
NXP USA Inc. - MC908QY1ACDTE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor HC08

Core Size 8-Bit

Speed 8MHz

Connectivity -

Peripherals LVD, POR, PWM

Number of I/O 13

Program Memory Size 1.5KB (1.5K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128 x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 5.5V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 16-TSSOP (0.173", 4.40mm Width)

Supplier Device Package 16-TSSOP

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908qy1acdte

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc908qy1acdte-4382529
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

M68HC08
Microcontrollers

freescale.com

MC68HC908QY4A
MC68HC908QT4A
MC68HC908QY2A
MC68HC908QT2A
MC68HC908QY1A
MC68HC908QT1A

Data Sheet

MC68HC908QY4A
Rev. 3
03/2010

Memory
2.6.6 FLASH Block Protect Register

The FLASH block protect register is implemented as a byte within the FLASH memory, and therefore can
only be written during a programming sequence of the FLASH memory. The value in this register
determines the starting address of the protected range within the FLASH memory.

BPR[7:0] — FLASH Protection Register Bits [7:0]
These eight bits in FLBPR represent bits [13:6] of a 16-bit memory address. Bits [15:14] are 1s and
bits [5:0] are 0s.

The resultant 16-bit address is used for specifying the start address of the FLASH memory for block
protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF.
With this mechanism, the protect start address can be XX00, XX40, XX80, or XXC0 within the FLASH
memory. See Figure 2-6 and Table 2-2.

Figure 2-6. FLASH Block Protect Start Address

Bit 7 6 5 4 3 2 1 Bit 0

Read:
BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 BPR0

Write:

Reset: Unaffected by reset. Initial value from factory is 1.

Write to this register is by a programming sequence to the FLASH memory.

Figure 2-5. FLASH Block Protect Register (FLBPR)

Table 2-2. Examples of Protect Start Address

BPR[7:0] Start of Address of Protect Range

$00–$B8 The entire FLASH memory is protected.

$B8 (1011 1000) $EE00 (1110 1110 0000 0000)

$B9 (1011 1001) $EE40 (1110 1110 0100 0000)

$BA (1011 1010) $EE80 (1110 1110 1000 0000)

$BB (1011 1011) $EFC0 (1110 1110 1100 0000)

and so on...

$DE (1101 1110) $F780 (1111 0111 1000 0000)

$DF (1101 1111) $F7C0 (1111 0111 1100 0000)

$FE (1111 1110)
$FF80 (1111 1111 1000 0000)

FLBPR, internal oscillator trim values, and vectors are protected

$FF The entire FLASH memory is not protected.

0000011 FLBPR VALUESTART ADDRESS OF

16-BIT MEMORY ADDRESS

 FLASH BLOCK PROTECT
0

MC68HC908QYA/QTA Family Data Sheet, Rev. 3

34 Freescale Semiconductor

FLASH Memory (FLASH)
2.6.7 EEPROM Memory Emulation Using FLASH Memory

In some applications, the user may want to repeatedly store and read a set of data from an area of
nonvolatile memory. This is easily implemented in EEPROM memory because single byte erase is
allowed in EEPROM.

When using FLASH memory, the minimum erase size is a page. However, the FLASH can be used as
EEPROM memory. This technique is called “EEPROM emulation”.

The basic concept of EEPROM emulation using FLASH is that a page is continuously programmed with
a new data set without erasing the previously programmed locations. Once the whole page is completely
programmed or the page does not have enough bytes to program a new data set, the user software
automatically erases the page and then programs a new data set in the erased page.

In EEPROM emulation when data is read from the page, the user software must find the latest data set
in the page since the previous data still remains in the same page. There are many ways to monitor the
page erase timing and the latest data set. One example is unprogrammed FLASH bytes are detected by
checking programmed bytes (non-$FF value) in a page. In this way, the end of the data set will contain
unprogrammed data ($FF value).

A couple of application notes, describing how to emulate EEPROM using FLASH, are available on our
web site. Titles and order numbers for these application notes are given at the end of this subsection.

For EEPROM emulation software to work successfully, the following items must be taken care of in the
user software:

1. Each FLASH byte in a page must be programmed only one time until the page is erased.
2. A page must be erased before the FLASH cumulative program HV period (tHV) is beyond the

maximum tHV. tHV is defined as the cumulative high-voltage programming time to the same row
before the next erase. For more detailed information, refer to 16.15 Memory Characteristics.

3. FLASH row erase and program cycles should not exceed 10,000 cycles, respectively.

The above EEPROM emulation software can be easily developed by using the on-chip FLASH routines
implemented in the MCU. These routines are located in the ROM memory and support FLASH program
and erase operations. Proper utilization of the on-chip FLASH routines guarantee conformance to the
FLASH specifications.

In the on-chip FLASH programming routine called PRGRNGE, the high-voltage programming time is
enabled for less than 125 μs when programming a single byte at any operating bus frequency between
1.0 MHz and 8.4 MHz. Therefore, even when a row is programmed by 32 separate single-byte
programming operations, tHV is less than the maximum tHV. Hence, item 2 listed above is already taken
care of by using this routine.

A page erased operation is provided in the FLASH erase routine called ERARNGE.

Application note AN2635 (On-Chip FLASH Programming Routines) describes how to use these routines.

The following application notes, available at www.freescale.com, describe how EERPOM emulation is
implemented using FLASH:

AN2183 — Using FLASH as EEPROM on the MC68HC908GP32
AN2346 — EEPROM Emulation Using FLASH in MC68HC908QY/QT MCUs
AN2690 — Low Frequency EEPROM Emulation on the MC68HC908QY4

An EEPROM emulation driver, available at www.freescale.com, has been developed and qualified:
AN3040 — M68HC08 EEPROM Emulation Driver
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 35

Configuration Register (CONFIG)
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

60 Freescale Semiconductor

Chapter 7
Central Processor Unit (CPU)

7.1 Introduction

The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of
the M68HC05 CPU. The CPU08 Reference Manual (document order number CPU08RM/AD) contains a
description of the CPU instruction set, addressing modes, and architecture.

7.2 Features

Features of the CPU include:
• Object code fully upward-compatible with M68HC05 Family
• 16-bit stack pointer with stack manipulation instructions
• 16-bit index register with x-register manipulation instructions
• 8-MHz CPU internal bus frequency
• 64-Kbyte program/data memory space
• 16 addressing modes
• Memory-to-memory data moves without using accumulator
• Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
• Enhanced binary-coded decimal (BCD) data handling
• Modular architecture with expandable internal bus definition for extension of addressing range

beyond 64 Kbytes
• Low-power stop and wait modes

7.3 CPU Registers

Figure 7-1 shows the five CPU registers. CPU registers are not part of the memory map.
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 65

7 C
en

tral P
ro

cesso
r U

n
it (C

P
U

)

Register/Memory
IX2 SP2 IX1 SP1 IX

D 9ED E 9EE F

4
SUB

3 IX2

5
SUB

4 SP2

3
SUB

2 IX1

4
SUB

3 SP1

2
SUB

1 IX
4

CMP
3 IX2

5
CMP

4 SP2

3
CMP

2 IX1

4
CMP

3 SP1

2
CMP

1 IX
4

SBC
3 IX2

5
SBC

4 SP2

3
SBC

2 IX1

4
SBC

3 SP1

2
SBC

1 IX
4

CPX
3 IX2

5
CPX

4 SP2

3
CPX

2 IX1

4
CPX

3 SP1

2
CPX

1 IX
4

AND
3 IX2

5
AND

4 SP2

3
AND

2 IX1

4
AND

3 SP1

2
AND

1 IX
4

BIT
3 IX2

5
BIT

4 SP2

3
BIT

2 IX1

4
BIT

3 SP1

2
BIT

1 IX
4

LDA
3 IX2

5
LDA

4 SP2

3
LDA

2 IX1

4
LDA

3 SP1

2
LDA

1 IX
4

STA
3 IX2

5
STA

4 SP2

3
STA

2 IX1

4
STA

3 SP1

2
STA

1 IX
4

EOR
3 IX2

5
EOR

4 SP2

3
EOR

2 IX1

4
EOR

3 SP1

2
EOR

1 IX
4

ADC
3 IX2

5
ADC

4 SP2

3
ADC

2 IX1

4
ADC

3 SP1

2
ADC

1 IX
4

ORA
3 IX2

5
ORA

4 SP2

3
ORA

2 IX1

4
ORA

3 SP1

2
ORA

1 IX
4

ADD
3 IX2

5
ADD

4 SP2

3
ADD

2 IX1

4
ADD

3 SP1

2
ADD

1 IX
4

JMP
3 IX2

3
JMP

2 IX1

2
JMP

1 IX
6

JSR
3 IX2

5
JSR

2 IX1

4
JSR

1 IX
4

LDX
3 IX2

5
LDX

4 SP2

3
LDX

2 IX1

4
LDX

3 SP1

2
LDX

1 IX
4

STX
3 IX2

5
STX

4 SP2

3
STX

2 IX1

4
STX

3 SP1

2
STX

1 IX

High Byte of Opcode in Hexadecimal

Cycles
Opcode Mnemonic
Number of Bytes / Addressing Mode
M
C

68H
C

908Q
YA

/Q
TA

 Fam
ily D

ata S
h

eet, R
ev. 3

6
F

reescale S
em

iconductor

Table 7-2. Opcode Map
Bit Manipulation Branch Read-Modify-Write Control

DIR DIR REL DIR INH INH IX1 SP1 IX INH INH IMM DIR EXT

0 1 2 3 4 5 6 9E6 7 8 9 A B C

0
5

BRSET0
3 DIR

4
BSET0

2 DIR

3
BRA

2 REL

4
NEG

2 DIR

1
NEGA

1 INH

1
NEGX

1 INH

4
NEG

2 IX1

5
NEG

3 SP1

3
NEG

1 IX

7
RTI

1 INH

3
BGE

2 REL

2
SUB

2 IMM

3
SUB

2 DIR

4
SUB

3 EXT

1
5

BRCLR0
3 DIR

4
BCLR0

2 DIR

3
BRN

2 REL

5
CBEQ

3 DIR

4
CBEQA
3 IMM

4
CBEQX
3 IMM

5
CBEQ

3 IX1+

6
CBEQ

4 SP1

4
CBEQ

2 IX+

4
RTS

1 INH

3
BLT

2 REL

2
CMP

2 IMM

3
CMP

2 DIR

4
CMP

3 EXT

2
5

BRSET1
3 DIR

4
BSET1

2 DIR

3
BHI

2 REL

5
MUL

1 INH

7
DIV

1 INH

3
NSA

1 INH

2
DAA

1 INH

3
BGT

2 REL

2
SBC

2 IMM

3
SBC

2 DIR

4
SBC

3 EXT

3
5

BRCLR1
3 DIR

4
BCLR1

2 DIR

3
BLS

2 REL

4
COM

2 DIR

1
COMA

1 INH

1
COMX

1 INH

4
COM

2 IX1

5
COM

3 SP1

3
COM

1 IX

9
SWI

1 INH

3
BLE

2 REL

2
CPX

2 IMM

3
CPX

2 DIR

4
CPX

3 EXT

4
5

BRSET2
3 DIR

4
BSET2

2 DIR

3
BCC

2 REL

4
LSR

2 DIR

1
LSRA

1 INH

1
LSRX

1 INH

4
LSR

2 IX1

5
LSR

3 SP1

3
LSR

1 IX

2
TAP

1 INH

2
TXS

1 INH

2
AND

2 IMM

3
AND

2 DIR

4
AND

3 EXT

5
5

BRCLR2
3 DIR

4
BCLR2

2 DIR

3
BCS

2 REL

4
STHX

2 DIR

3
LDHX

3 IMM

4
LDHX

2 DIR

3
CPHX

3 IMM

4
CPHX

2 DIR

1
TPA

1 INH

2
TSX

1 INH

2
BIT

2 IMM

3
BIT

2 DIR

4
BIT

3 EXT

6
5

BRSET3
3 DIR

4
BSET3

2 DIR

3
BNE

2 REL

4
ROR

2 DIR

1
RORA

1 INH

1
RORX

1 INH

4
ROR

2 IX1

5
ROR

3 SP1

3
ROR

1 IX

2
PULA

1 INH

2
LDA

2 IMM

3
LDA

2 DIR

4
LDA

3 EXT

7
5

BRCLR3
3 DIR

4
BCLR3

2 DIR

3
BEQ

2 REL

4
ASR

2 DIR

1
ASRA

1 INH

1
ASRX

1 INH

4
ASR

2 IX1

5
ASR

3 SP1

3
ASR

1 IX

2
PSHA

1 INH

1
TAX

1 INH

2
AIS

2 IMM

3
STA

2 DIR

4
STA

3 EXT

8
5

BRSET4
3 DIR

4
BSET4

2 DIR

3
BHCC

2 REL

4
LSL

2 DIR

1
LSLA

1 INH

1
LSLX

1 INH

4
LSL

2 IX1

5
LSL

3 SP1

3
LSL

1 IX

2
PULX

1 INH

1
CLC

1 INH

2
EOR

2 IMM

3
EOR

2 DIR

4
EOR

3 EXT

9
5

BRCLR4
3 DIR

4
BCLR4

2 DIR

3
BHCS

2 REL

4
ROL

2 DIR

1
ROLA

1 INH

1
ROLX

1 INH

4
ROL

2 IX1

5
ROL

3 SP1

3
ROL

1 IX

2
PSHX

1 INH

1
SEC

1 INH

2
ADC

2 IMM

3
ADC

2 DIR

4
ADC

3 EXT

A
5

BRSET5
3 DIR

4
BSET5

2 DIR

3
BPL

2 REL

4
DEC

2 DIR

1
DECA

1 INH

1
DECX

1 INH

4
DEC

2 IX1

5
DEC

3 SP1

3
DEC

1 IX

2
PULH

1 INH

2
CLI

1 INH

2
ORA

2 IMM

3
ORA

2 DIR

4
ORA

3 EXT

B
5

BRCLR5
3 DIR

4
BCLR5

2 DIR

3
BMI

2 REL

5
DBNZ

3 DIR

3
DBNZA
2 INH

3
DBNZX
2 INH

5
DBNZ

3 IX1

6
DBNZ

4 SP1

4
DBNZ

2 IX

2
PSHH

1 INH

2
SEI

1 INH

2
ADD

2 IMM

3
ADD

2 DIR

4
ADD

3 EXT

C
5

BRSET6
3 DIR

4
BSET6

2 DIR

3
BMC

2 REL

4
INC

2 DIR

1
INCA

1 INH

1
INCX

1 INH

4
INC

2 IX1

5
INC

3 SP1

3
INC

1 IX

1
CLRH

1 INH

1
RSP

1 INH

2
JMP

2 DIR

3
JMP

3 EXT

D
5

BRCLR6
3 DIR

4
BCLR6

2 DIR

3
BMS

2 REL

3
TST

2 DIR

1
TSTA

1 INH

1
TSTX

1 INH

3
TST

2 IX1

4
TST

3 SP1

2
TST

1 IX

1
NOP

1 INH

4
BSR

2 REL

4
JSR

2 DIR

5
JSR

3 EXT

E
5

BRSET7
3 DIR

4
BSET7

2 DIR

3
BIL

2 REL

5
MOV

3 DD

4
MOV

2 DIX+

4
MOV

3 IMD

4
MOV

2 IX+D

1
STOP

1 INH *
2

LDX
2 IMM

3
LDX

2 DIR

4
LDX

3 EXT

F
5

BRCLR7
3 DIR

4
BCLR7

2 DIR

3
BIH

2 REL

3
CLR

2 DIR

1
CLRA

1 INH

1
CLRX

1 INH

3
CLR

2 IX1

4
CLR

3 SP1

2
CLR

1 IX

1
WAIT

1 INH

1
TXA

1 INH

2
AIX

2 IMM

3
STX

2 DIR

4
STX

3 EXT

INH Inherent REL Relative SP1 Stack Pointer, 8-Bit Offset
IMM Immediate IX Indexed, No Offset SP2 Stack Pointer, 16-Bit Offset
DIR Direct IX1 Indexed, 8-Bit Offset IX+ Indexed, No Offset with
EXT Extended IX2 Indexed, 16-Bit Offset Post Increment
DD Direct-Direct IMD Immediate-Direct IX1+ Indexed, 1-Byte Offset with
IX+D Indexed-Direct DIX+ Direct-Indexed Post Increment
*Pre-byte for stack pointer indexed instructions

0

Low Byte of Opcode in Hexadecimal 0
5

BRSET0
3 DIR

MSB

LSB

MSB

LSB

Keyboard Interrupt Module (KBI)

Figure 9-1. Block Diagram Highlighting KBI Block and Pins

9.3.1.1 MODEK = 1

If the MODEK bit is set, the keyboard interrupt inputs are both edge and level sensitive. The KBIPx bit will
determine whether a edge sensitive pin detects rising or falling edges and on level sensitive pins whether
the pin detects low or high levels. With MODEK set, both of the following actions must occur to clear a
keyboard interrupt request:

• Return of all enabled keyboard interrupt inputs to a deasserted level. As long as any enabled
keyboard interrupt pin is asserted, the keyboard interrupt remains active.

• Vector fetch or software clear. A KBI vector fetch generates an interrupt acknowledge signal to
clear the KBI latch. Software generates the interrupt acknowledge signal by writing a 1 to ACKK in
KBSCR. The ACKK bit is useful in applications that poll the keyboard interrupt inputs and require
software to clear the KBI latch. Writing to ACKK prior to leaving an interrupt service routine can
also prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions
on the keyboard interrupt inputs. An edge detect that occurs after writing to ACKK latches another
interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program
counter with the KBI vector address.

RST, IRQ: Pins have internal pull up device
All port pins have programmable pull up device
PTA[0:5]: Higher current sink and source capability
PTB[0:7]: Not available on 8-pin devices

PTA0/TCH0/AD0/KBI0

PTA1/TCH1/AD1/KBI1

PTA2/IRQ/KBI2/TCLK

PTA3/RST/KBI3

PTA4/OSC2/AD2/KBI4

PTA5/OSC1/AD3/KBI5

2-CHANNEL 16-BIT
TIMER MODULE

KEYBOARD INTERRUPT
MODULE

SINGLE INTERRUPT
MODULE

AUTO WAKEUP

LOW-VOLTAGE
INHIBIT

COP
MODULE

6-CHANNEL
10-BIT ADC

PTB0/AD4
PT

B

D
D

R
B

M68HC08 CPU

PT
A

D
D

R
A

PTB1/AD5
PTB2
PTB3
PTB4
PTB5
PTB6
PTB7

MC68HC908QY4A

POWER SUPPLY

VDD

VSS

CLOCK
GENERATOR

MODULE

4096 BYTES

USER FLASH

128 BYTES

USER RAM

MONITOR ROM

MC68HC908QY4A

BREAK MODULE

DEVELOPMENT SUPPORT
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

84 Freescale Semiconductor

Exception Control
13.6 Exception Control

Normal sequential program execution can be changed in three different ways:
1. Interrupts

a. Maskable hardware CPU interrupts

b. Non-maskable software interrupt instruction (SWI)

2. Reset
3. Break interrupts

13.6.1 Interrupts

An interrupt temporarily changes the sequence of program execution to respond to a particular event.
Figure 13-7 flow charts the handling of system interrupts.

Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The
arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is
latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched
interrupt is serviced (or the I bit is cleared).

At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the
interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers
the CPU register contents from the stack so that normal processing can resume. Figure 13-8 shows
interrupt entry timing. Figure 13-9 shows interrupt recovery timing.

13.6.1.1 Hardware Interrupts

A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after
completion of the current instruction. When the current instruction is complete, the SIM checks all pending
hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the
corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next
instruction is fetched and executed.

If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is
serviced first. Figure 13-10 demonstrates what happens when two interrupts are pending. If an interrupt
is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the
LDA instruction is executed.

The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions.
However, in the case of the INT1 RTI prefetch, this is a redundant operation.

NOTE
To maintain compatibility with the M6805 Family, the H register is not
pushed on the stack during interrupt entry. If the interrupt service routine
modifies the H register or uses the indexed addressing mode, software
should save the H register and then restore it prior to exiting the routine.
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 115

Exception Control

Figure 13-8. Interrupt Entry

Figure 13-9. Interrupt Recovery

Figure 13-10. Interrupt Recognition Example

MODULE

DATA BUS

R/W

INTERRUPT

DUMMY SP SP – 1 SP – 2 SP – 3 SP – 4 VECT H VECT L START ADDRADDRESS BUS

DUMMY PC – 1[7:0] PC – 1[15:8] X A CCR V DATA H V DATA L OPCODE

I BIT

MODULE

DATA BUS

R/W

INTERRUPT

SP – 4 SP – 3 SP – 2 SP – 1 SP PC PC + 1ADDRESS BUS

CCR A X PC – 1[7:0] PC – 1[15:8] OPCODE OPERAND

I BIT

CLI

LDA

INT1

PULH
RTI

INT2

BACKGROUND ROUTINE#$FF

PSHH

INT1 INTERRUPT SERVICE ROUTINE

PULH
RTI

PSHH

INT2 INTERRUPT SERVICE ROUTINE
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 117

System Integration Module (SIM)
13.6.1.2 SWI Instruction

The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the
interrupt mask (I bit) in the condition code register.

NOTE
A software interrupt pushes PC onto the stack. A software interrupt does
not push PC – 1, as a hardware interrupt does.

13.6.2 Interrupt Status Registers

The flags in the interrupt status registers identify maskable interrupt sources. Table 13-3 summarizes the
interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be
useful for debugging.

Table 13-3. Interrupt Sources

Priority Source Flag Mask(1)

1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.

INT
Register

Flag

Vector
Address

Highest

Lowest

Reset — — — $FFFE–$FFFF

SWI instruction — — — $FFFC–$FFFD

IRQ pin IRQF IMASK IF1 $FFFA–$FFFB

Timer channel 0 interrupt CH0F CH0IE IF3 $FFF6–$FFF7

Timer channel 1 interrupt CH1F CH1IE IF4 $FFF4–$FFF5

Timer overflow interrupt TOF TOIE IF5 $FFF2–$FFF3

Keyboard interrupt KEYF IMASKK IF14 $FFE0–$FFE1

ADC conversion complete interrupt COCO AIEN IF15 $FFDE–$FFDF
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

118 Freescale Semiconductor

Monitor Module (MON)

Figure 15-9. Simplified Monitor Mode Entry Flowchart

MONITOR MODE ENTRY

POR RESET

PTA0 = 1,
PTA1 = 1, AND

PTA4 = 0?

IRQ = VTST?

YES NO

YESNO

FORCED
MONITOR MODE

NORMAL
USER MODE

NORMAL
MONITOR MODE

INVALID
USER MODE

NO NO

HOST SENDS
8 SECURITY BYTES

IS RESET
POR?

YES YES

YES

NO

ARE ALL
SECURITY BYTES

CORRECT?

NOYES

ENABLE FLASH DISABLE FLASH

EXECUTE
MONITOR CODE

DOES RESET
OCCUR?

CONDITIONS
FROM Table 15-1

DEBUGGING
AND FLASH

PROGRAMMING
(IF FLASH

IS ENABLED)

PTA0 = 1,
RESET VECTOR

BLANK?
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 145

Development Support

Figure 15-10. Monitor Mode Circuit (External Clock, with High Voltage)

Figure 15-11. Monitor Mode Circuit (External Clock, No High Voltage)

9.8304 MHz CLOCK

+

10 kΩ*

VDD

10 kΩ*

RST (PTA3)

IRQ (PTA2)

PTA0

OSC1 (PTA5)

8

7
DB9

2

3

5

16

15

2

6

10

9

VDD

MAX232

V+

V–

1 μF
+

1

2 3 4

56
74HC125

74HC125
10 kΩ

PTA1

PTA4

VSS

0.1 μF

VDD

1 kΩ

9.1 V

C1+

C1–

5

4

1 μF

C2+

C2–

+

3

1

1 μF
+

1 μF

VDD

+
1 μF

VTST

* Value not critical

VDD
VDD

10 kΩ*

RST (PTA3)

IRQ (PTA2)

PTA0

OSC1 (PTA5)

8

7
DB9

2

3

5

16

15

2

6

10

9

VDD

1 μF

MAX232

V+

V–

VDD

1 μF
+

1

2 3 4

56
74HC125

74HC125
10 kΩ

N.C.PTA1

N.C.PTA4

VSS

0.1 μF

VDD

9.8304 MHz CLOCK C1+

C1–

5

4

1 μF

C2+

C2–

+

3

1

1 μF
+ +

+
1 μF

VDD

10 kΩ*

* Value not critical

N.C.
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

146 Freescale Semiconductor

Electrical Specifications
16.3 Functional Operating Range

16.4 Thermal Characteristics

Characteristic Symbol Value Unit
Temperature

Code

Operating temperature range
TA

(TL to TH)

– 40 to +125
– 40 to +105
– 40 to +85

°C
M
V
C

Operating voltage range VDD 2.7 to 5.5 V —

Characteristic Symbol Value Unit

Thermal resistance
8-pin PDIP
8-pin SOIC
16-pin PDIP
16-pin SOIC
16-pin TSSOP

θJA

105
142
76
90
133

°C/W

I/O pin power dissipation PI/O User determined W

Power dissipation(1)

1. Power dissipation is a function of temperature.

PD
PD = (IDD x VDD)

+ PI/O = K/(TJ + 273°C)
W

Constant(2)

2. K constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ
can be determined for any value of TA.

K
PD x (TA + 273°C)

+ PD
2
 x θJA

W/°C

Average junction temperature TJ TA + (PD x θJA) °C

Maximum junction temperature TJM 150 °C
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

156 Freescale Semiconductor

Electrical Specifications
16.6 Typical 5-V Output Drive Characteristics

Figure 16-1. Typical 5-Volt Output High Voltage
versus Output High Current (25°C)

Figure 16-2. Typical 5-Volt Output Low Voltage
versus Output Low Current (25°C)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

-30-25-20-15-10-50

IOH (mA)

V
D

D
-V

O
H

 (V
)

5V PTA

5V PTB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 5 10 15 20 25 30

IOL (mA)

V
O

L
(V

) 5V PTA

5V PTB
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

158 Freescale Semiconductor

ADC10 Characteristics
16.13 ADC10 Characteristics

Characteristic Conditions Symbol Min Typ(1) Max Unit Comment

Supply voltage Absolute VDD 2.7 — 5.5 V

Supply Current
ADLPC = 1
ADLSMP = 1
ADCO = 1

VDD < 3.3 V (3.0 V Typ)

IDD
(2)

— 55 —

μA
VDD < 5.5 V (5.0 V Typ) — 75 —

Supply current
ADLPC = 1
ADLSMP = 0
ADCO = 1

VDD < 3.3 V (3.0 V Typ)

IDD
(2)

— 120 —

μA
VDD < 5.5 V (5.0 V Typ) — 175 —

Supply current
ADLPC = 0
ADLSMP = 1
ADCO = 1

VDD < 3.3 V (3.0 V Typ)
IDD

(2)
— 140 —

μA
VDD < 5.5 V (5.0 V Typ) — 180 —

Supply current
ADLPC = 0
ADLSMP = 0
ADCO = 1

VDD < 3.3 V (3.0 V Typ)

IDD
(2)

— 340 —

μA
VDD < 5.5 V (5.0 V Typ) — 440 615

ADC internal clock
High speed (ADLPC = 0)

fADCK
0.40(3) — 2.00

MHz tADCK = 1/fADCK
Low power (ADLPC = 1) 0.40(3) — 1.00

Conversion time (4)

10-bit Mode

Short sample (ADLSMP = 0)
tADC

19 19 21 tADCK
cyclesLong sample (ADLSMP = 1) 39 39 41

Conversion time (4)

8-bit Mode

Short sample (ADLSMP = 0)
tADC

16 16 18 tADCK
cyclesLong sample (ADLSMP = 1) 36 36 38

Sample time
Short sample (ADLSMP = 0)

tADS
4 4 4 tADCK

cyclesLong sample (ADLSMP = 1) 24 24 24

Input voltage VADIN VSS — VDD V

Input capacitance CADIN — 7 10 pF Not tested

Input impedance RADIN — 5 15 kΩ Not tested

Analog source impedance RAS — — 10 kΩ External to
MCU

Ideal resolution (1 LSB)
10-bit mode

RES
1.758 5 5.371

mV VREFH/2N

8-bit mode 7.031 20 21.48

Total unadjusted error
10-bit mode

ETUE
0 ±1.5 ±2.5

LSB
Includes

quantization8-bit mode 0 ±0.7 ±1.0

Differential non-linearity

10-bit mode
DNL

0 ±0.5 —
LSB

8-bit mode 0 ±0.3 —

Monotonicity and no-missing-codes guaranteed

— Continued on next page
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 167

Mechanical Drawings
Case 626 page 3 of 3
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 175

Ordering Information and Mechanical Specifications
Case 648 page 2 of 3
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

184 Freescale Semiconductor

• The ADC that is on the QYxA can operate while the MCU is in stop mode allowing lower power
operation. This also adds a lower noise environment for precise ADC results.

• Enabling an ADC channel no longer overrides the digital I/O function of the associated pin. To
prevent the digital I/O from interfering with the ADC read of the pin, the data direction bit associated
with the port pin must be set as input.

• Finally, the new ADC can be configured to select two different reference clock sources:
– The internal bus x 4
– An internal asynchronous source
The internal asynchronous clock source allows the ADC to be clocked for operation in stop mode.

A.2.1.1 Registers Affected

The ADCHx bits can be used to select additional ADC channels or bandgap measurement.

10-bit ADC uses the new ADRH register for the upper 2 bits.

A long sample time option has been added to conserve power at the expense of longer conversion times.
This option is selected using the new ADLSMP bit in the ADCLK register. (The bit location was previously
reserved.)

The ADC will now run in stop mode if the ACLKEN bit is set to enable the asynchronous clock inside the
ADC module. Utilizing stop mode for an ADC conversion gives the quietest operating mode to get
extremely accurate ADC readings. (This bit location now used by ACLKEN was reserved — it always read
as a 0 and writes to that location had no affect.)

Bit 7 6 5 4 3 2 1 Bit 0

Read: COCO
AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0

Write:

Reset: 0 0 0 1 1 1 1 1

= Unimplemented

Figure A-1. ADC10 Status and Control Register (ADSCR)

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0 0 0 0 0 AD9 AD8

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure A-2. ADC10 Data Register High (ADRH), 10-Bit Mode

Bit 7 6 5 4 3 2 1 Bit 0

Read:
ADLPC ADIV1 ADIV0 ADICLK MODE1 MODE0 ADLSMP ACLKEN

Write:

Reset: 0 0 0 0 0 0 0 0

Figure A-3. ADC10 Clock Register (ADCLK)
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

192 Freescale Semiconductor

A.2.5 Keyboard Interface Module (KBI) Functionality

The KBI module for the QYxA has the added capability of:

• Triggering a KBI interrupt on the rising or falling edge of an input while the QYx Classic has the
capability of triggering on falling edges only.
– A new register (Keyboard Interrupt Polarity Register) determines the polarity of KBI and the

default state of this register configures the QYxA for triggering on falling edges to be compatible
with QYx Classic.

– The QYxA now has pull down resistors for the input pins that are configured for rising edge
operation.

A.2.5.1 Registers Affected

The KBIPR allows the selection of polarity, if any of these bits are set the corresponding interrupt pin will
be configured for rising edge and a pulldown resistor will be added to the pin.

A.2.6 On-Chip Routine Enhancements

Enhancements have been made to the on-chip routines that are used for FLASH as EEPROM. Refer to
AN2346 for information about using FLASH as EEPROM.

• A new mass erase routine requires a valid FLASH address loaded into the H:X register to perform
an erase. This added step helps ensure that the erase routine is not inadvertently used to cause
an unwanted erase. Also, on-chip FLASH programming routine ERARNGE variable CTRLBYT
requires $00 for page erase and $40 for mass erase. The entire control byte must be set for proper
operation.

• Separate routines will allow easy access to perform software SCI (Serial Communications
Interface). For information on how to use on-chip FLASH programming routines refer to AN2635.

• Finally, there is improved security and robustness. The latest Monitor ROM implements updated
security checks to make the program memory more secure.

Bit 7 6 5 4 3 2 1 Bit 0

Read: 0 0
KBIP5 KBIP4 KBIP3 KBIP2 KBIP1 KBIP0

Write:

Reset: 0 0 0 0 0 0 0 0

= Unimplemented

Figure A-6. Keyboard Interrupt Polarity Register (KBIPR)
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

Freescale Semiconductor 195

A.3 Conversion Considerations

Enhancements lead to slight differences in operation from QYx Classic to the QYxA. There are a few
points that should be considered in the conversion process.

• The Monitor ROM changed from 2 K to 1 K in size. This has led to the limitation that programming
across page boundaries is no longer supported by the on-chip program range routine. Also, in very
rare cases, ROM code improvements could cause customers to have to modify a few instructions
in their application code. For example, when performing a mass erase, a valid address is required
instead of an unspecified address.

• The QYxA contains new modules like the 10-bit ADC and OSC. In rare cases, new modules could
cause customers to have to modify a few instructions in their application code. For example, if ADC
code was written so that entire registers are configured without respect to reserve bits, then the
ADC code will need to be revised to work correctly on the QYxA.

• The Reference Clock for ADC conversions has changed from the bus clock to the system clock
(Bus Clock * 4). A change to the divide register may be necessary to set the reference clock to a
specified value.

A.4 Code Changes Checklist

Below is a checklist that should be reviewed in the conversion process. This checklist will point out all the
issues that should be addressed as your code is ported.

1. Does the original software use Auxiliary ROM routines (for example, Getbyte, Putbyte, delnus)?
If so, the software will have to be changed to handle new Auxiliary ROM routines, addresses of
these routines have changed in QYxA. Code will have to be changed to use the proper addresses.

2. Does the software use FLASH as EEPROM?
If so, there are several possible issues for the page erase and mass erase routine. Software will
have to be checked to ensure that proper procedure is used and the CTRLBYT is set with a MOV
instruction not a BSET. Also, on-chip FLASH programming routines can no longer program across
row boundaries

3. Does the code use the auto wake up timer and does the application depend on the typical auto
wake time out?
Since the timeout has been improved for QYxA it may be necessary to modify software to
compensate for the change in timeout.

4. Bits changed in the OSCSC, CONFIG2, and ADC registers?
Any code that writes to these registers should be reviewed to ensure that the writes are not
affecting the changed bits

5. Does the code use external OSC, crystal, or RC?
If so, since the OSCOPT bits have changed locations code will have to be updated to update these
bits in their proper locations.

6. Does the code use the ADC?
If so, because on QYxA the ADC clock is driven from 4XBUSCLK instead of BUSCLK changes to
the ADC clock divider bits may be needed to maintain proper operation.
MC68HC908QYA/QTA Family Data Sheet, Rev. 3

196 Freescale Semiconductor

