E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM
Number of I/O	5
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc908qt1acpe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

General Description

1.4 Pin Assignments

The MC68HC908QT4A, MC68H908QT2A, and MC68HC098QT1A are available in 8-pin packages. The MC68HC908QY4A, MC68HC908QY2A, and MC68HC908QY1A are available in 16-pin packages. Figure 1-2 shows the pin assignment for these packages.

Figure 1-2. MCU Pin Assignments

Vector Priority	Vector	Address	Vector
Lowest	IF22- IF16	\$FFD0,1- \$FFDC,D	Not used
Ĩ	IF15	\$FFDE,F	ADC conversion complete vector
	IF14	\$FFE0,1	Keyboard vector
	IF13	—	Not used
	IF12	—	Not used
	IF11	—	Not used
	IF10	—	Not used
	IF9	_	Not used
	IF8	—	Not used
	IF7	_	Not used
	IF6	—	Not used
	IF5	\$FFF2,3	TIM overflow vector
	IF4	\$FFF4,5	TIM channel 1 vector
	IF3	\$FFF6,7	TIM channel 0 vector
	IF2	_	Not used
	IF1	\$FFFA,B	IRQ vector
¥	_	\$FFFC,D	SWI vector
Highest	_	\$FFFE,F	Reset vector

Table 2-1. Vector Addresses

2.5 Random-Access Memory (RAM)

This MCU includes static RAM. The locations in RAM below \$0100 can be accessed using the more efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program variables in this area of RAM is preferred.

The RAM retains data when the MCU is in low-power wait or stop mode. At power-on, the contents of RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop below the minimum value for RAM retention.

For compatibility with older M68HC05 MCUs, the HC08 resets the stack pointer to \$00FF. In the devices that have RAM above \$00FF, it is usually best to reinitialize the stack pointer to the top of the RAM so the direct page RAM can be used for frequently accessed RAM variables and bit-addressable program variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated to the highest address of the RAM).

LDHX	#RamLast+1	;point one past RAM
TXS		;SP<-(H:X-1)

Figure 3-2. ADC10 Block Diagram

The ADC10 can perform an analog-to-digital conversion on one of the software selectable channels. The output of the input multiplexer (ADVIN) is converted by a successive approximation algorithm into a 10-bit digital result. When the conversion is completed, the result is placed in the data registers (ADRH and ADRL). In 8-bit mode, the result is rounded to 8 bits and placed in ADRL. The conversion complete flag is then set and an interrupt is generated if the interrupt has been enabled.

3.3.1 Clock Select and Divide Circuit

The clock select and divide circuit selects one of three clock sources and divides it by a configurable value to generate the input clock to the converter (ADCK). The clock can be selected from one of the following sources:

- The asynchronous clock source (ACLK) This clock source is generated from a dedicated clock source which is enabled when the ADC10 is converting and the clock source is selected by setting the ACLKEN bit. When the ADLPC bit is clear, this clock operates from 1–2 MHz; when ADLPC is set it operates at 0.5–1 MHz. This clock is not disabled in STOP and allows conversions in stop mode for lower noise operation.
- Alternate Clock Source This clock source is equal to the external oscillator clock or a four times the bus clock. The alternate clock source is MCU specific, see 3.1 Introduction to determine source and availability of this clock source option. This clock is selected when ADICLK and ACLKEN are both low.
- The bus clock This clock source is equal to the bus frequency. This clock is selected when ADICLK is high and ACLKEN is low.

Whichever clock is selected, its frequency must fall within the acceptable frequency range for ADCK. If the available clocks are too slow, the ADC10 will not perform according to specifications. If the available

If the bus frequency is less than the ADCK frequency, precise sample time for continuous conversions cannot be guaranteed in short-sample mode (ADLSMP = 0). If the bus frequency is less than 1/11th of the ADCK frequency, precise sample time for continuous conversions cannot be guaranteed in long-sample mode (ADLSMP = 1).

When clear, the ADC10 will perform a single conversion (single conversion mode) each time ADSCR is written (assuming the ADCH[4:0] bits do not decode all 1s).

- 1 = Continuous conversion following a write to ADSCR
- 0 = One conversion following a write to ADSCR

ADCH[4:0] — Channel Select Bits

The ADCH[4:0] bits form a 5-bit field that is used to select one of the input channels. The input channels are detailed in Table 3-2. The successive approximation converter subsystem is turned off when the channel select bits are all set to 1. This feature allows explicit disabling of the ADC10 and isolation of the input channel from the I/O pad. Terminating continuous conversion mode this way will prevent an additional, single conversion from being performed. It is not necessary to set the channel select bits to all 1s to place the ADC10 in a low-power state, however, because the module is automatically placed in a low-power state when a conversion completes.

ADCH4	ADCH3	ADCH2	ADCH1	ADCH0	Input Select ⁽¹⁾
0	0	0	0	0	AD0
0	0	0	0	1	AD1
0	0	0	1	0	AD2
0	0	0	1	1	AD3
0	0	1	0	0	AD4
0	0	1	0	1	AD5
0	0	1	1	0	Unused
	Cor	Unused			
1	1	0	0	1	Unused
1	1	0	1	0	BANDGAP REF ⁽²⁾
1	1	0	1	1	Reserved
1	1	1	0	0	Reserved
1	1	1	0	1	V _{REFH}
1	1	1	1	0	V _{REFL}
1	1	1	1	1	Low-power state

Table 3-2. Input Channel Select

1. If any unused or reserved channels are selected, the resulting conversion will be unknown.

2. Requires LVI to be powered (LVIPWRD =0, in CONFIG1)

3.8.2 ADC10 Result High Register (ADRH)

This register holds the MSBs of the result and is updated each time a conversion completes. All other bits read as 0s. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the intermediate conversion result will be lost. In 8-bit mode, this register contains no interlocking with ADRL.

Analog-to-Digital Converter (ADC10) Module

Chapter 4 Auto Wakeup Module (AWU)

4.1 Introduction

This section describes the auto wakeup module (AWU). The AWU generates a periodic interrupt during stop mode to wake the part up without requiring an external signal. Figure 4-1 is a block diagram of the AWU.

4.2 Features

Features of the auto wakeup module include:

- One internal interrupt with separate interrupt enable bit, sharing the same keyboard interrupt vector and keyboard interrupt mask bit
- Exit from low-power stop mode without external signals
- Selectable timeout periods
- Dedicated low-power internal oscillator separate from the main system clock sources
- Option to allow bus clock source to run the AWU if enabled in STOP

4.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

4.5.1 Wait Mode

The AWU module is inactive in wait mode.

4.5.2 Stop Mode

When the AWU module is enabled (AWUIE = 1 in the keyboard interrupt enable register) it is activated automatically upon entering stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. The AWU counters start from 0 each time stop mode is entered.

4.6 Registers

The AWU shares registers with the keyboard interrupt (KBI) module, the port A I/O module and configuration register 2. The following I/O registers control and monitor operation of the AWU:

- Port A data register (PTA)
- Keyboard interrupt status and control register (KBSCR)
- Keyboard interrupt enable register (KBIER)
- Configuration register 1 (CONFIG1)
- Configuration register 2 (CONFIG2)

4.6.1 Port A I/O Register

The port A data register (PTA) contains a data latch for the state of the AWU interrupt request, in addition to the data latches for port A.

Figure 4-2. Port A Data Register (PTA)

AWUL — Auto Wakeup Latch

This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup request signal is generated internally. There is no PTA6 port or any of the associated bits such as PTA6 data direction or pullup bits.

- 1 = Auto wakeup interrupt request is pending
- 0 = Auto wakeup interrupt request is not pending

NOTE

PTA5–PTA0 bits are not used in conjuction with the auto wakeup feature. To see a description of these bits, see 12.3.1 Port A Data Register.

Configuration Register (CONFIG)

IRQPUD — IRQ Pin Pullup Control Bit

- 1 = Internal pullup is disconnected
- 0 = Internal pullup is connected between \overline{IRQ} pin and V_{DD}

IRQEN — IRQ Pin Function Selection Bit

- 1 = Interrupt request function active in pin
- 0 = Interrupt request function inactive in pin

OSCENINSTOP— Oscillator Enable in Stop Mode Bit

OSCENINSTOP, when set, will allow the clock source to continue to generate clocks in stop mode. This function can be used to keep the auto-wakeup running while the rest of the microcontroller stops. When clear, the clock source is disabled when the microcontroller enters stop mode.

- 1 = Oscillator enabled to operate during stop mode
- 0 = Oscillator disabled during stop mode

RSTEN — **RST** Pin Function Selection

1 = Reset function active in pin

0 = Reset function inactive in pin

NOTE

The RSTEN bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected.

	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	COPRS	LVISTOP	LVIRSTD	LVIPWRD	LVITRIP	SSREC	STOP	COPD
Reset:	0	0	0	0	U	0	0	0
POR:	0	0	0	0	0	0	0	0

U = Unaffected

Figure 5-2. Configuration Register 1 (CONFIG1)

COPRS (Out of Stop Mode) - COP Reset Period Selection Bit

1 = COP reset short cycle = 8176 × BUSCLKX4

0 = COP reset long cycle = 262,128 × BUSCLKX4

COPRS (In Stop Mode) — Auto Wakeup Period Selection Bit, depends on OSCSTOPEN in CONFIG2 and external clock source

- 1 = Auto wakeup short cycle = $512 \times (INTRCOSC \text{ or BUSCLKX2})$
- 0 = Auto wakeup long cycle = $16,384 \times (INTRCOSC \text{ or BUSCLKX2})$

LVISTOP — LVI Enable in Stop Mode Bit

When the LVIPWRD bit is clear, setting the LVISTOP bit enables the LVI to operate during stop mode. Reset clears LVISTOP.

1 = LVI enabled during stop mode

0 = LVI disabled during stop mode

LVIRSTD — LVI Reset Disable Bit

LVIRSTD disables the reset signal from the LVI module.

1 = LVI module resets disabled

0 = LVI module resets enabled

Central Processor Unit (CPU)

Source						ect	t R		SSS	de	and	ş
Form	Operation	Description	v	н	1	N	z	С	vddre 1ode	opco	pera	ycle
CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00 \\ A \leftarrow \$00 \\ X \leftarrow \$00 \\ H \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \end{array}$	0	_	_	0	1	_	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F 9E6F	dd ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	23443245
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\underline{M}) = \$FF - (M) \\ A \leftarrow (A) = \$FF - (M) \\ X \leftarrow (\mathbf{X}) = \$FF - (M) \\ M \leftarrow (\underline{M}) = \$FF - (M) \end{array}$	0	_	_	1	ţ	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	4 1 4 3 5
CPHX # <i>opr</i> CPHX <i>opr</i>	Compare H:X with M	(H:X) – (M:M + 1)	ţ	-	-	\$	\$	\$	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3	ii dd hh II ee ff ff ff ee ff	2 3 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	U	-	-	1	1	t	INH	72		2
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 4 + \mathit{rel} ? (\mathit{result}) \neq 0 \end{array}$	_	_	_	-	-	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr ff rr ff rr	5 3 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{l} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$	ţ	_	_	\$	1	_	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 1 4 3 5
DIV	Divide	$A \leftarrow (H:A)/(X)$ H \leftarrow Remainder	-	-	-	-	1	t	INH	52		7
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR X EOR opr,SP EOR opr,SP	Exclusive OR M with A	$A \leftarrow (A \oplus M)$	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow (M) + 1\\ A \leftarrow (A) + 1\\ X \leftarrow (X) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1\\ M \leftarrow (M) + 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5

Table 7-1. Instruction	Set Summary	(Sheet 3 of 6)
------------------------	-------------	----------------

76

Central Processor Unit (CPU)

Table 7-2, Opcode Map

	Bit Mani	Bit Manipulation Branch Register/Memory Register/Memory																	
	DIR	DIR	REL	DIR	INH	INH	IX1	SP1	IX	INH	INH	IMM	DIR	EXT	IX2	SP2	IX1	SP1	IX
MSB LSB	0	1	2	3	4	5	6	9E6	7	8	9	A	в	с	D	9ED	Е	9EE	F
0	5 BRSET0 3 DIR	4 BSET0 2 DIR	BRA 2 REL	4 NEG 2 DIR	1 NEGA 1 INH	1 NEGX 1 INH	4 NEG 2 IX1	5 NEG 3 SP1	3 NEG 1 IX	7 RTI 1 INH	BGE 2 REL	2 SUB 2 IMM	3 SUB 2 DIR	4 SUB 3 EXT	4 SUB 3 IX2	5 SUB 4 SP2	3 SUB 2 IX1	4 SUB 3 SP1	2 SUB 1 IX
1	5 BRCLR0 3 DIR	4 BCLR0 2 DIR	3 BRN 2 REL	5 CBEQ 3 DIR	4 CBEQA 3 IMM	4 CBEQX 3 IMM	5 CBEQ 3 IX1+	6 CBEQ 4 SP1	4 CBEQ 2 IX+	4 RTS 1 INH	3 BLT 2 REL	2 CMP 2 IMM	3 CMP 2 DIR	4 CMP 3 EXT	4 CMP 3 IX2	5 CMP 4 SP2	3 CMP 2 IX1	4 CMP 3 SP1	2 CMP 1 IX
2	5 BRSET1 3 DIR	4 BSET1 2 DIR	3 BHI 2 REL		5 MUL 1 INH	7 DIV 1 INH	3 NSA 1 INH		2 DAA 1 INH		3 BGT 2 REL	2 SBC 2 IMM	3 SBC 2 DIR	4 SBC 3 EXT	4 SBC 3 IX2	5 SBC 4 SP2	3 SBC 2 IX1	4 SBC 3 SP1	2 SBC 1 IX
3	5 BRCLR1 3 DIR	4 BCLR1 2 DIR	BLS 2 REL	COM 2 DIR	1 COMA 1 INH	1 COMX 1 INH	4 COM 2 IX1	5 COM 3 SP1	COM 1 IX	9 SWI 1 INH	3 BLE 2 REL	CPX 2 IMM	3 CPX 2 DIR	CPX 3 EXT	4 CPX 3 IX2	5 CPX 4 SP2	3 CPX 2 IX1	4 CPX 3 SP1	2 CPX 1 IX
4	5 BRSET2 3 DIR	4 BSET2 2 DIR	BCC 2 REL	4 LSR 2 DIR	1 LSRA 1 INH	1 LSRX 1 INH	4 LSR 2 IX1	5 LSR 3 SP1	3 LSR 1 IX	2 TAP 1 INH	2 TXS 1 INH	2 AND 2 IMM	3 AND 2 DIR	4 AND 3 EXT	4 AND 3 IX2	5 AND 4 SP2	3 AND 2 IX1	4 AND 3 SP1	2 AND 1 IX
5	5 BRCLR2 3 DIR	4 BCLR2 2 DIR	BCS 2 REL	4 STHX 2 DIR	3 LDHX 3 IMM	4 LDHX 2 DIR	3 CPHX 3 IMM		4 CPHX 2 DIR	1 TPA 1 INH	2 TSX 1 INH	BIT 2 IMM	3 BIT 2 DIR	4 BIT 3 EXT	4 BIT 3 IX2	5 BIT 4 SP2	3 BIT 2 IX1	4 BIT 3 SP1	2 BIT 1 IX
6	5 BRSET3 3 DIR	4 BSET3 2 DIR	3 BNE 2 REL	4 ROR 2 DIR	1 RORA 1 INH	1 RORX 1 INH	4 ROR 2 IX1	5 ROR 3 SP1	3 ROR 1 IX	2 PULA 1 INH		2 LDA 2 IMM	3 LDA 2 DIR	4 LDA 3 EXT	4 LDA 3 IX2	5 LDA 4 SP2	3 LDA 2 IX1	4 LDA 3 SP1	2 LDA 1 IX
7	5 BRCLR3 3 DIR	4 BCLR3 2 DIR	3 BEQ 2 REL	4 ASR 2 DIR	1 ASRA 1 INH	1 ASRX 1 INH	4 ASR 2 IX1	5 ASR 3 SP1	3 ASR 1 IX	2 PSHA 1 INH	1 TAX 1 INH	AIS 2 IMM	3 STA 2 DIR	STA 3 EXT	4 STA 3 IX2	5 STA 4 SP2	3 STA 2 IX1	4 STA 3 SP1	STA 1 IX
8	5 BRSET4 3 DIR	4 BSET4 2 DIR	3 BHCC 2 REL	4 LSL 2 DIR	1 LSLA 1 INH	1 LSLX 1 INH	4 LSL 2 IX1	5 LSL 3 SP1	3 LSL 1 IX	2 PULX 1 INH	1 CLC 1 INH	EOR 2 IMM	3 EOR 2 DIR	4 EOR 3 EXT	4 EOR 3 IX2	5 EOR 4 SP2	3 EOR 2 IX1	4 EOR 3 SP1	2 EOR 1 IX
9	5 BRCLR4 3 DIR	4 BCLR4 2 DIR	3 BHCS 2 REL	4 ROL 2 DIR	1 ROLA 1 INH	1 ROLX 1 INH	4 ROL 2 IX1	5 ROL 3 SP1	3 ROL 1 IX	2 PSHX 1 INH	1 SEC 1 INH	ADC 2 IMM	3 ADC 2 DIR	ADC 3 EXT	4 ADC 3 IX2	ADC 4 SP2	3 ADC 2 IX1	4 ADC 3 SP1	ADC 1 IX
A	5 BRSET5 3 DIR	4 BSET5 2 DIR	3 BPL 2 REL	4 DEC 2 DIR	1 DECA 1 INH	1 DECX 1 INH	4 DEC 2 IX1	5 DEC 3 SP1	3 DEC 1 IX	2 PULH 1 INH	2 CLI 1 INH	2 ORA 2 IMM	3 ORA 2 DIR	4 ORA 3 EXT	4 ORA 3 IX2	5 ORA 4 SP2	3 ORA 2 IX1	4 ORA 3 SP1	ORA 1 IX
В	5 BRCLR5 3 DIR	4 BCLR5 2 DIR	3 BMI 2 REL	5 DBNZ 3 DIR	3 DBNZA 2 INH	3 DBNZX 2 INH	5 DBNZ 3 IX1	6 DBNZ 4 SP1	4 DBNZ 2 IX	2 PSHH 1 INH	2 SEI 1 INH	2 ADD 2 IMM	3 ADD 2 DIR	4 ADD 3 EXT	4 ADD 3 IX2	ADD 4 SP2	3 ADD 2 IX1	4 ADD 3 SP1	2 ADD 1 IX
с	5 BRSET6 3 DIR	4 BSET6 2 DIR	3 BMC 2 REL	4 INC 2 DIR	1 INCA 1 INH	1 INCX 1 INH	4 INC 2 IX1	5 INC 3 SP1	3 INC 1 IX	1 CLRH 1 INH	1 RSP 1 INH		2 JMP 2 DIR	3 JMP 3 EXT	4 JMP 3 IX2		3 JMP 2 IX1		2 JMP 1 IX
D	5 BRCLR6 3 DIR	4 BCLR6 2 DIR	3 BMS 2 REL	3 TST 2 DIR	1 TSTA 1 INH	1 TSTX 1 INH	3 TST 2 IX1	4 TST 3 SP1	2 TST 1 IX		1 NOP 1 INH	4 BSR 2 REL	4 JSR 2 DIR	JSR 3 EXT	6 JSR 3 IX2		5 JSR 2 IX1		4 JSR 1 IX
E	5 BRSET7 3 DIR	4 BSET7 2 DIR	3 BIL 2 REL		5 MOV 3 DD	4 MOV 2 DIX+	4 MOV 3 IMD		4 MOV 2 IX+D	1 STOP 1 INH	*	2 LDX 2 IMM	3 LDX 2 DIR	4 LDX 3 EXT	4 LDX 3 IX2	5 LDX 4 SP2	3 LDX 2 IX1	4 LDX 3 SP1	2 LDX 1 IX
F	5 BRCLR7 3 DIR	4 BCLR7 2 DIR	3 BIH 2 REL	3 CLR 2 DIR	1 CLRA 1 INH	1 CLRX 1 INH	3 CLR 2 IX1	4 CLR 3 SP1	2 CLR 1 IX	1 WAIT 1 INH	1 TXA 1 INH	AIX 2 IMM	3 STX 2 DIR	STX 3 EXT	4 STX 3 IX2	STX 4 SP2	3 STX 2 IX1	4 STX 3 SP1	STX 1 IX

INH Inherent IMM Immediate REL Relative IX Indexed, No Offset DIR Direct EXT Extended

- Indexed, 8-Bit Offset Indexed, 16-Bit Offset IX1 IX2
- DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed

SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with

- Post Increment
- IX1+ Indexed, 1-Byte Offset with Post Increment

0 High Byte of Opcode in Hexadecimal

5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode 0

MSB

LSB

*Pre-byte for stack pointer indexed instructions

Freescale Semiconductor

In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode.

Wait mode can also be exited by a reset (or break in emulation mode). A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the break status register (BSR). If the COP disable bit, COPD, in the configuration register is 0, then the computer operating properly module (COP) is enabled and remains active in wait mode.

Figure 13-15 and Figure 13-16 show the timing for wait recovery.

13.7.2 Stop Mode

In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode.

The SIM disables the oscillator signals (BUSCLKX2 and BUSCLKX4) in stop mode, stopping the CPU and peripherals. If OSCENINSTOP is set, BUSCLKX2 will remain running in STOP and can be used to run the AWU. Stop recovery time is selectable using the SSREC bit in the configuration register 1 (CONFIG1). If SSREC is set, stop recovery is reduced from the normal delay of 4096 BUSCLKX4 cycles down to 32. This is ideal for the internal oscillator, RC oscillator, and external oscillator options which do not require long start-up times from stop mode.

NOTE

External crystal applications should use the full stop recovery time by clearing the SSREC bit.

Figure 15-10. Monitor Mode Circuit (External Clock, with High Voltage)

Electrical Specifications

Figure 16-1. Typical 5-Volt Output High Voltage versus Output High Current (25°C)

Figure 16-4. Typical 3-Volt Output High Voltage versus Output High Current (25°C)

Figure 16-5. Typical 3-Volt Output Low Voltage versus Output Low Current (25°C)

16.12 Supply Current Characteristics

Characteristic ⁽¹⁾	Voltage	Bus Frequency (MHz)	Symbol	Тур ⁽²⁾	Max	Unit
Run mode V _{DD} supply current ⁽³⁾	5.0 3.0	3.2 3.2	RI _{DD}	6.0 3.1	7.0 3.8	mA
Wait mode V _{DD} supply current ⁽⁴⁾	5.0 3.0	3.2 3.2	WI _{DD}	1.8 1.1	2.5 1.75	mA
Stop mode V _{DD} supply current ⁽⁵⁾ -40 to 85°C -40 to 105°C ⁽⁶⁾ -40 to 125°C 25°C with auto wake-up enabled Incremental current with LVI enabled at 25°C	5.0		Slaa	0.5 — 20 150	1.2 2.0 5.0 —	μΑ
Stop mode V _{DD} supply current ⁽⁴⁾ -40 to 85°C -40 to 105°C ⁽⁶⁾ -40 to 125°C 25°C with auto wake-up enabled Incremental current with LVI enabled at 25°C	3.0		00	0.36 — 4 130	1.0 1.2 4.0 —	μΑ

1. $V_{SS} = 0$ Vdc, $T_A = T_L$ to T_H , unless otherwise noted. 2. Typical values reflect average measurement at 25°C only. 3. Run (operating) I_{DD} measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied to 0.2 V from rail.

4. Wait IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied to 0.2 V from rail.

5. Stop I_{DD} measured with all pins configured as inputs and tied to 0.2 V from rail. On the 8-pin versions, port B is configured as inputs with pullups enabled.

6. For automotive applications only.

Chapter 17 Ordering Information and Mechanical Specifications

17.1 Introduction

This section contains order numbers for the MC68HC908QY1A, MC68HC908QY2A, MC68HC908QY4A, MC68HC908QT1A, MC68HC908QT2A, and MC69HC908QT4A. Dimensions are given for:

- 8-pin plastic dual in-line package (PDIP)
- 8-pin small outline integrated circuit (SOIC) package
- 8-pin dual flat no lead (DFN) package
- 16-pin PDIP
- 16-pin SOIC
- 16-pin thin shrink small outline package (TSSOP)

17.2 Ordering Information

Table 17-1. Consumer and Industrial Device Numbering System

Device Number	ADC	FLASH Memory	Packages ⁽¹⁾
MC908QT1A	—	1536 bytes	8-pins
MC908QT2A	Yes	1536 bytes	PDIP, SOIC,
MC908QT4A	Yes	4096 bytes	and DFN
MC908QY1A	—	1536 bytes	16-pins
MC908QY2A	Yes	1536 bytes	PDIP, SOIC,
MC908QY4A	Yes	4096 bytes	and TSSOP

1. See Table 17-3 for package information.

Table 17-2.	Automotive	Device	Numbering	System
-------------	------------	--------	-----------	--------

Device Number	ADC	FLASH Memory	Packages ⁽¹⁾
S908QY2A	Yes	1536 bytes	16-pins
S908QY4A	Yes	4096 bytes	TSSOP and SOIC

1. See Table 17-3 for package information.

Mechanical Drawings

Case 626 page 1 of 3

Mechanical Drawings

Case 968 page 2 of 3

Appendix A 908QTA/QYxA Conversion Guidelines

A.1 Introduction

This engineering bulletin describes the 908QTA/QYxA. The 908QTA/QYxA is an enhanced device intended to replace the 908QT/QYx series of devices (referred to as the QY Classic in this document). Customer requests have led to the advanced design of the QYxA that has added adaptability, new features, and contains lead-free packaging.

This document:

- Provides information needed to convert from QY Classic to the enhanced QYxA
- Highlights the benefits of making this change

Sections:

- A.2 Benefits of the Enhanced QYxA
- A.3 Conversion Considerations
- A.4 Code Changes Checklist
- A.5 Development Tools
- A.6 Differences in Packaging

A.2 Benefits of the Enhanced QYxA

The QYxA contains new and enhanced modules that add more flexibility and new features to the QY Classic. These benefits can improve the operation of an application or lead to new features for an application. For more information regarding these features refer to the QYxA data sheet (Freescale document order number MC68HC908QYxA).

A.2.1 New Analog-to-Digital Converter Module (ADC)

The QYxA contains a 10-bit ADC which replaces the 8-bit ADC on the QY Classic. This module allows both 10-bit and 8-bit conversion modes. The increased precision for ADC readings can be very useful in many applications.

Features of the ADC new 10-bit module include:

- There are two new ADC channels that have been placed on PTB0 and PTB1 allowing added flexibility especially when debugging in Monitor Mode.
 - A limitation of QY Classic debugging is that access to the ADC channels is limited because many of the QY Classic pins are multiplexed. Having extra ADC channels on the PTB pins resolves this limitation.

A.2.2 Enhanced Oscillator Module (OSC)

The QYxA contains a much enhanced oscillator module that allows more options than the QYx Classic.

- The ICFS bits in the Oscillator Status and Control Register (OSCSC) allow the Internal Oscillator to be configured for 1-, 2-, or 3.2-MHz operation. Also, the ECFS bits in the same register allow a low, medium, or high crystal frequency range to be selected for the source of the system clock. With this option you can choose to use a 32-kHz (low range) or a 16-MHz (high range) crystal.
- Another improvement to the Oscillator Module design is that you can switch between internal
 oscillator and external oscillator options at any time. For example, if you wanted the low power
 advantage of running from a 32-kHz crystal but still needed some processing power to perform
 math calculations you could switch back and forth between internal and external clock. The same
 is true for switching between 1-, 2-, and 3.2-MHz internal oscillator options.

A.2.2.1 Registers Affected

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	OSCOPT1	OSCOPTO		ICESO	ECES1	ECESO	ECGON	ECGST
Write:		0000110	101 01				LOUDIN	
Reset:	0	0	1	0	0	0	0	0
	= Unimplemented							

Figure A-4. Oscillator Status and Control Register (OSCSC)

The OSCOPT bits are no longer in the CONFIG2 register and now reside in the OSCSC register. Also, the ICFSx and ECFSx bits now reside in this register.

The IFS bits are used to select different Internal Oscillator speeds.

The ECFS bits are used to select the range of crystal that should be used to provide the reference clock.