

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	-
Peripherals	LVD, POR, PWM
Number of I/O	13
Program Memory Size	4KB (4K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.295", 7.50mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc908qy4acdwe

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1 General Description
Chapter 2 Memory
Chapter 3 Analog-to-Digital Converter (ADC10) Module
Chapter 4 Auto Wakeup Module (AWU)51
Chapter 5 Configuration Register (CONFIG)57
Chapter 6 Computer Operating Properly (COP)61
Chapter 7 Central Processor Unit (CPU)65
Chapter 8 External Interrupt (IRQ)77
Chapter 9 Keyboard Interrupt Module (KBI)83
Chapter 10 Low-Voltage Inhibit (LVI)
Chapter 11 Oscillator (OSC) Module
Chapter 12 Input/Output Ports (PORTS)103
Chapter 13 System Integration Module (SIM)109
Chapter 14 Timer Interface Module (TIM)125
Chapter 15 Development Support
Chapter 16 Electrical Specifications155
Chapter 17 Ordering Information and Mechanical Specifications
Appendix A 908QTA/QYxA Conversion Guidelines191

Table of Contents

Chapter 13 System Integration Module (SIM)

13.1 lr	ntroduction	109
13.2 R	IST and IRQ Pins Initialization	109
13.3 S	IM Bus Clock Control and Generation	110
13.3.1	Bus Timing	
13.3.2	Clock Start-Up from POR.	
13.3.3	Clocks in Stop Mode and Wait Mode	111
13.4 R	Reset and System Initialization	111
13.4.1	External Pin Reset	
13.4.2	Active Resets from Internal Sources	
13.4.2.1	Power-On Reset.	113
13.4.2.2	Computer Operating Properly (COP) Reset	113
13.4.2.3	Illegal Opcode Reset	
13.4.2.4	Illegal Address Reset	114
13.4.2.5	Low-Voltage Inhibit (LVI) Reset	114
13.5 S	IM Counter.	114
13.5.1	SIM Counter During Power-On Reset	114
13.5.2	SIM Counter During Stop Mode Recovery	114
13.5.3	SIM Counter and Reset States	114
13.6 E	Exception Control.	115
13.6.1	Interrupts	115
13.6.1.1	Hardware Interrupts	115
13.6.1.2	SWI Instruction	118
13.6.2	Interrupt Status Registers	118
13.6.2.1	Interrupt Status Register 1	119
13.6.2.2	Interrupt Status Register 2	119
13.6.2.3	Interrupt Status Register 3	
13.6.3	Reset	
13.6.4	Break Interrupts	
13.6.5	Status Flag Protection in Break Mode	120
13.7 L	ow-Power Modes	120
13.7.1	Wait Mode	120
13.7.2	Stop Mode	121
13.8 S	IM Registers	122
13.8.1	SIM Reset Status Register	122
13.8.2	Break Flag Control Register	123

Chapter 14 Timer Interface Module (TIM)

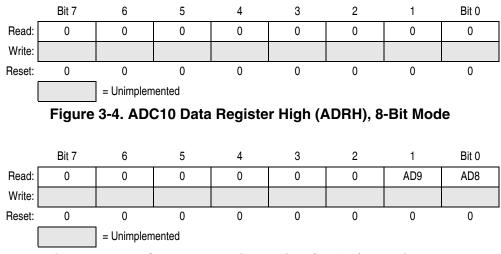
14.1	Introduction	125
14.2	Features	125
	Functional Description	
	TIM Counter Prescaler	
14.3.2	Input Capture	126

Memory

\$0000 ↓	IDIRECT PAGE REGISTERS]		
\$003F	64 BYTES			
\$0040 ↓	UNIMPLEMENTED			
\$007F	64 BYTES			
\$0080 ↓	RAM			
\$00FF	128 BYTES			
\$0100 ↓	UNIMPLEMENTED			
\$27FF	9984 BYTES			
\$2800 ↓	AUXILIARY ROM			
\$2A1F	544 BYTES			
\$2A20 ↓	UNIMPLEMENTED			
\$2F7D	1374 BYTES			
\$2F7E ↓	AUXILIARY ROM			
\$2FFF	130 BYTES			
\$3000 ↓	UNIMPLEMENTED			
↓ \$EDFF	48640 BYTES			
\$EE00 ↓	FLASH MEMORY] [RESERVED	\$EE00 ↓
\$FDFF	4096 BYTES		2560 BYTES	\$F7FF
\$FE00	MISCELLANEOUS REGISTERS	Ì 丶 、	FLASH MEMORY	\$F800
↓ \$FE1F	32 BYTES		1536 BYTES	↓ \$FDFF
\$FE20	MONITOR ROM			_
↓ \$FF7D	350 BYTES			
\$FF7E	UNIMPLEMENTED	-		
↓ \$FFAF	50BYTES			
\$FFB0	FLASH			
↓ \$FFBD	14 BYTES			
\$FFBE	MISCELLANEOUS REGISTERS	-		
↓ \$FFC1	4 BYTES			
\$FFC2	FLASH	1		
↓ \$FFCF	14 BYTES			
\$FFD0	USER VECTORS	1		
↓ \$FFFF	48 BYTES			
L_		-		

MC68HC908QY4A, MC68HC908QT4A Memory Map MC68HC908QT1A, MC68HC908QT2A, MC68HC908QY1A, and MC68HC908QY2A Memory Map

Figure 2-1. Memory Map


Memory

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$FE00	Break Status Register (BSR)	Read: Write:	R	R	R	R	R	R	SBSW 0	R
	See page 143.								0	
	SIM Reset Status Register	Read:	POR	PIN	COP	ILOP	ILAD	MODRST	LVI	0
\$FE01	(SRSR)	Write:								
	See page 122.	POR:	1	0	0	0	0	0	0	0
	Break Auxiliary	Read:	0	0	0	0	0	0	0	BDCOP
\$FE02	Register (BRKAR)	Write:								
	See page 143.	Reset:	0	0	0	0	0	0	0	0
\$FE03	Break Flag Control Register (BFCR)	Read: Write:	BCFE	R	R	R	R	R	R	R
	See page 143.	Reset:	0	•	•					
	Interrupt Status Register 1	Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0
\$FE04	(INT1)	Write:	R	R	R	R	R	R	R	R
	See page 119.	Reset:	0	0	0	0	0	0	0	0
	Interrupt Status Register 2	Read:	IF14	IF13	IF12	IF11	IF10	IF9	IF8	IF7
\$FE05	(INT2)	Write:	R	R	R	R	R	R	R	R
	See page 119.	Reset:	0	0	0	0	0	0	0	0
	Interrupt Status Register 3	Read:	IF22	IF21	IF20	IF19	IF18	IF17	IF16	IF15
\$FE06			R	R	R	R	R	R	R	R
			0	0	0	0	0	0	0	0
\$FE07	Reserved									
		Read:	0	0	0	0				
\$FE08	FLASH Control Register (FLCR)	Write:	<u> </u>	-			HVEN	MASS	ERASE	PGM
φ. 200	See page 29.	Reset:	0	0	0	0	0	0	0	0
\$FE09	Break Address High Register (BRKH)	Read: Write:	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
	See page 142.	Reset:	0	0	0	0	0	0	0	0
\$FE0A	Break Address low Register (BRKL)	Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	See page 142.	Reset:	0	0	0	0	0	0	0	0
	Break Status and Control	Read:			0	0	0	0	0	0
\$FE0B	Register (BRKSCR)	Write:	BRKE	BRKA						
	See page 143.	Reset:	0	0	0	0	0	0	0	0
				= Unimplem	nented	R	= Reserved	U = Unaf	fected	

Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 5)

Analog-to-Digital Converter (ADC10) Module

3.8.3 ADC10 Result Low Register (ADRL)

This register holds the LSBs of the result. This register is updated each time a conversion completes. Reading ADRH prevents the ADC10 from transferring subsequent conversion results into the result registers until ADRL is read. If ADRL is not read until the after next conversion is completed, then the intermediate conversion result will be lost. In 8-bit mode, there is no interlocking with ADRH.

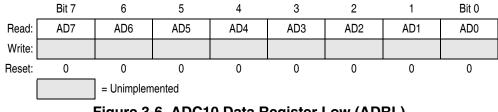


Figure 3-6. ADC10 Data Register Low (ADRL)

3.8.4 ADC10 Clock Register (ADCLK)

This register selects the clock frequency for the ADC10 and the modes of operation.

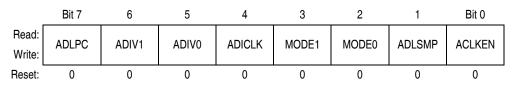


Figure 3-7. ADC10 Clock Register (ADCLK)

ADLPC — ADC10 Low-Power Configuration Bit

ADLPC controls the speed and power configuration of the successive approximation converter. This is used to optimize power consumption when higher sample rates are not required.

1 = Low-power configuration: The power is reduced at the expense of maximum clock speed.

0 = High-speed configuration

Central Processor Unit (CPU)

Source	Operation	Description	Effect on CC							Opcode	Operand	es
Form	operation	Becomption	v	Н	I	Ν	z	С	Add Mod	Opc	Ope	Cycles
CLR opr CLRA CLRX CLRH CLR opr,X CLR opr,X CLR X CLR opr,SP	Clear	$\begin{array}{c} M \leftarrow \$00 \\ A \leftarrow \$00 \\ X \leftarrow \$00 \\ H \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \end{array}$	0	_	_	0	1	_	DIR INH INH INH IX1 IX SP1	3F 4F 5F 8C 6F 7F	dd ff ff	3 1 1 3 2 4
CMP #opr CMP opr CMP opr, CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP	Compare A with M	(A) – (M)	t	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A1 B1 C1 E1 F1 9EE1 9ED1	ii dd hh II ee ff ff ee ff	2 3 4 4 3 2 4 5
COM opr COMA COMX COM opr,X COM ,X COM opr,SP	Complement (One's Complement)	$\begin{array}{l} M \leftarrow (\overline{M}) = \$FF - (M) \\ A \leftarrow (\overline{A}) = \$FF - (M) \\ X \leftarrow (\overline{X}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \\ M \leftarrow (\overline{M}) = \$FF - (M) \end{array}$	0	_	_	ţ	ţ	1	DIR INH INH IX1 IX SP1	33 43 53 63 73 9E63	dd ff ff	4 1 4 3 5
CPHX #opr CPHX opr	Compare H:X with M	(H:X) – (M:M + 1)	ţ	-	-	\$	ţ	ţ	IMM DIR	65 75	ii ii+1 dd	3 4
CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP	Compare X with M	(X) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A3 B3 C3 D3 E3 F3 9EE3 9ED3		2 3 4 4 3 2 4 5
DAA	Decimal Adjust A	(A) ₁₀	U	-	-	1	1	\$	INH	72		2
DBNZ opr,rel DBNZA rel DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel	Decrement and Branch if Not Zero	$\begin{array}{l} A \leftarrow (A) - 1 \text{ or } M \leftarrow (M) - 1 \text{ or } X \leftarrow (X) - 1 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 2 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 3 + \mathit{rel} ? (\mathit{result}) \neq 0 \\ PC \leftarrow (PC) + 4 + \mathit{rel} ? (\mathit{result}) \neq 0 \end{array}$	_	_	_	_	_	_	DIR INH INH IX1 IX SP1	3B 4B 5B 6B 7B 9E6B	dd rr rr rr ff rr rr ff rr	5 3 3 5 4 6
DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP	Decrement	$\begin{array}{c} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$	ţ	-	_	ţ	ţ	-	DIR INH INH IX1 IX SP1	3A 4A 5A 6A 7A 9E6A	dd ff ff	4 1 4 3 5
DIV	Divide	$A \leftarrow (H:A)/(X)$ H \leftarrow Remainder	-	-	-	-	t	ţ	INH	52		7
EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP	Exclusive OR M with A	$A \leftarrow (A \oplus M)$	0	_	_	ţ	ţ	_	IMM DIR EXT IX2 IX1 IX SP1 SP2	A8 B8 C8 D8 E8 F8 9EE8 9ED8	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
INC opr INCA INCX INC opr,X INC ,X INC opr,SP	Increment	$\begin{array}{c} M \leftarrow (M) + 1 \\ A \leftarrow (A) + 1 \\ X \leftarrow (X) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \\ M \leftarrow (M) + 1 \end{array}$	ţ	_	_	ţ	ţ	_	DIR INH INH IX1 IX SP1	3C 4C 5C 6C 7C 9E6C	dd ff ff	4 1 4 3 5

Chapter 8 External Interrupt (IRQ)

8.1 Introduction

The IRQ (external interrupt) module provides a maskable interrupt input.

 \overline{IRQ} functionality is enabled by setting configuration register 2 (CONFIG2) IRQEN bit accordingly. A zero disables the IRQ function and \overline{IRQ} will assume the other shared functionalities. A one enables the IRQ function. See Chapter 5 Configuration Register (CONFIG) for more information on enabling the IRQ pin.

The IRQ pin shares its pin with general-purpose input/output (I/O) port pins. See Figure 8-1 for port location of this shared pin.

8.2 Features

Features of the IRQ module include:

- A dedicated external interrupt pin IRQ
- IRQ interrupt control bits
- Programmable edge-only or edge and level interrupt sensitivity
- Automatic interrupt acknowledge
- Internal pullup device

8.3 Functional Description

A low level applied to the external interrupt request (IRQ) pin can latch a CPU interrupt request. Figure 8-2 shows the structure of the IRQ module.

Interrupt signals on the IRQ pin are latched into the IRQ latch. The IRQ latch remains set until one of the following actions occurs:

- IRQ vector fetch. An IRQ vector fetch automatically generates an interrupt acknowledge signal that clears the latch that caused the vector fetch.
- Software clear. Software can clear the IRQ latch by writing a 1 to the ACK bit in the interrupt status and control register (INTSCR).
- Reset. A reset automatically clears the IRQ latch.

The external IRQ pin is falling edge sensitive out of reset and is software-configurable to be either falling edge or falling edge and low level sensitive. The MODE bit in INTSCR controls the triggering sensitivity of the IRQ pin.

9.7 I/O Signals

The KBI module can share its pins with the general-purpose I/O pins. See Figure 9-1 for the port pins that are shared.

9.7.1 KBI Input Pins (KBIx:KBI0)

Each KBI pin is independently programmable as an external interrupt source. KBI pin polarity can be controlled independently. Each KBI pin when enabled will automatically configure the appropriate pullup/pulldown device based on polarity.

9.8 Registers

The following registers control and monitor operation of the KBI module:

- KBSCR (keyboard interrupt status and control register)
- KBIER (keyboard interrupt enable register)
- KBIPR (keyboard interrupt polarity register)

9.8.1 Keyboard Status and Control Register (KBSCR)

Features of the KBSCR:

- Flags keyboard interrupt requests
- Acknowledges keyboard interrupt requests
- Masks keyboard interrupt requests
- Controls keyboard interrupt triggering sensitivity

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	0	0	0	0	KEYF	0 IMASKK		MODEK
Write:						ACKK	INAGINI	WODEN
Reset:	0	0	0	0	0	0	0	0
		= Unimplem	ented					

Figure 9-3. Keyboard Status and Control Register (KBSCR)

Bits 7–4 — Not used

KEYF — Keyboard Flag Bit

This read-only bit is set when a keyboard interrupt is pending.

- 1 = Keyboard interrupt pending
- 0 = No keyboard interrupt pending

ACKK — Keyboard Acknowledge Bit

Writing a 1 to this write-only bit clears the KBI request. ACKK always reads 0.

IMASKK— Keyboard Interrupt Mask Bit

Writing a 1 to this read/write bit prevents the output of the KBI latch from generating interrupt requests.

- 1 = Keyboard interrupt requests disabled
- 0 = Keyboard interrupt requests enabled

MODEK — Keyboard Triggering Sensitivity Bit

This read/write bit controls the triggering sensitivity of the keyboard interrupt pins.

- 1 = Keyboard interrupt requests on edge and level
- 0 = Keyboard interrupt requests on edge only

Oscillator (OSC) Module

11.3.5 RC Oscillator

The RC oscillator circuit is designed for use with an external resistor (R_{EXT}) to provide a clock source with a tolerance within 25% of the expected frequency. See Figure 11-3.

The capacitor (C) for the RC oscillator is internal to the MCU. The R_{EXT} value must have a tolerance of 1% or less to minimize its effect on the frequency.

In this configuration, the OSC2 pin can be used as general-purpose input/output (I/O) port pins or other alternative pin function. The OSC2EN bit can be set to enable the OSC2 output function on the pin. Enabling the OSC2 output can affect the external RC oscillator frequency, f_{RCCLK}.

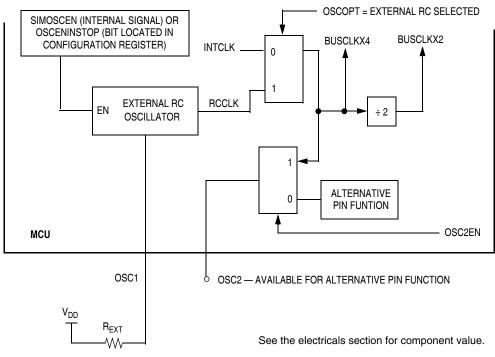


Figure 11-3. RC Oscillator External Connections

11.4 Interrupts

There are no interrupts associated with the OSC module.

11.5 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes.

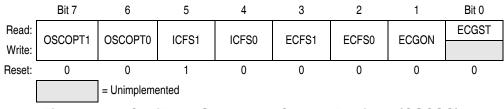
11.5.1 Wait Mode

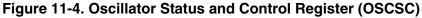
The OSC module remains active in wait mode.

11.5.2 Stop Mode

The OSC module can be configured to remain active in stop mode by setting OSCENINSTOP located in a configuration register.

Oscillator (OSC) Module


11.8 Registers


The oscillator module contains two registers:

- Oscillator status and control register (OSCSC)
- Oscillator trim register (OSCTRIM)

11.8.1 Oscillator Status and Control Register

The oscillator status and control register (OSCSC) contains the bits for switching between internal and external clock sources. If the application uses an external crystal, bits in this register are used to select the crystal oscillator amplifier necessary for the desired crystal. While running off the internal clock source, the user can use bits in this register to select the internal clock source frequency.

OSCOPT1:OSCOPT0 — OSC Option Bits

These read/write bits allow the user to change the clock source for the MCU. The default reset condition has the bus clock being derived from the internal oscillator. See 11.3.2.2 Internal to External Clock Switching for information on changing clock sources.

OSCOPT1	OSCOPT0	Oscillator Modes
0	0	Internal oscillator (frequency selected using ICFSx bits)
0	1	External oscillator clock
1	0	External RC
1	1	External crystal (range selected using ECFSx bits)

ICFS1:ICFS0 — Internal Clock Frequency Select Bits

These read/write bits enable the frequency to be increased for applications requiring a faster bus clock when running off the internal oscillator. The WAIT instruction has no effect on the oscillator logic. BUSCLKX2 and BUSCLKX4 continue to drive to the SIM module.

ICFS1	ICFS0	Internal Clock Frequency
0	0	4.0 MHz
0	1	8.0 MHz
1	0	12.8 MHz — default reset condition
1	1	Reserved

System Integration Module (SIM)

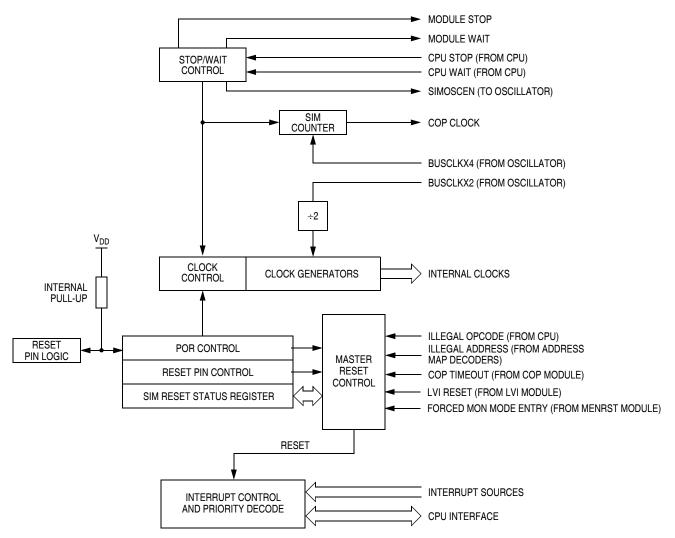
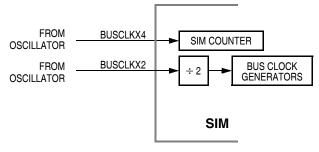



Figure 13-1. SIM Block Diagram

13.3 SIM Bus Clock Control and Generation

The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, BUSCLKX2, as shown in Figure 13-2.

Exception Control

MODULE INTERRUPT	
I BIT	
ADDRESS BUS	UUMMY SP SP-1 SP-2 SP-3 SP-4 VECTH VECTL STARTADDR
DATA BUS	X X
R/W	
	Figure 13-8. Interrupt Entry
MODULE INTERRUPT_	
I BIT	
ADDRESS BUS	X SP-4 SP-3 SP-2 SP-1 SP PC YC+1 X X
DATA BUS	X X X PC - 1[7:0] PC - 1[15:8] OPCODE OPERAND
R/W	
	Figure 13-9. Interrupt Recovery
	CLI BACKGROUND ROUTINE
	INT1 PSHH PULH RTI IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI

Figure 13-10. Interrupt Recognition Example

System Integration Module (SIM)

Development Support

15.2.2.1 Break Status and Control Register

The break status and control register (BRKSCR) contains break module enable and status bits.

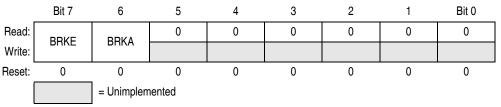


Figure 15-3. Break Status and Control Register (BRKSCR)

BRKE — Break Enable Bit

This read/write bit enables breaks on break address register matches. Clear BRKE by writing a 0 to bit 7. Reset clears the BRKE bit.

- 1 = Breaks enabled on 16-bit address match
- 0 = Breaks disabled

BRKA — Break Active Bit

This read/write status and control bit is set when a break address match occurs. Writing a 1 to BRKA generates a break interrupt. Clear BRKA by writing a 0 to it before exiting the break routine. Reset clears the BRKA bit.

1 = Break address match

0 = No break address match

15.2.2.2 Break Address Registers

The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers.

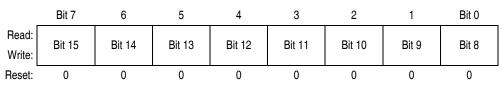


Figure 15-4. Break Address Register High (BRKH)

	Bit 7	6	5	4	3	2	1	Bit 0	
Read: Write:	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset:	0	0	0	0	0	0	0	0	

Figure 15-5. Break Address Register Low (BRKL)

Development Support

BCFE — Break Clear Flag Enable Bit

This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set.

- 1 = Status bits clearable during break
- 0 = Status bits not clearable during break

15.2.3 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power-consumption standby modes. If enabled, the break module will remain enabled in wait and stop modes. However, since the internal address bus does not increment in these modes, a break interrupt will never be triggered.

15.3 Monitor Module (MON)

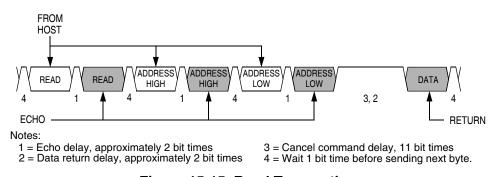
The monitor module allows debugging and programming of the microcontroller unit (MCU) through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, V_{TST}, as long as vector addresses \$FFFE and \$FFFF are blank, thus reducing the hardware requirements for in-circuit programming.

Features include:

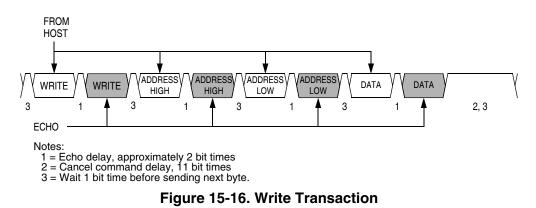
- Normal user-mode pin functionality
- One pin dedicated to serial communication between MCU and host computer
- Standard non-return-to-zero (NRZ) communication with host computer
- Standard communication baud rate (7200 @ 2-MHz bus frequency)
- Execution of code in random-access memory (RAM) or FLASH
- FLASH memory security feature⁽¹⁾
- FLASH memory programming interface
- Use of external 9.8304 MHz oscillator to generate internal frequency of 2.4576 MHz
- Simple internal oscillator mode of operation (no external clock or high voltage)
- Monitor mode entry without high voltage, V_{TST}, if reset vector is blank (\$FFFE and \$FFFF contain \$FF)
- Normal monitor mode entry if V_{TST} is applied to IRQ

15.3.1 Functional Description

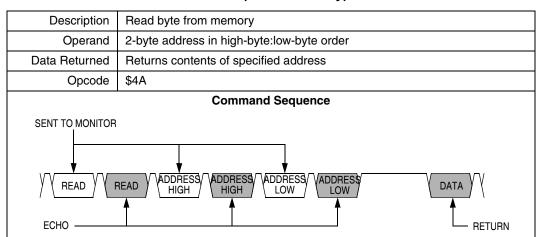
Figure 15-9 shows a simplified diagram of monitor mode entry.


The monitor module receives and executes commands from a host computer. Figure 15-10, Figure 15-11, and Figure 15-12 show example circuits used to enter monitor mode and communicate with a host computer via a standard RS-232 interface.

Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor.


^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

Monitor Module (MON)



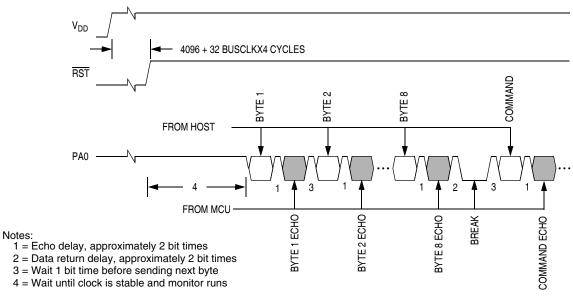
A brief description of each monitor mode command is given in Table 15-3 through Table 15-8.

Table 15-3. READ (Read Memory) Command

Development Support

15.3.2 Security

A security feature discourages unauthorized reading of FLASH locations while in monitor mode. The host can bypass the security feature at monitor mode entry by sending eight security bytes that match the bytes at locations \$FFF6–\$FFFD. Locations \$FFF6–\$FFFD contain user-defined data.


NOTE

Do not leave locations \$FFF6-\$FFFD blank. For security reasons, program locations \$FFF6-\$FFFD even if they are not used for vectors.

During monitor mode entry, the MCU waits after the power-on reset for the host to send the eight security bytes on pin PTA0. If the received bytes match those at locations \$FFF6-\$FFFD, the host bypasses the security feature and can read all FLASH locations and execute code from FLASH. Security remains bypassed until a power-on reset occurs. If the reset was not a power-on reset, security remains bypassed and security code entry is not required. See Figure 15-18.

Upon power-on reset, if the received bytes of the security code do not match the data at locations \$FFF6-\$FFFD, the host fails to bypass the security feature. The MCU remains in monitor mode, but reading a FLASH location returns an invalid value and trying to execute code from FLASH causes an illegal address reset. After receiving the eight security bytes from the host, the MCU transmits a break character, signifying that it is ready to receive a command.

> **NOTE** The MCU does not transmit a break character until after the host sends the eight security bytes.

Figure 15-18. Monitor Mode Entry Timing

To determine whether the security code entered is correct, check to see if bit 6 of RAM address \$80 is set. If it is, then the correct security code has been entered and FLASH can be accessed.

If the security sequence fails, the device should be reset by a power-on reset and brought up in monitor mode to attempt another entry. After failing the security sequence, the FLASH module can also be mass erased by executing an erase routine that was downloaded into internal RAM. The mass erase operation clears the security code locations so that all eight security bytes become \$FF (blank).

Ordering Information and Mechanical Specifications

Case 948F page 3 of 3

- The ADC that is on the QYxA can operate while the MCU is in stop mode allowing lower power operation. This also adds a lower noise environment for precise ADC results.
- Enabling an ADC channel no longer overrides the digital I/O function of the associated pin. To prevent the digital I/O from interfering with the ADC read of the pin, the data direction bit associated with the port pin must be set as input.
- Finally, the new ADC can be configured to select two different reference clock sources:
 - The internal bus x 4
 - An internal asynchronous source

The internal asynchronous clock source allows the ADC to be clocked for operation in stop mode.

A.2.1.1 Registers Affected

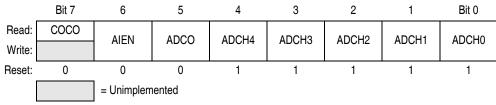


Figure A-1. ADC10 Status and Control Register (ADSCR)

The ADCHx bits can be used to select additional ADC channels or bandgap measurement.

	Bit 7	6	5	4	3	2	1	Bit 0	
Read:	0	0	0	0	0	0	AD9	AD8	
Write:									
Reset:	0	0	0	0	0	0	0	0	
	= Unimplemented								

Figure A-2. ADC10 Data Register High (ADRH), 10-Bit Mode

10-bit ADC uses the new ADRH register for the upper 2 bits.

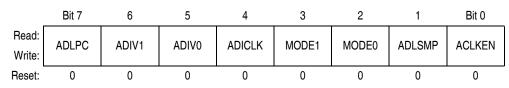


Figure A-3. ADC10 Clock Register (ADCLK)

A long sample time option has been added to conserve power at the expense of longer conversion times. This option is selected using the new ADLSMP bit in the ADCLK register. (The bit location was previously reserved.)

The ADC will now run in stop mode if the ACLKEN bit is set to enable the asynchronous clock inside the ADC module. Utilizing stop mode for an ADC conversion gives the quietest operating mode to get extremely accurate ADC readings. (This bit location now used by ACLKEN was reserved — it always read as a 0 and writes to that location had no affect.)

How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007–2010. All rights reserved.

MC68HC908QY4A Rev. 3, 03/2010