

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	1.5KB (1.5K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	16-DIP (0.300", 7.62mm)
Supplier Device Package	16-PDIP
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc908qy2acpe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Revision History

The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location.

Revision History

Date	Revision Level	Description			
December, 2005	N/A	Initial release	N/A		
		Added 1.7 Unused Pin Termination.	20		
		Figure 4-1. Auto Wakeup Interrupt Request Generation Logic — Corrected clock source.	51		
		4.3 Functional Description — Clarified operation.	52		
		4.5.1 Wait Mode — Corrected operation details.	53		
		4.6.4 Configuration Register 2 — Corrected clock source.	55		
August, 2006	1	4.6.5 Configuration Register 1 — Added SSREC bit description.	55		
2000		5.2 Functional Description — Corrected clock source.	58		
		12.1 Introduction — Replaced note.	103		
		13.7.2 Stop Mode — Corrected clock source.	121		
		16.12 Supply Current Characteristics — Updated maximum values for SI _{DD} at both 5 V and 3 V.	165		
		A.2.3 Improved Auto Wakeup Module (AWU) — Corrected clock source.	194		
		Chapter 3 Analog-to-Digital Converter (ADC10) Module — Renamed ADCSC register to ADSCR to be consistent with development tools.	37		
		Figure 15-18. Monitor Mode Entry Timing — Changed CGMXCLK to BUSCLKX4	154		
0 m mil		16.12 Supply Current Characteristics — Added note 6 below table	165		
April, 2007	2	Chapter 17 Ordering Information and Mechanical Specifications — Updated chapter to include:			
		Table 17-1. Consumer and Industrial Device Numbering System	171		
		17.3 Orderable Part Numbering System	171		
		17.3.1 Consumer and Industrial Orderable Part Numbering System	172		
		17.3.2 Automotive Orderable Part Number System	172		
March, 2010	3	Clarify internal oscillator trim register information.	27, 30, 31, 34, 95, 101		

List of Chapters

Direct Page Registers

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
	TIM Channel 1 Status and	Read:	CH1F	CH1IE	0	MS1A	FLS1B	FLS1A	TOV1	CH1MAX
\$0028	Control Register (TSC1)	Write:	0	Unite		MOTA	LLOID	LLOIA	1001	OTTIMAX
	See page 135.	Reset:	0	0	0	0	0	0	0	0
\$0029	TIM Channel 1 Register High (TCH1H)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 137.	Reset:				Indetermina	te after reset			
\$002A	TIM Channel 1 Register Low (TCH1L)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 137.	Reset:				Indetermina	te after reset			
\$002B ↓ \$0035	Reserved									
									L	
	Oscillator Status and	Read:	OSCOPT1	OSCOPTO	ICES1	ICESO	ECES1	ECES0	ECGON	ECGST
\$0036	Control Register (OSCSC)	Write:	0000111	0000110	101 01	101 00	LOI OI		LOUON	
	See page 100.	Reset:	0	0	1	0	0	0	0	0
						1	1			
\$0037	Reserved									
		1				I				
\$0038	Oscillator Trim Register (OSCTRIM) See page 101.	Read: Write:	TRIM7	TRIM6	TRIM5	TRIM4	TRIM3	TRIM2	TRIM1	TRIM0
		Reset:	1	0	0	0	0	0	0	0
\$0039	- .									
↓ \$003B	Reserved									
,										
\$003C	ADC10 Status and Control Register (ADSCR)	Read: Write:	COCO	AIEN	ADCO	ADCH4	ADCH3	ADCH2	ADCH1	ADCH0
	See page 46.	Reset:	0	0	0	1	1	1	1	1
	ADC10 Data Register High	Read:	0	0	0	0	0	0	AD9	AD8
\$003D	(ADRH)	Write:	R	R	R	R	R	R	R	R
	See page 48.	Reset:	0	0	0	0	0	0	0	0
	ADC10 Data Register Low	Read:	AD7	AD6	AD5	AD4	AD3	AD2	AD1	AD0
\$003E	(ADRL)	Write:	R	R	R	R	R	R	R	R
	See page 48.	Reset:	0	0	0	0	0	0	0	0
\$003F	ADC10 Clock Register (ADCLK)	Read: Write:	ADLPC	ADIV1	ADIV0	ADICLK	MODE1	MODE0	ADLSMP	ACLKEN
	See page 48.	Reset:	0	0	0	0	0	0	0	0
				= Unimplem	ented	R	= Reserved	U = Unaf	fected	

Vector Priority	Vector	Address	Vector
Lowest	IF22- IF16	\$FFD0,1- \$FFDC,D	Not used
Ĩ	IF15	\$FFDE,F	ADC conversion complete vector
	IF14	\$FFE0,1	Keyboard vector
	IF13	—	Not used
	IF12	—	Not used
	IF11	—	Not used
	IF10	—	Not used
	IF9	_	Not used
	IF8	—	Not used
	IF7	_	Not used
	IF6	—	Not used
	IF5	\$FFF2,3	TIM overflow vector
	IF4	\$FFF4,5	TIM channel 1 vector
	IF3	\$FFF6,7	TIM channel 0 vector
	IF2	_	Not used
	IF1	\$FFFA,B	IRQ vector
¥	—	\$FFFC,D	SWI vector
Highest	_	\$FFFE,F	Reset vector

Table 2-1. Vector Addresses

2.5 Random-Access Memory (RAM)

This MCU includes static RAM. The locations in RAM below \$0100 can be accessed using the more efficient direct addressing mode, and any single bit in this area can be accessed with the bit manipulation instructions (BCLR, BSET, BRCLR, and BRSET). Locating the most frequently accessed program variables in this area of RAM is preferred.

The RAM retains data when the MCU is in low-power wait or stop mode. At power-on, the contents of RAM are uninitialized. RAM data is unaffected by any reset provided that the supply voltage does not drop below the minimum value for RAM retention.

For compatibility with older M68HC05 MCUs, the HC08 resets the stack pointer to \$00FF. In the devices that have RAM above \$00FF, it is usually best to reinitialize the stack pointer to the top of the RAM so the direct page RAM can be used for frequently accessed RAM variables and bit-addressable program variables. Include the following 2-instruction sequence in your reset initialization routine (where RamLast is equated to the highest address of the RAM).

LDHX	#RamLast+1	;point one past RAM
TXS		;SP<-(H:X-1)

break, the bit cannot change during the break state as long as BCFE is cleared. After the break, doing the second step clears the status bit.

3.7 I/O Signals

The ADC10 module shares its pins with general-purpose input/output (I/O) port pins. See Figure 3-1 for port location of these shared pins. The ADC10 on this MCU uses V_{DD} and V_{SS} as its supply and reference pins. This MCU does not have an external trigger source.

3.7.1 ADC10 Analog Power Pin (V_{DDA})

The ADC10 analog portion uses V_{DDA} as its power pin. In some packages, V_{DDA} is connected internally to V_{DD} . If externally available, connect the V_{DDA} pin to the same voltage potential as V_{DD} . External filtering may be necessary to ensure clean V_{DDA} for good results.

NOTE

If externally available, route V_{DDA} carefully for maximum noise immunity and place bypass capacitors as near as possible to the package.

3.7.2 ADC10 Analog Ground Pin (V_{SSA})

The ADC10 analog portion uses V_{SSA} as its ground pin. In some packages, V_{SSA} is connected internally to V_{SS} . If externally available, connect the V_{SSA} pin to the same voltage potential as V_{SS} .

In cases where separate power supplies are used for analog and digital power, the ground connection between these supplies should be at the V_{SSA} pin. This should be the only ground connection between these supplies if possible. The V_{SSA} pin makes a good single point ground location.

3.7.3 ADC10 Voltage Reference High Pin (V_{REFH})

 V_{REFH} is the power supply for setting the high-reference voltage for the converter. In some packages, V_{REFH} is connected internally to V_{DDA} . If externally available, V_{REFH} may be connected to the same potential as V_{DDA} , or may be driven by an external source that is between the minimum V_{DDA} spec and the V_{DDA} potential (V_{REFH} must never exceed V_{DDA}).

NOTE

Route V_{REFH} carefully for maximum noise immunity and place bypass capacitors as near as possible to the package.

AC current in the form of current spikes required to supply charge to the capacitor array at each successive approximation step is drawn through the V_{REFH} and V_{REFL} loop. The best external component to meet this current demand is a 0.1 μ F capacitor with good high frequency characteristics. This capacitor is connected between V_{REFH} and V_{REFL} and must be placed as close as possible to the package pins. Resistance in the path is not recommended because the current will cause a voltage drop which could result in conversion errors. Inductance in this path must be minimum (parasitic only).

3.7.4 ADC10 Voltage Reference Low Pin (V_{REFL})

 V_{REFL} is the power supply for setting the low-reference voltage for the converter. In some packages, V_{REFL} is connected internally to V_{SSA} . If externally available, connect the V_{REFL} pin to the same voltage potential as V_{SSA} . There will be a brief current associated with V_{REFL} when the sampling capacitor is

Registers

AWUIE — Auto Wakeup Interrupt Enable Bit

This read/write bit enables the auto wakeup interrupt input to latch interrupt requests. Reset clears AWUIE.

1 = Auto wakeup enabled as interrupt input

0 = Auto wakeup not enabled as interrupt input

NOTE

KBIE5–KBIE0 bits are not used in conjuction with the auto wakeup feature. To see a description of these bits, see 9.8.2 Keyboard Interrupt Enable Register (KBIER).

4.6.4 Configuration Register 2

The configuration register 2 (CONFIG2), is used to allow the bus clock source to run in STOP. In this case, the clock, BUSCLKX2 will be used to drive the AWU request generator.

Figure 4-5. Configuration Register 2 (CONFIG2)

OSCENINSTOP — Oscillator Enable in Stop Mode Bit

OSCENINSTOP, when set, will allow the bus clock source (BUSCLKX2) to generate clocks for the AWU in stop mode. See *11.8.1 Oscillator Status and Control Register* for information on enabling the external clock sources.

1 = Oscillator enabled to operate during stop mode

0 = Oscillator disabled during stop mode

NOTE

IRQPUD, IRQEN, and RSTEN bits are not used in conjuction with the auto wakeup feature. To see a description of these bits, see Chapter 5 Configuration Register (CONFIG).

4.6.5 Configuration Register 1

The configuration register 1 (CONFIG1), is used to select the period for the AWU. The timeout will be based on the COPRS bit along with the clock source for the AWU.

Figure 4-6. Configuration Register 1 (CONFIG1)

Auto Wakeup Module (AWU)

COPRS (In Stop Mode) — Auto Wakeup Period Selection Bit, depends on OSCSTOPEN in CONFIG2 and bus clock source (BUSCLKX2).

1 = Auto wakeup short cycle = $512 \times (INTRCOSC \text{ or BUSCLKX2})$

0 = Auto wakeup long cycle = $16,384 \times (INTRCOSC \text{ or BUSCLKX2})$

SSREC — Short Stop Recovery Bit

SSREC enables the CPU to exit stop mode with a delay of 32 BUSCLKX4 cycles instead of a 4096 BUSCLKX4 cycle delay.

1 = Stop mode recovery after 32 BUSCLKX4 cycles

0 = Stop mode recovery after 4096 BUSCLKX4 cycles

NOTE

LVISTOP, LVIRST, LVIPWRD, LVITRIP, and COPD bits are not used in conjuction with the auto wakeup feature. To see a description of these bits, see Chapter 5 Configuration Register (CONFIG)

Central Processor Unit (CPU)

Course					Effect				SS	de	pu	s
Form	Operation	Description	v	о Ц			n 7	6	ddre ode	bco	pera	/cle
			v	п	•	IN	2	C	Ă	ō	ō	ΰ
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	-	-	-	-	-	INH	86		2
PULH	Pull H from Stack	$SP \leftarrow (SP + 1); Pull (H)$				-	-	-		8A		2
PULX	Pull X from Stack	$SP \leftarrow (SP + 1); Pull(X)$	-	-	-	-	-	-		88	44	2
ROLA ROLX ROL <i>opr</i> ,X ROL <i>,X</i> ROL <i>opr</i> ,SP	Rotate Left through Carry	C ← ← _ ← _ ← ← ← _ ←	ţ	-	-	\$	ţ	ţ	INH INH IX1 IX SP1	49 59 69 79 9E69	ff ff	4 1 4 3 5
ROR <i>opr</i> RORA RORX ROR <i>opr</i> ,X ROR ,X ROR <i>opr</i> ,SP	Rotate Right through Carry	b7 b0	ţ	_	_	\$	ţ	ţ	DIR INH INH IX1 IX SP1	36 46 56 66 76 9E66	dd ff ff	4 1 4 3 5
RSP	Reset Stack Pointer	$SP \leftarrow \$FF$	-	-	-	Ι	-	-	INH	9C		1
RTI	Return from Interrupt	$\begin{array}{l} SP \leftarrow (SP) + 1; \ Pull \ (CCR) \\ SP \leftarrow (SP) + 1; \ Pull \ (A) \\ SP \leftarrow (SP) + 1; \ Pull \ (X) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCH) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCL) \end{array}$	ţ	ţ	ţ	ţ	ţ	ţ	INH	80		7
RTS	Return from Subroutine	$SP \leftarrow SP + 1$; Pull (PCH) $SP \leftarrow SP + 1$; Pull (PCL)	-	-	Ι	1	Ι	Ι	INH	81		4
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP	Subtract with Carry	$A \leftarrow (A) - (M) - (C)$	ţ	_	-	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A2 B2 C2 D2 E2 F2 9EE2 9ED2	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
SEC	Set Carry Bit	arry Bit C ← 1		-	-	-	-	1	INH	99		1
SEI	Set Interrupt Mask	l ← 1	-	-	1	-	-	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP	Store A in M	M ← (A)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	B7 C7 D7 E7 F7 9EE7 9ED7	dd hh II ee ff ff ee ff	3443245
STHX opr	Store H:X in M	$(M{:}M+1) \leftarrow (H{:}X)$	0	-	-	\$	\$	-	DIR	35	dd	4
STOP	Enable Interrupts, Stop Processing, Refer to MCU Documentation	$I \leftarrow 0$; Stop Processing	-	-	0	1	-	-	INH	8E		1
STX opr STX opr STX opr,X STX opr,X STX,X STX opr,SP STX opr,SP	Store X in M	M ← (X)		_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	BF CF DF EF FF 9EEF 9EDF	dd hh II ee ff ff ee ff	3443245
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB x SUB opr,SP SUB opr,SP	Subtract	A ← (A) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A0 B0 C0 D0 E0 F0 9EE0 9ED0	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5

Functional Description

Figure 8-2. IRQ Module Block Diagram

8.3.1 MODE = 1

If the MODE bit is set, the IRQ pin is both falling edge sensitive and low level sensitive. With MODE set, both of the following actions must occur to clear the IRQ interrupt request:

- Return of the IRQ pin to a high level. As long as the IRQ pin is low, the IRQ request remains active.
- IRQ vector fetch or software clear. An IRQ vector fetch generates an interrupt acknowledge signal to clear the IRQ latch. Software generates the interrupt acknowledge signal by writing a 1 to ACK in INTSCR. The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to ACK prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to ACK latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the IRQ vector address.

The IRQ vector fetch or software clear and the return of the IRQ pin to a high level may occur in any order. The interrupt request remains pending as long as the IRQ pin is low. A reset will clear the IRQ latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low.

Use the BIH or BIL instruction to read the logic level on the IRQ pin.

8.3.2 MODE = 0

If the MODE bit is clear, the IRQ pin is falling edge sensitive only. With MODE clear, an IRQ vector fetch or software clear immediately clears the IRQ latch.

The IRQF bit in INTSCR can be read to check for pending interrupts. The IRQF bit is not affected by IMASK, which makes it useful in applications where polling is preferred.

NOTE

When using the level-sensitive interrupt trigger, avoid false IRQ interrupts by masking interrupt requests in the interrupt routine.

9.7 I/O Signals

The KBI module can share its pins with the general-purpose I/O pins. See Figure 9-1 for the port pins that are shared.

9.7.1 KBI Input Pins (KBIx:KBI0)

Each KBI pin is independently programmable as an external interrupt source. KBI pin polarity can be controlled independently. Each KBI pin when enabled will automatically configure the appropriate pullup/pulldown device based on polarity.

9.8 Registers

The following registers control and monitor operation of the KBI module:

- KBSCR (keyboard interrupt status and control register)
- KBIER (keyboard interrupt enable register)
- KBIPR (keyboard interrupt polarity register)

9.8.1 Keyboard Status and Control Register (KBSCR)

Features of the KBSCR:

- Flags keyboard interrupt requests
- Acknowledges keyboard interrupt requests
- Masks keyboard interrupt requests
- Controls keyboard interrupt triggering sensitivity

	Bit 7	6	5	4	3	2	1	Bit 0			
Read:	0	0	0	0	KEYF	0	IMASKK	MODEK			
Write:						ACKK	IWASKK	WODER			
Reset:	0	0	0	0	0	0	0	0			
	= Unimplemented										

Figure 9-3. Keyboard Status and Control Register (KBSCR)

Bits 7–4 — Not used

KEYF — Keyboard Flag Bit

This read-only bit is set when a keyboard interrupt is pending.

- 1 = Keyboard interrupt pending
- 0 = No keyboard interrupt pending

ACKK — Keyboard Acknowledge Bit

Writing a 1 to this write-only bit clears the KBI request. ACKK always reads 0.

IMASKK— Keyboard Interrupt Mask Bit

Writing a 1 to this read/write bit prevents the output of the KBI latch from generating interrupt requests.

- 1 = Keyboard interrupt requests disabled
- 0 = Keyboard interrupt requests enabled

MODEK — Keyboard Triggering Sensitivity Bit

This read/write bit controls the triggering sensitivity of the keyboard interrupt pins.

- 1 = Keyboard interrupt requests on edge and level
- 0 = Keyboard interrupt requests on edge only

Low-Voltage Inhibit (LVI)

The LVI module contains a bandgap reference circuit and comparator. When the LVITRIP bit is cleared, the default state at power-on reset, V_{TRIPF} is configured for the lower V_{DD} operating range. The actual trip points are specified in 16.5 5-V DC Electrical Characteristics and 16.8 3-V DC Electrical Characteristics.

Because the default LVI trip point after power-on reset is configured for low voltage operation, a system requiring high voltage LVI operation must set the LVITRIP bit during system initialization. V_{DD} must be above the LVI trip rising voltage, V_{TRIPR} , for the high voltage operating range or the MCU will immediately go into LVI reset.

After an LVI reset occurs, the MCU remains in reset until V_{DD} rises above V_{TRIPR} . See Chapter 13 System Integration Module (SIM) for the reset recovery sequence.

The output of the comparator controls the state of the LVIOUT flag in the LVI status register (LVISR) and can be used for polling LVI operation when the LVI reset is disabled.

The LVI is enabled out of reset. The following bits located in the configuration register can alter the default conditions.

- Setting the LVI power disable bit, LVIPWRD, disables the LVI.
- Setting the LVI reset disable bit, LVIRSTD, prevents the LVI module from generating a reset.
- Setting the LVI enable in stop mode bit, LVISTOP, enables the LVI to operate in stop mode.
- Setting the LVI trip point bit, LVITRIP, configures the trip point voltage (V_{TRIPF}) for the higher V_{DD} operating range.

10.3.1 Polled LVI Operation

In applications that can operate at V_{DD} levels below the V_{TRIPF} level, software can monitor V_{DD} by polling the LVIOUT bit. In the configuration register, LVIPWRD must be cleared to enable the LVI module, and LVIRSTD must be set to disable LVI resets.

10.3.2 Forced Reset Operation

In applications that require V_{DD} to remain above the V_{TRIPF} level, enabling LVI resets allows the LVI module to reset the MCU when V_{DD} falls below the V_{TRIPF} level. In the configuration register, LVIPWRD and LVIRSTD must be cleared to enable the LVI module and to enable LVI resets.

10.3.3 LVI Hysteresis

The LVI has hysteresis to maintain a stable operating condition. After the LVI has triggered (by having V_{DD} fall below V_{TRIPF}), the MCU will remain in reset until V_{DD} rises above the rising trip point voltage, V_{TRIPR} . This prevents a condition in which the MCU is continually entering and exiting reset if V_{DD} is approximately equal to V_{TRIPF} . V_{TRIPF} is greater than V_{TRIPF} by the typical hysteresis voltage, V_{HYS} .

10.3.4 LVI Trip Selection

LVITRIP in the configuration register selects the LVI protection range. The default setting out of reset is for the low voltage range. Because LVITRIP is in a write-once configuration register, the protection range cannot be changed after initialization.

NOTE

The MCU is guaranteed to operate at a minimum supply voltage. The trip point (V_{TRIPF}) may be lower than this. See the Electrical Characteristics section for the actual trip point voltages.

Input/Output Ports (PORTS)

12.3.1 Port A Data Register

The port A data register (PTA) contains a data latch for each of the six port A pins.

Figure 12-1. Port A Data Register (PTA)

PTA[5:0] — Port A Data Bits

These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data.

AWUL — Auto Wakeup Latch Data Bit

This is a read-only bit which has the value of the auto wakeup interrupt request latch. The wakeup request signal is generated internally (see Chapter 4 Auto Wakeup Module (AWU)). There is no PTA6 port nor any of the associated bits such as PTA6 data register, pullup enable or direction.

12.3.2 Data Direction Register A

Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a 0 disables the output buffer.

Figure 12-2. Data Direction Register A (DDRA)

DDRA[5:0] — Data Direction Register A Bits

These read/write bits control port A data direction. Reset clears DDRA[5:0], configuring all port A pins as inputs.

1 = Corresponding port A pin configured as output

0 = Corresponding port A pin configured as input

NOTE

Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1.

Figure 12-3 shows the port A I/O logic.

Figure 12-3 does not apply to PTA2

When DDRAx is a 1, reading PTA reads the PTAx data latch. When DDRAx is a 0, reading PTA reads the logic level on the PTAx pin. The data latch can always be written, regardless of the state of its data direction bit.

12.3.3 Port A Input Pullup Enable Register

The port A input pullup enable register (PTAPUE) contains a software configurable pullup device for each of the port A pins. Each bit is individually configurable and requires the corresponding data direction register, DDRAx, to be configured as input. Each pullup device is automatically and dynamically disabled when its corresponding DDRAx bit is configured as output.

OSC2EN — Enable PTA4 on OSC2 Pin

This read/write bit configures the OSC2 pin function when internal oscillator or RC oscillator option is selected. This bit has no effect for the XTAL or external oscillator options.

- 1 = OSC2 pin outputs the internal or RC oscillator clock (BUSCLKX4)
- 0 = OSC2 pin configured for PTA4 I/O, having all the interrupt and pullup functions

PTAPUE[5:0] — Port A Input Pullup Enable Bits

These read/write bits are software programmable to enable pullup devices on port A pins.

- 1 = Corresponding port A pin configured to have internal pullup if its DDRA bit is set to 0
- 0 = Pullup device is disconnected on the corresponding port A pin regardless of the state of its DDRA bit

12.4.2 Data Direction Register B

Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a 0 disables the output buffer.

Figure 12-6. Data Direction Register B (DDRB)

DDRB[7:0] — Data Direction Register B Bits

These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs.

1 = Corresponding port B pin configured as output

0 = Corresponding port B pin configured as input

NOTE

Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 12-7 shows the port B I/O logic.

Figure 12-7. Port B I/O Circuit

When DDRBx is a 1, reading PTB reads the PTBx data latch. When DDRBx is a 0, reading PTB reads the logic level on the PTBx pin. The data latch can always be written, regardless of the state of its data direction bit.

Chapter 14 Timer Interface Module (TIM)

14.1 Introduction

This section describes the timer interface module (TIM). The TIM module is a 2-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions.

The TIM module shares its pins with general-purpose input/output (I/O) port pins. See Figure 14-1 for port location of these shared pins.

14.2 Features

•

Features include the following:

- Two input capture/output compare channels
 - Rising-edge, falling-edge, or any-edge input capture trigger
 - Set, clear, or toggle output compare action
- Buffered and unbuffered output compare pulse-width modulation (PWM) signal generation
- Programmable clock input
 - 7-frequency internal bus clock prescaler selection
 - External clock input pin if available, See Figure 14-1
 - Free-running or modulo up-count operation
- Toggle any channel pin on overflow
- Counter stop and reset bits

14.3 Functional Description

Figure 14-2 shows the structure of the TIM. The central component of the TIM is the 16-bit counter that can operate as a free-running counter or a modulo up-counter. The counter provides the timing reference for the input capture and output compare functions. The counter modulo registers, TMODH:TMODL, control the modulo value of the counter. Software can read the counter value, TCNTH:TCNTL, at any time without affecting the counting sequence.

The two TIM channels are programmable independently as input capture or output compare channels.

14.3.1 TIM Counter Prescaler

The TIM clock source is one of the seven prescaler outputs or the external clock input pin, TCLK if available. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select the clock source.

Timer Interface Module (TIM)

PTB[0:7]: Not available on 8-pin devices

Figure 14-1. Block Diagram Highlighting TIM Block and Pins

14.3.2 Input Capture

With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can be enabled to generate interrupt requests.

14.3.3 Output Compare

With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can be enabled to generate interrupt requests.

Development Support

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

- 1 = Status bits clearable during break
- 0 = Status bits not clearable during break

15.2.3 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes. If enabled, the break module will remain enabled in wait and stop modes. However, since the internal address bus does not increment in these modes, a break interrupt will never be triggered.

15.3 Monitor Module (MON)

The monitor module allows debugging and programming of the microcontroller unit (MCU) through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, V_{TST}, as long as vector addresses \$FFFE and \$FFFF are blank, thus reducing the hardware requirements for in-circuit programming.

Features include:

- Normal user-mode pin functionality
- One pin dedicated to serial communication between MCU and host computer
- Standard non-return-to-zero (NRZ) communication with host computer
- Standard communication baud rate (7200 @ 2-MHz bus frequency)
- Execution of code in random-access memory (RAM) or FLASH
- FLASH memory security feature⁽¹⁾
- FLASH memory programming interface
- Use of external 9.8304 MHz oscillator to generate internal frequency of 2.4576 MHz
- Simple internal oscillator mode of operation (no external clock or high voltage)
- Monitor mode entry without high voltage, V_{TST}, if reset vector is blank (\$FFFE and \$FFFF contain \$FF)
- Normal monitor mode entry if V_{TST} is applied to IRQ

15.3.1 Functional Description

Figure 15-9 shows a simplified diagram of monitor mode entry.

The monitor module receives and executes commands from a host computer. Figure 15-10, Figure 15-11, and Figure 15-12 show example circuits used to enter monitor mode and communicate with a host computer via a standard RS-232 interface.

Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor.

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

16.12 Supply Current Characteristics

Characteristic ⁽¹⁾	Voltage	Bus Frequency (MHz)	Symbol	Тур ⁽²⁾	Max	Unit
Run mode V _{DD} supply current ⁽³⁾	5.0 3.0	3.2 3.2	RI _{DD}	6.0 3.1	7.0 3.8	mA
Wait mode V _{DD} supply current ⁽⁴⁾	5.0 3.0	3.2 3.2	WI _{DD}	1.8 1.1	2.5 1.75	mA
Stop mode V _{DD} supply current ⁽⁵⁾ -40 to 85°C -40 to 105°C ⁽⁶⁾ -40 to 125°C 25°C with auto wake-up enabled Incremental current with LVI enabled at 25°C	5.0		Slaa	0.5 — 20 150	1.2 2.0 5.0 —	μΑ
Stop mode V _{DD} supply current ⁽⁴⁾ -40 to 85°C -40 to 105°C ⁽⁶⁾ -40 to 125°C 25°C with auto wake-up enabled Incremental current with LVI enabled at 25°C	3.0		00	0.36 — 4 130	1.0 1.2 4.0 —	μΑ

1. $V_{SS} = 0$ Vdc, $T_A = T_L$ to T_H , unless otherwise noted. 2. Typical values reflect average measurement at 25°C only. 3. Run (operating) I_{DD} measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied to 0.2 V from rail.

4. Wait IDD measured using trimmed internal oscillator, ADC off, all modules enabled. All pins configured as inputs and tied to 0.2 V from rail.

5. Stop I_{DD} measured with all pins configured as inputs and tied to 0.2 V from rail. On the 8-pin versions, port B is configured as inputs with pullups enabled.

6. For automotive applications only.

Mechanical Drawings

Case 626 page 3 of 3