

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.295", 7.50mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908qy1amdwer

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Chapter 16 Electrical Specifications

Introduction	155
Absolute Maximum Ratings	155
Functional Operating Range	156
Thermal Characteristics	156
5-V DC Electrical Characteristics	157
Typical 5-V Output Drive Characteristics	158
5-V Control Timing	159
3-V DC Electrical Characteristics	160
Typical 3-V Output Drive Characteristics	161
3-V Control Timing	162
Oscillator Characteristics	163
Supply Current Characteristics	165
ADC10 Characteristics.	167
Timer Interface Module Characteristics	169
Memory Characteristics	170
	Oscillator Characteristics

Chapter 17

Ordering Information and Mechanical Specifications

17.1	Introduction	171
17.2	Ordering Information	171
17.3	Orderable Part Numbering System	172
	Consumer and Industrial Orderable Part Numbering System	
17.3.2	Automotive Orderable Part Number System	172
17.4	Mechanical Drawings	172

Appendix A 908QTA/QYxA Conversion Guidelines

A.1	Introduction	1
A.2	Benefits of the Enhanced QYxA 19	1
A.2.1	New Analog-to-Digital Converter Module (ADC) 19	1
A.2.1.1	Registers Affected	2
A.2.2	Enhanced Oscillator Module (OSC) 19	3
A.2.2.1	Registers Affected	3
A.2.3	Improved Auto Wakeup Module (AWU) 19	4
A.2.3.1	Registers Affected	4
A.2.4	New Power-on Reset Module (POR) 19	4
A.2.5	Keyboard Interface Module (KBI) Functionality 19	
A.2.5.1	Registers Affected	5
A.2.6	On-Chip Routine Enhancements 19	5
A.3	Conversion Considerations 19	6
A.4	Code Changes Checklist	6
A.5	Development Tools	7
A.6	Differences in Packaging 19	7

Chapter 1 General Description

1.1 Introduction

The MC68HC908QY4A is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types.

Device	FLASH Memory Size	ADC	Pin Count
MC68HC908QT1A	1536 bytes	—	8 pins
MC68HC908QT2A	1536 bytes	6 channel, 10 bit	8 pins
MC68HC908QT4A	4096 bytes	6 channel, 10 bit	8 pins
MC68HC908QY1A	1536 bytes	—	16 pins
MC68HC908QY2A	1536 bytes	6 channel, 10 bit	16 pins
MC68HC908QY4A	4096 bytes	6 channel, 10 bit	16 pins

Table 1-1. Summary of Device Variations

1.2 Features

Features include:

- High-performance M68HC08 CPU core
- Fully upward-compatible object code with M68HC05 Family
- 5-V and 3-V operating voltages (V_{DD})
- 8-MHz internal bus operation at 5 V, 4-MHz at 3 V
- Trimmable internal oscillator
 - Software selectable 1 MHz, 2 MHz, or 3.2 MHz internal bus operation
 - 8-bit trim capability
 - ±25% untrimmed
 - Trimmable to approximately 0.4%⁽¹⁾
- Software selectable crystal oscillator range, 32–100 kHz, 1–8 MHz and 8–32 MHz
- Software configurable input clock from either internal or external source
- Auto wakeup from STOP capability using dedicated internal 32-kHz RC or bus clock source
- On-chip in-application programmable FLASH memory
 - Internal program/erase voltage generation
 - Monitor ROM containing user callable program/erase routines
 - FLASH security⁽²⁾

^{1.} See 16.11 Oscillator Characteristics for internal oscillator specifications

^{2.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

Direct Page Registers

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0000	Port A Data Register (PTA)	Read: Write:	R	AWUL	PTA5	PTA4	PTA3	PTA2	PTA1	PTA0
	See page 104.	Reset:				Unaffecte	d by reset			
\$0001	Port B Data Register (PTB) See page 106.	Read: Write:	PTB7	PTB6	PTB5	PTB4	PTB3	PTB2	PTB1	PTB0
\$0002 ↓ \$0003	Reserved	Reset:				Unaffecte	d by reset			
\$0004	Data Direction Register A (DDRA) See page 104.	Read: Write:	R	R	DDRA5	DDRA4	DDRA3	0	DDRA1	DDRA0
	000 page 104.	Reset:	0	0	0	0	0	0	0	0
\$0005	Data Direction Register B (DDRB)	Read: Write:	DDRB7	DDRB6	DDRB5	DDRB4	DDRB3	DDRB2	DDRB1	DDRB0
	See page 107.	Reset:	0	0	0	0	0	0	0	0
\$0006 ↓ \$000A	Reserved									
\$000B	Port A Input Pullup Enable Register (PTAPUE) See page 105.	Read: Write:	OSC2EN	0	PTAPUE5	PTAPUE4	PTAPUE3	PTAPUE2	PTAPUE1	PTAPUE0
	0ee page 100.	Reset:	0	0	0	0	0	0	0	0
\$000C	Port B Input Pullup Enable Register (PTBPUE) See page 108.	Read: Write:	PTBPUE7	PTBPUE6	PTBPUE5	PTBPUE4	PTBPUE3	PTBPUE2	PTBPUE1	PTBPUE0
	See page 100.	Reset:	0	0	0	0	0	0	0	0
\$000D ↓ \$0019	Reserved									
										1
	Keyboard Status and	Read:	0	0	0	0	KEYF	0	IMASKK	MODEK
\$001A	Control Register (KBSCR) See page 87.	Write:			_		_	ACKK		
		Reset:	0	0	0	0	0	0	0	0
\$001B	Keyboard Interrupt Enable Register (KBIER)	Read: Write:	0	AWUIE	KBIE5	KBIE4	KBIE3	KBIE2	KBIE1	KBIE0
	See page 88.	Reset:	0	0	0	0	0	0	0	0
\$001C	Keyboard Interrupt Polarity Register (KBIPR)	Read: Write:	0	0	KBIP5	KBIP4	KBIP3	KBIP2	KBIP1	KBIP0
	See page 88.	Reset:	0	0	0	0	0	0	0	0
				= Unimplem	ented	R	= Reserved	U = Unafl	fected	

break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the second step clears the status bit.

3.7 I/O Signals

The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for port location of these shared pins. The ADC10 on this MCU uses V_{DD} and V_{SS} as its supply and reference pins. This MCU does not have an external trigger source.

3.7.1 ADC10 Analog Power Pin (V_{DDA})

The ADC10 analog portion uses V_{DDA} as its power pin. In some packages, V_{DDA} is connected internally to V_{DD} . If externally available, connect the V_{DDA} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDA} for good results.

NOTE

If externally available, route V_{DDA} carefully for maximum noise immunity and place bypass capacitors as near as possible to the package.

3.7.2 ADC10 Analog Ground Pin (V_{SSA})

The ADC10 analog portion uses V_{SSA} as its ground pin. In some packages, V_{SSA} is connected internally to V_{SS} . If externally available, connect the V_{SSA} pin to the same voltage potential as V_{SS} .

In cases where separate power supplies are used for analog and digital power, the ground connection between these supplies should be at the V_{SSA} pin. This should be the only ground connection between these supplies if possible. The V_{SSA} pin makes a good single point ground location.

3.7.3 ADC10 Voltage Reference High Pin (V_{REFH})

 V_{REFH} is the power supply for setting the high-reference voltage for the converter. In some packages, V_{REFH} is connected internally to V_{DDA} . If externally available, V_{REFH} may be connected to the same potential as V_{DDA} , or may be driven by an external source that is between the minimum V_{DDA} spec and the V_{DDA} potential (V_{REFH} must never exceed V_{DDA}).

NOTE

Route V_{REFH} carefully for maximum noise immunity and place bypass capacitors as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the V_{REFH} and V_{REFL} loop. The best external component to meet this current demand is a 0.1 μ F capacitor with good high frequency characteristics. This capacitor is connected between V_{REFH} and V_{REFL} and must be placed as close as possible to the package pins. Resistance in the path is not recommended because the current will cause a voltage drop which could result in conversion errors. Inductance in this path must be minimum (parasitic only).

3.7.4 ADC10 Voltage Reference Low Pin (V_{REFL})

 V_{REFL} is the power supply for setting the low-reference voltage for the converter. In some packages, V_{REFL} is connected internally to V_{SSA} . If externally available, connect the V_{REFL} pin to the same voltage potential as V_{SSA} . There will be a brief current associated with V_{REFL} when the sampling capacitor is

Analog-to-Digital Converter (ADC10) Module

Chapter 9 Keyboard Interrupt Module (KBI)

9.1 Introduction

The keyboard interrupt module (KBI) provides independently maskable external interrupts.

The KBI shares its pins with general-purpose input/output (I/O) port pins. See Figure 9-1 for port location of these shared pins.

9.2 Features

Features of the keyboard interrupt module include:

- Keyboard interrupt pins with separate keyboard interrupt enable bits and one keyboard interrupt mask
- Programmable edge-only or edge and level interrupt sensitivity
- Edge sensitivity programmable for rising or falling edge
- Level sensitivity programmable for high or low level
- Pullup or pulldown device automatically enabled based on the polarity of edge or level detect
- Exit from low-power modes

9.3 Functional Description

The keyboard interrupt module controls the enabling/disabling of interrupt functions on the KBI pins. These pins can be enabled/disabled independently of each other. See Figure 9-2.

9.3.1 Keyboard Operation

Writing to the KBIEx bits in the keyboard interrupt enable register (KBIER) independently enables or disables each KBI pin. The polarity of the keyboard interrupt is controlled using the KBIPx bits in the keyboard interrupt polarity register (KBIPR). Edge-only or edge and level sensitivity is controlled using the MODEK bit in the keyboard status and control register (KBISCR).

Enabling a keyboard interrupt pin also enables its internal pullup or pulldown device based on the polarity enabled. On falling edge or low level detection, a pullup device is configured. On rising edge or high level detection, a pulldown device is configured.

The keyboard interrupt latch is set when one or more enabled keyboard interrupt inputs are asserted.

- If the keyboard interrupt sensitivity is edge-only, for KBIPx = 0, a falling (for KBIPx = 1, a rising) edge on a keyboard interrupt input does not latch an interrupt request if another enabled keyboard pin is already asserted. To prevent losing an interrupt request on one input because another input remains asserted, software can disable the latter input while it is asserted.
- If the keyboard interrupt is edge and level sensitive, an interrupt request is present as long as any enabled keyboard interrupt input is asserted.

Chapter 10 Low-Voltage Inhibit (LVI)

10.1 Introduction

The low-voltage inhibit (LVI) module is provided as a system protection mechanism to prevent the MCU from operating below a certain operating supply voltage level. The module has several configuration options to allow functionality to be tailored to different system level demands.

The configuration registers (see Chapter 5 Configuration Register (CONFIG)) contain control bits for this module.

10.2 Features

Features of the LVI module include:

- Programmable LVI reset
- Selectable LVI trip voltage
- Programmable stop mode operation

10.3 Functional Description

Figure 10-1 shows the structure of the LVI module. LVISTOP, LVIPWRD, LVITRIP, and LVIRSTD are user selectable options found in the configuration register.

FROM CONFIGURATION REGISTER

Figure 10-1. LVI Module Block Diagram

The oscillator configuration uses five components:

- Crystal, X₁
- Fixed capacitor, C₁
- Tuning capacitor, C₂ (can also be a fixed capacitor)
- Feedback resistor, R_B
- Series resistor, R_s (optional)

NOTE

The series resistor (R_s) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the oscillator characteristics table in the Electricals section for more information.

Figure 11-2. XTAL Oscillator External Connections

ECFS1:ECFS0 — External Crystal Frequency Select Bits

These read/write bits enable the specific amplifier for the crystal frequency range. Refer to oscillator characteristics table in the Electricals section for information on maximum external clock frequency versus supply voltage.

ECFS1	ECFS0	External Crystal Frequency
0	0	8 MHz – 32 MHz
0	1	1 MHz – 8 MHz
1	0	32 kHz – 100 kHz
1	1	Reserved

ECGON — External Clock Generator On Bit

This read/write bit enables the OSC1 pin as the clock input to the MCU, so that the switching process can be initiated. This bit is cleared by reset. This bit is ignored in monitor mode with the internal oscillator bypassed.

- 1 = External clock enabled
- 0 = External clock disabled

ECGST — External Clock Status Bit

This read-only bit indicates whether an external clock source is engaged to drive the system clock.

- 1 = An external clock source engaged
- 0 = An external clock source disengaged

11.8.2 Oscillator Trim Register (OSCTRIM)

Figure 11-5. Oscillator Trim Register (OSCTRIM)

TRIM7–TRIM0 — Internal Oscillator Trim Factor Bits

These read/write bits change the internal capacitance used by the internal oscillator. By measuring the period of the internal clock and adjusting this factor accordingly, the frequency of the internal clock can be fine tuned. Increasing (decreasing) this factor by one increases (decreases) the period by approximately 0.2% of the untrimmed oscillator period. The oscillator period is based on the oscillator frequency selected by the ICFS bits in OSCSC.

Applications using the internal oscillator should copy the internal oscillator trim value at location \$FFC0 or \$FFC1 into this register to trim the clock source.

13.6 Exception Control

Normal sequential program execution can be changed in three different ways:

- 1. Interrupts
 - a. Maskable hardware CPU interrupts
 - b. Non-maskable software interrupt instruction (SWI)
- 2. Reset
- 3. Break interrupts

13.6.1 Interrupts

An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 13-7 flow charts the handling of system interrupts.

Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared).

At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 13-8 shows interrupt entry timing. Figure 13-9 shows interrupt recovery timing.

13.6.1.1 Hardware Interrupts

A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed.

If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 13-10 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed.

The LDA opcode is prefetched by both the INT1 and INT2 return-from-interrupt (RTI) instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation.

NOTE

To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine.

Exception Control

MODULE INTERRUPT	
I BIT	
ADDRESS BUS	UUMMY SP SP-1 SP-2 SP-3 SP-4 VECTH VECTL STARTADDR
DATA BUS	X X
R/W	
	Figure 13-8. Interrupt Entry
MODULE INTERRUPT_	
I BIT	
ADDRESS BUS	X SP-4 SP-3 SP-2 SP-1 SP PC Y PC + 1 X X
DATA BUS	X X X PC - 1[7:0] PC - 1[15:8] OPCODE OPERAND
R/W	
	Figure 13-9. Interrupt Recovery
	CLI BACKGROUND ROUTINE
	INT1 PSHH PULH RTI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI

Figure 13-10. Interrupt Recognition Example

13.6.2.1 Interrupt Status Register 1

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0
Write:	R	R	R	R	R	R	R	R
Reset:	0	0	0	0	0	0	0	0
	R	= Reserved						

IF1–IF6 — Interrupt Flags

These flags indicate the presence of interrupt requests from the sources shown in Table 13-3.

1 = Interrupt request present

0 = No interrupt request present

Bit 0, 1 — Always read 0

13.6.2.2 Interrupt Status Register 2

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	IF14	IF13	IF12	IF11	IF10	IF9	IF8	IF7
Write:	R	R	R	R	R	R	R	R
Reset:	0	0	0	0	0	0	0	0
[R	= Reserved						

Figure 13-12. Interrupt Status Register 2 (INT2)

IF7–IF14 — Interrupt Flags

This flag indicates the presence of interrupt requests from the sources shown in Table 13-3.

1 = Interrupt request present

0 = No interrupt request present

13.6.2.3 Interrupt Status Register 3

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	IF22	IF21	IF20	IF19	IF18	IF17	IF16	IF15
Write:	R	R	R	R	R	R	R	R
Reset:	0	0	0	0	0	0	0	0
	R	= Reserved						

Figure 13-13. Interrupt Status Register 3 (INT3)

IF15–IF22 — Interrupt Flags

These flags indicate the presence of interrupt requests from the sources shown in Table 13-3.

1 = Interrupt request present

0 = No interrupt request present

Chapter 15 Development Support

15.1 Introduction

This section describes the break module, the monitor module (MON), and the monitor mode entry methods.

15.2 Break Module (BRK)

The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program.

Features include:

- Accessible input/output (I/O) registers during the break Interrupt
- Central processor unit (CPU) generated break interrupts
- Software-generated break interrupts
- Computer operating properly (COP) disabling during break interrupts

15.2.1 Functional Description

When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal (BKPT) to the system integration module (SIM). The SIM then causes the CPU to load the instruction register with a software interrupt instruction (SWI). The program counter vectors to \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode).

The following events can cause a break interrupt to occur:

- A CPU generated address (the address in the program counter) matches the contents of the break address registers.
- Software writes a 1 to the BRKA bit in the break status and control register.

When a CPU generated address matches the contents of the break address registers, the break interrupt is generated. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the microcontroller unit (MCU) to normal operation.

Figure 15-2 shows the structure of the break module.

When the internal address bus matches the value written in the break address registers or when software writes a 1 to the BRKA bit in the break status and control register, the CPU starts a break interrupt by:

- Loading the instruction register with the SWI instruction
- Loading the program counter with \$FFFC and \$FFFD (\$FEFC and \$FEFD in monitor mode)

Development Support

All port pins have programmable pull up device PTA[0:5]: Higher current sink and source capability PTB[0:7]: Not available on 8-pin devices

Electrical Specifications

16.3 Functional Operating Range

Characteristic	Symbol	Value	Unit	Temperature Code
Operating temperature range	T _A (T _L to T _H)	-40 to +125 -40 to +105 -40 to +85	°C	M V C
Operating voltage range	V _{DD}	2.7 to 5.5	V	_

16.4 Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance 8-pin PDIP 8-pin SOIC 16-pin PDIP 16-pin SOIC 16-pin TSSOP	θ _{JA}	105 142 76 90 133	°C/W
I/O pin power dissipation	P _{I/O}	User determined	W
Power dissipation ⁽¹⁾	PD	$P_D = (I_{DD} \times V_{DD})$ + P _{I/O} = K/(T _J + 273°C)	w
Constant ⁽²⁾	К	$P_{D} x (T_{A} + 273^{\circ}C) + P_{D}^{2} x \theta_{JA}$	W/°C
Average junction temperature	TJ	$T_A + (P_D \times \theta_{JA})$	°C
Maximum junction temperature	T _{JM}	150	°C

Power dissipation is a function of temperature.
K constant unique to the device. K can be determined for a known T_A and measured P_D. With this value of K, P_D and T_J can be determined for any value of T_A.

Electrical Specifications

16.10 3-V Control Timing

Characteristic ⁽¹⁾	Symbol	Min	Max	Unit
Internal operating frequency	f _{OP} (f _{Bus})	_	4	MHz
Internal clock period (1/f _{OP})	t _{cyc}	250	—	ns
RST input pulse width low ⁽²⁾	t _{RL}	200	—	ns
IRQ interrupt pulse width low (edge-triggered) ⁽²⁾	t _{ILIH}	200	—	ns
IRQ interrupt pulse period ⁽²⁾	t _{ILIL}	Note ⁽³⁾	—	t _{cyc}

1. V_{DD} = 2.7 to 3.3 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H; timing shown with respect to 20% V_{DD} and 70% V_{DD}, unless otherwise noted.

Values are based on characterization results, not tested in production.
The minimum period is the number of cycles it takes to execute the interrupt service routine plus 1 t_{cyc}.

Figure 16-6. RST and IRQ Timing

Electrical Specifications

Figure 16-9. Typical 5-Volt Run Current versus Bus Frequency (25•C)

Figure 16-10. Typical 3-Volt Run Current versus Bus Frequency (25•C)

Ordering Information and Mechanical Specifications

Case 968 page 1 of 3

Mechanical Drawings

Case 1452 page 1 of 4

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007–2010. All rights reserved.

MC68HC908QY4A Rev. 3, 03/2010