91						
0AD		92	INT_TEST1:					
		93	; here t	he dispatcher has to be completed according				
		94	; to the application-specific requirements					
		95	;					
		96	;					
		97	; end of dispatcher					
		98						
		99	;Rx-serve					
0AE		100	; copy message (Data-Field only) from CAN- to CPU memory					
0AF		101						
		102	CAN_RX_SERVE					
0B0		103	; read 2nd Descriptor-Byte from the Rx-Buffer (address 21)					
	75DB15	104	MOV	CANADR, #CAN_REF + 1				
		405	MOV					
	E5DA	105	MOV	A, CANDAT				

Philips Semiconductors – a worldwide company

Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 1 60 101. Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773 Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102 Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 708 296 8556 China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700 Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 615 800, Fax. +358 615 80920 France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG, Tel. +49 40 23 52 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS, Tel. +30 1 4894 339/911, Fax. +30 1 4814 240 Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722 Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 648 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +1 800 234 7381, Fax. +1 708 296 8556 Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, Tel. +31 40 27 83749, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000. Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474 Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327 Portugal: see Spain Romania: see Italy Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, Tel. +7 095 926 5361, Fax. +7 095 564 8323 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. +65 350 2538, Fax. +65 251 6500 Slovakia: see Austria Slovenia: see Italv South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494 South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849 Spain: Balmes 22, 08007 BARCELONA Tel. +34 3 301 6312, Fax. +34 3 301 4107 Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745 Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730 Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66 Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444 Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793 Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707 Ukraine: PHILIPS UKRAINE, 2A Akademika Koroleva str., Office 165, 252148 KIEV, Tel. +380 44 476 0297/1642, Fax. +380 44 476 6991 United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax, +44 181 754 8421 United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 708 296 8556 Uruguay: see South America Vietnam: see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, Tel. +381 11 825 344, Fax.+381 11 635 777

For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 1996

SCA50

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

617021/1200/04/pp108

Date of release: 1996 Jun 27

Document order number: 9397 750 00915

Let's make things better.

