

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusObsoleteCore ProcessorARM Cortex@-M4Core Size32-Bit Single-CoreSpeed2MHzConnectivityCANbus, PC, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, PS, POR, PWM, WDTNumber of I/O52Program Memory Size56KB (256K x 8)Program Memory TypeFLASHEERPOM Size-Nufage Supply (Vcc/Vdd)2V ~ 3.6VVoltage Supply (Vcc/Vdd)Voltage Supply (Vcc/Vdd)Operating Temperature40° c ~ 85° C (TA)Nounting TypeSuface MountProgram Grape64 LQFPSupplier Device Package64-LQFP (Inx10)Supplier Device Package64-LQFP (Inx10)Processor64-LQFP (Inx10)	Details	
Core Size32-Bit Single-CoreSpeed72MHzConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O52Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Product Status	Obsolete
Speed72MHzConnectivityCANbus, IPC, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, IPS, POR, PWM, WDTNumber of I/O52Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Core Processor	ARM® Cortex®-M4
ConnectivityCANbus, I²C, IrDA, LINbus, SPI, UART/USART, USBPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O52Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type64-LQFPEakage / Case64-LQFP (10x10)	Core Size	32-Bit Single-Core
PeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O52Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Speed	72MHz
Number of I/O52Program Memory Size256KB (256K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K × 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting Type64-LQFPSuppler Device Package64-LQFP (10x10)	Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Program Memory Size256KB (256K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Peripherals	DMA, I ² S, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Number of I/O	52
EEPROM Size-RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFP (10x10)	Program Memory Size	256KB (256K x 8)
RAM Size32K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	EEPROM Size	-
Data ConvertersA/D 1x12b, 1x16b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	RAM Size	32K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Operating Temperature-40°C ~ 85°C (TA)Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Data Converters	A/D 1x12b, 1x16b; D/A 1x12b
Mounting TypeSurface MountPackage / Case64-LQFPSupplier Device Package64-LQFP (10x10)	Oscillator Type	Internal
Package / Case 64-LQFP Supplier Device Package 64-LQFP (10x10)	Operating Temperature	-40°C ~ 85°C (TA)
Supplier Device Package 64-LQFP (10x10)	Mounting Type	Surface Mount
	Package / Case	64-LQFP
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f372rct6	Supplier Device Package	64-LQFP (10x10)
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f372rct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction
2	Desc	ription
3	Func	tional overview
	3.1	ARM® Cortex TM -M4F core with embedded Flash and SRAM $\dots \dots 12$
	3.2	Memory protection unit
	3.3	Embedded Flash memory 13
	3.4	Cyclic redundancy check (CRC) calculation unit
	3.5	Embedded SRAM
	3.6	Boot modes
	3.7	Power management
		3.7.1 Power supply schemes
		3.7.2 Power supply supervisor
		3.7.3 Voltage regulator
		3.7.4 Low-power modes
	3.8	Clocks and startup
	3.9	General-purpose input/outputs (GPIOs)
	3.10	Direct memory access (DMA) 16
	3.11	Interrupts and events 16
		3.11.1 Nested vectored interrupt controller (NVIC)
		3.11.2 Extended interrupt/event controller (EXTI)
	3.12	12-bit analog-to-digital converter (ADC) 17
		3.12.1 Temperature sensor
		3.12.2 Internal voltage reference (V _{REFINT})
		3.12.3 V _{BAT} battery voltage monitoring
	3.13	16-bit sigma delta analog-to-digital converters (SDADC) 18
	3.14	Digital-to-analog converter (DAC) 19
	3.15	Fast comparators (COMP) 19
	3.16	Touch sensing controller (TSC) 20
	3.17	Timers and watchdogs 21
		3.17.1 General-purpose timers (TIM2 to TIM5, TIM12 to TIM17, TIM19) 22

3 Functional overview

3.1 ARM[®] Cortex[™]-M4F core with embedded Flash and SRAM

The ARM Cortex-M4F processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4F 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32F37x family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F37x family.

3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

The Cortex-M4F processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to developers, including:

- Outstanding processing performance combined with fast interrupt handling
- Enhanced system debug with extensive breakpoint and trace capabilities
- Efficient processor core, system and memories
- Ultralow power consumption with integrated sleep modes
- Platform security robustness with optional integrated memory protection unit (MPU).

With its embedded ARM core, the STM32F37x devices are compatible with all ARM development tools and software.

3.7 Power management

3.7.1 **Power supply schemes**

- V_{DD} : external power supply for I/Os and the internal regulator. It is provided externally through V_{DD} pins, and can be 2.0 to 3.6 V.
- V_{DDA} = 2.0 to 3.6 V:
 - external analog power supplies for Reset blocks, RCs and PLL
 - supply voltage for 12-bit ADC, DACs and comparators (minimum voltage to be applied to V_{DDA} is 2.4 V when the 12-bit ADC and DAC are used).
- V_{DDSD12} and V_{DDSD3} = 2.2 to 3.6 V: supply voltages for SDADC1/2 and SDADCD3 sigma delta ADCs. Independent from V_{DD}/V_{DDA}.
- $V_{BAT} = 1.65$ to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers when V_{DD} is not present.

3.7.2 Power supply supervisor

- The device has an integrated power-on reset (POR)/power-down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the VPVD threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.7.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR), and power-down.

- The MR mode is used in the nominal regulation mode (Run)
- The LPR mode is used in Stop mode.
- The power-down mode is used in Standby mode: the regulator output is in high impedance, and the kernel circuitry is powered down thus inducing zero consumption.

The voltage regulator is always enabled after reset. It is disabled in Standby mode.

3.14 Digital-to-analog converter (DAC)

The devices feature up to two 12-bit buffered DACs with three output channels that can be used to convert three digital signals into three analog voltage signal outputs. The internal structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital Interface supports the following features:

- Up to two DAC converters with three output channels:
 - DAC1 with two output channels
 - DAC2 with one output channel.
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- triangular-wave generation
- Dual DAC channel independent or simultaneous conversions (DAC1 only)
- DMA capability for each channel
- External triggers for conversion

3.15 Fast comparators (COMP)

The STM32F37x embeds up to 2 comparators with rail-to-rail inputs and high-speed output. The reference voltage can be internal or external (delivered by an I/O).

The threshold can be one of the following:

- DACs channel outputs
- External I/O
- Internal reference voltage (V_{REFINT}) or submultiple (1/4 V_{REFINT}, 1/2 V_{REFINT} and 3/4 V_{REFINT})

The comparators can be combined into a window comparator.

Both comparators can wake up the device from Stop mode and generate interrupts and breaks for the timers.

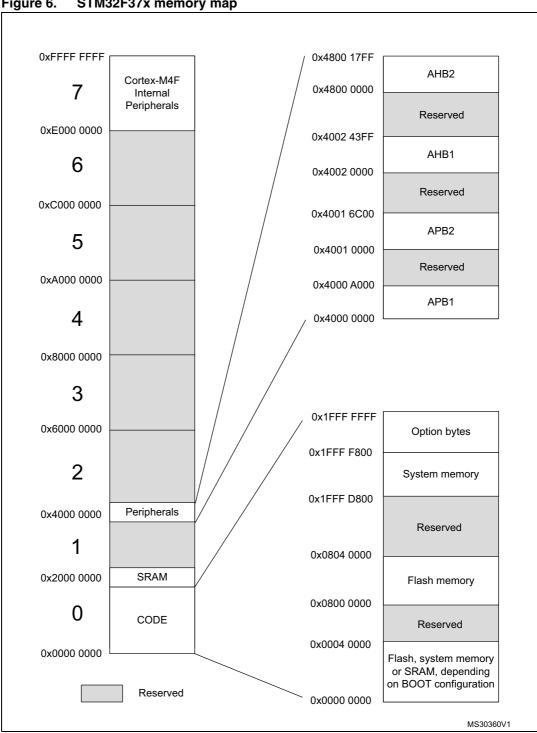
3.25 Serial wire JTAG debug port (SWJ-DP)

The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target.

The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.

3.26 Embedded trace macrocell[™]

The ARM embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F37x through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer running debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.



Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0		EVENTOUT	TIM5_CH1_ETR					
PC1		EVENTOUT	TIM5_CH2					
PC2		EVENTOUT	TIM5_CH3			SPI2_MISO/I2S2_MCK		
PC3		EVENTOUT	TIM5_CH4			SPI2_MOSI/I2S2_SD		
PC4		EVENTOUT	TIM13_CH1	TSC_G3_IO1				USART1_TX
PC5		EVENTOUT		TSC_G3_IO2				USART1_R>
PC6		EVENTOUT	TIM3_CH1			SPI1_NSS/I2S1_WS		
PC7		EVENTOUT	TIM3_CH2			SPI1_SCK/I2S1_CK		
PC8		EVENTOUT	TIM3_CH3			SPI1_MISO/I2S1_MCK		
PC9		EVENTOUT	TIM3_CH4			SPI1_MOSI/I2S1_SD		
PC10		EVENTOUT	TIM19_CH1				SPI3_SCK/I2S3_CK	USART3_T>
PC11		EVENTOUT	TIM19_CH2				SPI3_MISO/I2S3_MCK	USART3_R
PC12		EVENTOUT	TIM19_CH3				SPI3_MOSI/I2S3_SD	USART3_Cł
PC13								
PC14								
PC15		1						

Table 14 Alternate functions for port PC

S

Memory mapping 5

Doc ID 022691 Rev 3

Bus	Boundary address	Size	Peripheral
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 4C00 - 0x4000 53FF	2 KB	Reserved
	0x4000 4800 - 0x4000 4BFF	1 KB	USART3
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 4000 - 0x4000 43FF	1 KB	Reserved
	0x4000 3C00 - 0x4000 3FFF	1 KB	SPI3/I2S3
	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2/I2S2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWWDG
APB1	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
7.1 01	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1C00 - 0x4000 1FFF	1 KB	TIM13
	0x4000 1800 - 0x4000 1BFF	1 KB	TIM12
	0x4000 1400 - 0x4000 17FF	1 KB	TIM7
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0C00 - 0x4000 0FFF	1 KB	TIM5
	0x4000 0800 - 0x4000 0BFF	1 KB	TIM4
	0x4000 0400 - 0x4000 07FF	1 KB	ТІМЗ
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 18. STM32F37x peripheral register boundary addresses (continued)

Depending on the SDADCx operation mode, there can be more constraints between $V_{\text{REFSD+}}$, V_{DDSD12} and V_{DDSD3} which are described in reference manual RM0313.

Table 20.Current characteristics

Symbol	Ratings	Max.	Unit
$I_{VDD(\Sigma)}$	Total current into sum of all VDD_x and VDDSDx power lines $(source)^{(1)}$	160	
$I_{VSS(\Sigma)}$	Total current out of sum of all VSS_x and VSSSD ground lines $({\rm sink})^{(1)}$	-160	
I _{VDD(PIN)}	Maximum current into each VDD_x or VDDSDx power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS_x or VSSSD ground pin $(sink)^{(1)}$	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	- 25	mA
ΣI	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT, FTf and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

 VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to V_{SS}). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to V_{SS}). V_{DD} (VDD_x) is the external power supply for all remaining I/O pins (the I/O pin ground is internally connected to V_{SS}).

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

- A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 19: Voltage characteristics* for the maximum allowed input voltage values.
- A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 62*.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 21.Thermal characteristics

6.3 Operating conditions

6.3.1 General operating conditions

Table 22. General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency		0	72	
f _{PCLK1}	Internal APB1 clock frequency		0	36	MHz
f _{PCLK2}	Internal APB2 clock frequency		0	72	
V_{DD}	Standard operating voltage	Must have a potential equal to or lower than $V_{\mbox{\scriptsize DDA}}$	2	3.6	V
V _{DDA} ⁽¹⁾	Analog operating voltage (ADC and DAC used)	Must have a potential equal	2.4	3.6	v
V DDA`´	Analog operating voltage (ADC and DAC not used)	to or higher than V _{DD}	2	3.6	v
N/	VDDSD12 operating voltage (SDADC used)	Must have a potential equal	2.2	3.6	v
V _{DDSD12}	VDDSD12 operating voltage (SDADC not used)	to or lower than V _{DDA}	2.0	3.6	v
V	VDDSD3 operating voltage (SDADC used)	Must have a potential equal	2.2	3.6	v
V _{DDSD3}	VDDSD3 operating voltage (SDADC not used)			3.6	v
V _{BAT}	Backup operating voltage		1.65	3.6	V
	Input voltage on FT and FTf pins ⁽²⁾		- 0.3	5.5	
	Input voltage on TTa pins		- 0.3	V _{DDA} + 0.3	
V _{IN}	Input voltage on TC pins on SDADCx channels inputs ⁽³⁾		- 0.3	V _{DDSDx} + 0.3	V
	Input voltage on BOOT0 pin		0	5.5	
	Input voltage on any other pin		- 0.3	V _{DD} + 0.3	
		LQFP100		434	
Р	Power dissipation at $T_A = 85 \text{ °C}$ for suffix 6 or $T_A = 105 \text{ °C}$ for	LQFP64		444	m\\/
P _D	suffix $7^{(4)}$	LQFP48		364	mW
		BGA100		338	
	Ambient temperature for 6 suffix	Maximum power dissipation	-40	85	°C
Та	version	Low power dissipation ⁽⁵⁾	-40	105	
IA IA	Ambient temperature for 7 suffix	Maximum power dissipation	-40	105	°C
	version	Low power dissipation ⁽⁵⁾	-40	125	

				1		
Symbol	Parameter	Conditions	f _{HCLK}	Peripherals enabled	Peripherals disabled	Unit
			72 MHz	61.4	28.8	
			64 MHz	55.4	25.9	
		Running from HSE crystal clock 8 MHz,	48 MHz	42.3	20.0	
		code executing from	32 MHz	28.7	13.8	
		Flash, PLL on	24 MHz	21.9	10.7	
	Supply current in Run mode from		16 MHz	14.8	7.4	
I _{DD}	V _{DD} supply		8 MHz	7.8	4.1	mA
		Duration from UCE	4 MHz	4.6	2.6	
		Running from HSE crystal clock 8 MHz,	2 MHz	2.9	1.8	
		code executing from Flash, PLL off	1 MHz	2.0	1.3	
		FIASH, FLL OII	500 kHz	1.5	1.1	
			125 kHz	1.2	1.0	
			72 MHz	243.3	242.4	
		Running from HSE	64 MHz	214.3	213.3	
		crystal clock 8 MHz, code executing from Flash, PLL on	48 MHz	159.3	158.3	
			32 MHz	107.7	107.3	
			24 MHz	82.8	82.6	
I _{DDA} ⁽¹⁾⁽²⁾	Supply current in Run mode from		16 MHz	58.4	58.2	
'DDA	V _{DDA} supply		8 MHz	1.2	1.2	
		Running from HSE	4 MHz	1.2	1.2	μA
		crystal clock 8 MHz,	2 MHz	1.2	1.2	
		code executing from Flash, PLL off	1 MHz	1.2	1.2	
			500 kHz	1.2	1.2	
			125 kHz	1.2	1.2	
I _{SDADC12} + I _{SDADC3}	Supply currents in Run mode from V_{DDSD12} and V_{DDSD3} (SDADCs are off)		-	2.5	1	

Table 33.Typical current consumption in Run mode, code with data processing running from
Flash

1. V_{DDA} monitoring is off, V_{DDSD12} monitoring is off.

2. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs, Comparators, etc. is not included. Refer to those peripherals characteristics in the subsequent sections.

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 52: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC and SDADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. Under reset conditions all I/Os are configured in input floating mode - so if some inputs do not have a defined voltage level then they can generate additional consumption. This consumption is visible on V_{DD} supply and also on V_{DDSDx} supply because some I/Os are powered from SDADCx supply (all I/Os which have SDADC analog input functionality).

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 36: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Output voltage levels

Unless otherwise specified, the parameters given in *Table 53* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*. All I/Os are CMOS and TTL compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	CMOS port ⁽³⁾	-	0.4	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin	TTL port ⁽³⁾	-	0.4	
V _{OH} ⁽⁴⁾	Output high level voltage for an I/O pin	I _{IO} = +8 mA 2.7 V < V _{DD} < 3.6 V	2.4	-	
V _{OL} ⁽²⁾⁽⁵⁾	Output low level voltage for an I/O pin	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽⁴⁾⁽⁵⁾	Output high level voltage for an I/O pin	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	
V _{OL} ⁽²⁾⁽⁵⁾	Output low level voltage for an I/O pin	I _{IO} = +6 mA	-	0.4	
V _{OH} ⁽⁴⁾⁽⁵⁾	Output high level voltage for an I/O pin	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	
V _{OLFM+} ⁽²⁾	Output low level voltage for a FTf I/O pins in FM+ mode	I _{IO} = +20 mA 2.7 V < V _{DD} < 3.6 V	-	0.4	

Table 53. Output voltage characteristics ⁽¹⁾

 VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O ground pin is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O ground pin is internally connected to VSS). For those pins all V_{DD} supply references in this table are related to their given VDDSDx power supply.

2. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 20* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

4. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in *Table 20* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.

5. Data based on design simulation.

Note:

I/O pins are powered from V_{DD} voltage except pins which can be used as SDADC inputs:

- PB2, PB10 and PE7 to PE15 I/O pins are powered from VDDSD12.

- PB14 to PB15 and PD8 to PD15 I/O pins are powered from VDDSD3. All I/O pin ground is internally connected to V_{SS} .

 V_{DD} mentioned in the Table 53 represents power voltage for a given I/O pin (VDD or VDDSD12 or VDDSD3).

6.3.16 Communications interfaces

I²C interface characteristics

Unless otherwise specified, the parameters given in *Table 56* are derived from tests performed under ambient temperature, f_{PCLK1} frequency and V_{DD} supply voltage conditions summarized in *Table 22*.

The I²C interface meets the requirements of the standard I²C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 56*. Refer also to *Section 6.3.14: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

Symbol	Parameter	Standard mode		Fast m	ode	Fast mode Plus		Unit
Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		0.5		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		0.26		μs
t _{su(SDA)}	SDA setup time	250		100		50		
t _{h(SDA)}	SDA data hold time	0 ⁽²⁾	3450 ⁽³⁾	0 ⁽²⁾	900 ⁽³⁾	0 ⁽⁴⁾	450 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300		120	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300		120	
t _{h(STA)}	Start condition hold time	4.0		0.6		0.26		
t _{su(STA)}	Repeated Start condition setup time	4.7		0.6		0.26		μs
t _{su(STO)}	Stop condition setup time	4.0		0.6		0.26		μs
t _{w(STO:STA)}	Stop to Start condition time (bus free)	4.7		1.3		0.5		μS
C _b	Capacitive load for each bus line		400		400		550	pF

Table 56. I^2C characteristics⁽¹⁾

 The I²C characteristics are the requirements from I²C bus specification rev03. They are guaranteed by design when I2Cx_TIMING register is correctly programmed (Refer to reference manual). These characteristics are not tested in production.

2. The device must internally provide a hold time of at least 300ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal.

4. The device must internally provide a hold time of at least 120ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL.

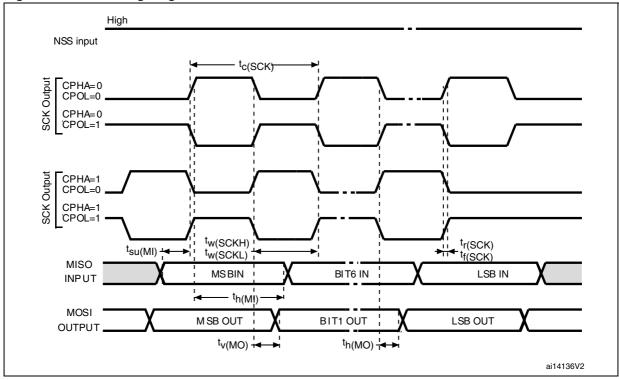


Figure 26. SPI timing diagram - master mode⁽¹⁾

1. Measurement points are done at $0.5V_{DD}$ level and with external C_L = 30 pF.

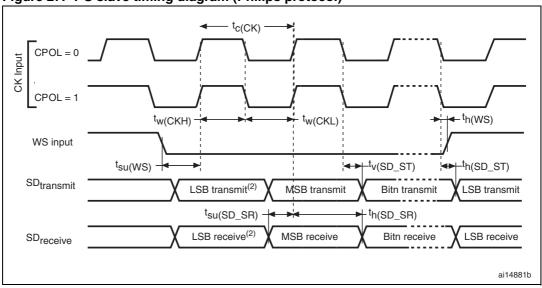
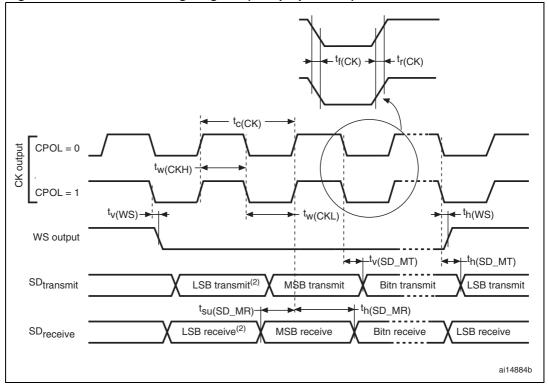



Figure 27. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at $0.5V_{DD}$ level and with external C_L = 30 pF.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 28. I²S master timing diagram (Philips protocol)⁽¹⁾

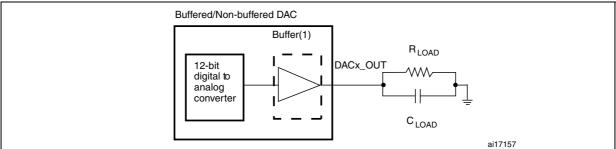
- 1. Measurement points are done at $0.5V_{DD}$ level and with external C_L = 30 pF.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

6.3.18 DAC electrical specifications

Table 63. DAC characteristics	Table 63.	DAC characteristics
-------------------------------	-----------	---------------------

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage	2.4	-	3.6	V	
V _{REF+}	Reference supply voltage	2.4	-	3.6	V	V_{REF+} must always be below V_{DDA}
V _{SSA}	Ground	0	-	0	V	
R _{LOAD} ⁽¹⁾	Resistive load with buffer ON	5	-		kΩ	
R _O ⁽¹⁾	Impedance output with buffer OFF	-	-	15		When the buffer is OFF, the Minimum resistive load between DAC_OUT and V _{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	v	(0x0E0) to (0xF1C) at $V_{REF+} = 3.6 V$ and (0x155) and (0xEAB) at $V_{REF+} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5		mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-		V _{REF+} – 1LSB	V	excursion of the DAC.
I _{DDVREF+} (3)	DAC DC current consumption in quiescent mode (Standby mode)	-		220		With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
	DAC DC current	-		380	μA	With no load, middle code (0x800) on the inputs
I _{DDA} ⁽³⁾	consumption in quiescent mode ⁽²⁾	-		480	μA	With no load, worst code (0xF1C) at V _{REF+} = 3.6 V in terms of DC consumption on the inputs
DNL ⁽³⁾	Differential non linearity Difference between two	-		±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-		±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	-	-	±1		Given for the DAC in 10-bit configuration
INL ⁽³⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	$1 \times R$	Given for the DAC in 12-bit configuration

Symbol	Parameter	Min	Тур	Max	Unit	Comments
Offset ⁽³⁾	Offset error	-	-	±10	mV	
	(difference between measured value at Code (0x800) and the ideal value = $V_{REF+}/2$)	-	-	±3		Given for the DAC in 10-bit at V _{REF+} = 3.6 V
		-	-	±12	LSB	Given for the DAC in 12-bit at V _{REF+} = 3.6 V
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12bit configuration
^t settling ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	$C_{LOAD} \leq 50$ pF, $R_{LOAD} \geq 5$ k Ω
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	$C_{LOAD} \leq 50 \text{ pF, } R_{LOAD} \geq 5 \text{ k}\Omega$
t _{wakeup} (3)	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, \text{ R}_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF


Table 63. DAC characteristics (continued)

1. Guaranteed by design, not tested in production.

2. Quiescent mode refers to the state of the DAC keeping a steady value on the output, so no dynamic consumption is involved.

3. Guaranteed by characterization, not tested in production.

Figure 31.	12-bit buffered /non-buffered DAC
------------	-----------------------------------

1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register.

6.3.19 Comparator characteristics

Table 64. Comparator characteristics

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage					3.6	
V _{IN}	Comparator input voltage range					V _{DDA}	v
V _{BG}	Scaler input voltage				1.2		
V _{SC}	Scaler offset voltage				±5	±10	mV
t _{S_SC}	Scaler startup time from power down					0.1	ms
t _{START}	Comparator startup time	Startup time to reach propagation delay specification				60	μs
		Ultra-low power mode			2	4.5	
	Propagation delay for 200 mV step with 100 mV overdrive	Low power mode			0.7	1.5	μs
		Medium power mode			0.3	0.6	
			$V_{DDA} \ge 2.7 V$		50	100	
+		High speed mode $V_{DDA} < 2.7 V$			100	240	ns
t _D	Propagation delay for full range step with 100 mV overdrive	Ultra-low power mode			2	7	
		Low power mode			0.7	2.1	μs
		Medium power mode			0.3	1.2	
		High speed mode	$V_{DDA} \ge 2.7 V$		90	180	ns
		r light speed mode	V_{DDA} < 2.7 V		110	300	
V _{offset}	Comparator offset error				±4	±10	mV
dV _{offset} /dT	Offset error temperature coefficient				18		µV/°C
		Ultra-low power mode			1.2	1.5	μA
	COMP current consumption	Low power mode			3	5	
I _{DD(COMP)}		Medium power mode			10	15	
		High speed mode			75	100	

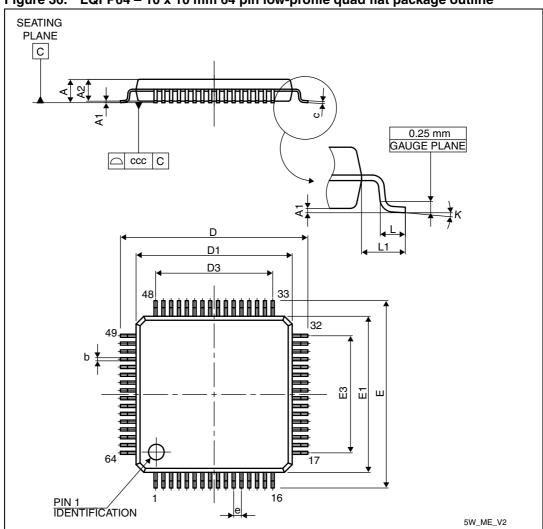


Figure 36. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline

1. Drawing is not to scale.

Table 78.	LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data	3
-----------	---	---

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Max	
А			1.60			0.0630	
A1	0.05		0.15	0.0020		0.0059	
A2	1.350	1.40	1.45	0.0531	0.0551	0.0571	
b	0.17	0.22	0.27	0.0067	0.0087	0.0106	
с	0.09		0.20	0.0035		0.0079	
D	11.80	12.00	12.20	0.4646	0.4724	0.4803	
D1	9.80	10.00	10.20	0.3858	0.3937	0.4016	
D3		7.50			0.2953		

