E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	84
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 1x12b, 1x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f372v8t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F37x microcontrollers.

This STM32F37x datasheet should be read in conjunction with the STM32F37x reference manual. The reference manual is available from the STMicroelectronics website www.st.com.

For information on the Cortex[™]-M4F core please refer to the Cortex[™]-M4F Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.subset.cortexm.m4/index.html and also refer to the STM32F3xxx and STM32F4xxx Cortex-M4 programming manual (PM0214) at address:

http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/ PROGRAMMING_MANUAL/DM00046982.pdf

2 Description

The STM32F37x family is based on the high-performance ARM® Cortex[™]-M4F 32-bit RISC core operating at a frequency of up to 72 MHz, and embedding a floating point unit (FPU), a memory protection unit (MPU) and an embedded trace macrocell (ETM). The family incorporates high-speed embedded memories (up to 256 Kbyte of Flash memory, up to 32 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses.

The STM32F37x devices offer one fast 12-bit ADC (1 Msps), up to three 16-bit Sigma delta ADCs, up to two comparators, up to two DACs (DAC1 with 2 channels and DAC2 with 1 channel), a low-power RTC, 9 general-purpose 16-bit timers, two general-purpose 32-bit timers, three basic timers.

They also feature standard and advanced communication interfaces: up to two I2Cs, three SPIs, all with muxed I2Ss, three USARTs, CAN and USB.

The STM32F37x family operates in the -40 to +85 °C and -40 to +105 °C temperature ranges from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications.

The STM32F37x family offers devices in five packages ranging from 48 pins to 100 pins. The set of included peripherals changes with the device chosen.

3.13 16-bit sigma delta analog-to-digital converters (SDADC)

Up to three 16-bit sigma-delta analog-to-digital converters are embedded in the STM32F37x. They have up to two separate supply voltages allowing the analog function voltage range to be independent from the STM32F37x power supply. They share up to 21 input pins which may be configured in any combination of single-ended (up to 21) or differential inputs (up to 11).

The conversion speed is up to 16.6 ksps for each SDADC when converting multiple channels and up to 50 ksps per SDADC if single channel conversion is used. There are two conversion modes: single conversion mode or continuous mode, capable of automatically scanning any number of channels. The data can be automatically stored in a system RAM buffer, reducing the software overhead.

A timer triggering system can be used in order to control the start of conversion of the three SDADCs and/or the 12-bit fast ADC. This timing control is very flexible, capable of triggering simultaneous conversions or inserting a programmable delay between the ADCs.

Up to two external reference pins (VREFSD+, VREFSD-) and an internal 1.2/1.8 V reference can be used in conjunction with a programmable gain (x0.5 to x32) in order to fine-tune the input voltage range of the SDADC.

3.14 Digital-to-analog converter (DAC)

The devices feature up to two 12-bit buffered DACs with three output channels that can be used to convert three digital signals into three analog voltage signal outputs. The internal structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital Interface supports the following features:

- Up to two DAC converters with three output channels:
 - DAC1 with two output channels
 - DAC2 with one output channel.
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- triangular-wave generation
- Dual DAC channel independent or simultaneous conversions (DAC1 only)
- DMA capability for each channel
- External triggers for conversion

3.15 Fast comparators (COMP)

The STM32F37x embeds up to 2 comparators with rail-to-rail inputs and high-speed output. The reference voltage can be internal or external (delivered by an I/O).

The threshold can be one of the following:

- DACs channel outputs
- External I/O
- Internal reference voltage (V_{REFINT}) or submultiple (1/4 V_{REFINT}, 1/2 V_{REFINT} and 3/4 V_{REFINT})

The comparators can be combined into a window comparator.

Both comparators can wake up the device from Stop mode and generate interrupts and breaks for the timers.

Pi	n nun	nber	s	Din nomo		nre		Pin func	tions
LQFP100	BGA100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions
29	M3	20	14	PA4	I/O	TTa		SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, TIM3_CH2, TIM12_CH1, TSC_G2_IO1,	ADC_IN4, DAC1_OUT1
30	K4	21	15	PA5	I/O	TTa		SPI1_SCK/I2S1_CK, CEC, TIM2_CH1_ETR, TIM14_CH1, TIM12_CH2, TSC_G2_IO2	ADC_IN5, DAC1_OUT2
31	L4	22	16	PA6	I/O	TTa		SPI1_MISO/I2S1_MCK, COMP1_OUT, TIM3_CH1, TIM13_CH1, TIM16_CH1, TSC_G2_IO3	ADC_IN6, DAC2_OUT1,
32	M4	23		PA7	I/O	ТТа	(1)	TSC_G2_IO4, TIM14_CH1, SPI1_MOSI/I2S1_SD, TIM17_CH1, TIM3_CH2, COMP2_OUT	ADC_IN7
33	K5	24		PC4	I/O	TTa	(1)	TIM13_CH1, TSC_G3_IO1, USART1_TX	ADC_IN14
34	L5	25		PC5	I/O	TTa	(1)	TSC_G3_IO2, USART1_RX	ADC_IN15
35	M5	26	18	PB0	I/O	TTa		SPI1_MOSI/I2S1_SD, TIM3_CH3, TSC_G3_IO3, TIM3_CH2	ADC_IN8, SDADC1_AIN6P
36	M6	27	19	PB1	I/O	TTa		TIM3_CH4, TSC_G3_IO4	ADC_IN9, SDADC1_AIN5P, SDADC1_AIN6M
37	L6	28	20	PB2	I/O	тс	(2)		SDADC1_AIN4P, SDADC2_AIN6P
38	M7			PE7	I/O	тс	(2) (1)		SDADC1_AIN3P, SDADC1_AIN4M, SDADC2_AIN5P, SDADC2_AIN6M
39	L7	29	21	PE8	I/O	тс	(2)		SDADC1_AIN8P, SDADC2_AIN8P
40	M8	30	22	PE9	I/O	тс	(2)		SDADC1_AIN7P, SDADC1_AIN8M, SDADC2_AIN7P, SDADC2_AIN8M
41	L8			PE10	I/O	тс	(2) (1)		SDADC1_AIN2P
42	M9			PE11	I/O	тС	(2) (1)		SDADC1_AIN1P, SDADC1_AIN2M, SDADC2_AIN4P

 Table 11.
 STM32F37x pin definitions (continued)

Pi	n nun	nber	s	Pin name		ure		Pin func	tions	
LQFP100	BGA100	LQFP64	LQFP48	(function after reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions	
90	A7	56	40	PB4	I/O	FT		SPI1_MISO/I2S1_MCK, SPI3_MISO/I2S3_MCK, USART2_RX, TIM16_CH1, TIM3_CH1, TIM17_BKIN, TIM15_CH1N, TSC_G5_IO2, JNTRST		
91	C5	57	41	PB5	I/O	FT		SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, I2C1_SMBAI, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM17_CH1, TIM19_ETR		
92	B5	58	42	PB6	I/O	FTf		I2C1_SCL, USART1_TX, TIM16_CH1N, TIM3_CH3, TIM4_CH1, TIM19_CH1, TIM15_CH1, TSC_G5_IO3		
93	B4	59	43	PB7	I/O	FTf		I2C1_SDA, USART1_RX, TIM17_CH1N, TIM3_CH4, TIM4_CH2, TIM19_CH2, TIM15_CH2, TSC_G5_IO4		
94	A4	60	44	BOOT0	I	В		Boot memory	selection	
95	A3	61	45	PB8	I/O	FTf		SPI2_SCK/I2S2_CK, I2C1_SCL, USART3_TX, CAN_RX, CEC, TIM16_CH1, TIM4_CH3, TIM19_CH3, COMP1_OUT, TSC_SYNC		
96	B3	62	46	PB9	I/O	FTf		SPI2_NSS/I2S2_WS, I2C1_SDA, USART3_RX, CAN_TX, IR_OUT, TIM17_CH1, TIM4_CH4, TIM19_CH4, COMP2_OUT		
97	C3			PE0	I/O	FT	(1)	USART1_TX, TIM4_ETR		
98	A2			PE1	I/O	FT	(1)	USART1_RX		
99	D3	63	47	VSS_1	S			Ground		
100	C4	64	48	VDD_1	S			Digital power supply		

Table 11. STM32F37x pin definitions (continued)

1. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode.

2. these pins are powered by VDDSD12.

3. these pins are powered by VDDSD3.

Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
PC0		EVENTOUT	TIM5_CH1_ETR					
PC1		EVENTOUT	TIM5_CH2					
PC2		EVENTOUT	TIM5_CH3			SPI2_MISO/I2S2_MCK		
PC3		EVENTOUT	TIM5_CH4			SPI2_MOSI/I2S2_SD		
PC4		EVENTOUT	TIM13_CH1	TSC_G3_IO1				USART1_TX
PC5		EVENTOUT		TSC_G3_IO2				USART1_R>
PC6		EVENTOUT	TIM3_CH1			SPI1_NSS/I2S1_WS		
PC7		EVENTOUT	TIM3_CH2			SPI1_SCK/I2S1_CK		
PC8		EVENTOUT	TIM3_CH3			SPI1_MISO/I2S1_MCK		
PC9		EVENTOUT	TIM3_CH4			SPI1_MOSI/I2S1_SD		
PC10		EVENTOUT	TIM19_CH1				SPI3_SCK/I2S3_CK	USART3_T>
PC11		EVENTOUT	TIM19_CH2				SPI3_MISO/I2S3_MCK	USART3_R
PC12		EVENTOUT	TIM19_CH3				SPI3_MOSI/I2S3_SD	USART3_Cł
PC13								
PC14								
PC15		1						

Table 14 Alternate functions for port PC

S

SIM32F37X peripheral register boundary addresses						
Boundary address	Size	Peripheral				
0x4800 1400 - 0x4800 17FF	1KB	GPIOF				
0x4800 1000 - 0x4800 13FF	1KB	GPIOE				
0x4800 0C00 - 0x4800 0FFF	1KB	GPIOD				
0x4800 0800 - 0x4800 0BFF	1KB	GPIOC				
0x4800 0400 - 0x4800 07FF	1KB	GPIOB				
0x4800 0000 - 0x4800 03FF	1KB	GPIOA				
0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved				
0x4002 4000 - 0x4002 43FF	1 KB	TSC				
0x4002 3400 - 0x4002 3FFF	3 KB	Reserved				
0x4002 3000 - 0x4002 33FF	1 KB	CRC				
0x4002 2400 - 0x4002 2FFF	3 KB	Reserved				
0x4002 2000 - 0x4002 23FF	1 KB	FLASH memory interface				
0x4002 1400 - 0x4002 1FFF	3 KB	Reserved				
0x4002 1000 - 0x4002 13FF	1 KB	RCC				
0x4002 0800- 0x4002 0FFF	2 KB	Reserved				
0x4002 0400 - 0x4002 07FF	1 KB	DMA2				
0x4002 0000 - 0x4002 03FF	1 KB	DMA1				
0x4001 6C00 - 0x4001 FFFF	37 KB	Reserved				
	Boundary address 0x4800 1400 - 0x4800 17FF 0x4800 1000 - 0x4800 13FF 0x4800 0C00 - 0x4800 0FFF 0x4800 0800 - 0x4800 0FFF 0x4800 0400 - 0x4800 0FFF 0x4800 0400 - 0x4800 03FF 0x4002 4400 - 0x47FF FFFF 0x4002 4000 - 0x4002 43FF 0x4002 3000 - 0x4002 3FFF 0x4002 3000 - 0x4002 3FFF 0x4002 2000 - 0x4002 3FFF 0x4002 1000 - 0x4002 1FFF 0x4002 1000 - 0x4002 1FFF 0x4002 0800- 0x4002 0FFF 0x4002 0400 - 0x4002 07FF 0x4002 0400 - 0x4002 07FF	Boundary address Size 0x4800 1400 - 0x4800 17FF 1KB 0x4800 1000 - 0x4800 13FF 1KB 0x4800 0C00 - 0x4800 0FFF 1KB 0x4800 0800 - 0x4800 0FFF 1KB 0x4800 0400 - 0x4800 0FFF 1KB 0x4800 0400 - 0x4800 07FF 1KB 0x4800 0000 - 0x4800 03FF 1KB 0x4800 0000 - 0x4800 03FF 1KB 0x4002 4400 - 0x47FF FFFF ~128 MB 0x4002 4000 - 0x4002 43FF 1 KB 0x4002 3000 - 0x4002 3FFF 3 KB 0x4002 3000 - 0x4002 3FFF 3 KB 0x4002 2000 - 0x4002 23FF 1 KB 0x4002 1400 - 0x4002 1FFF 3 KB 0x4002 1400 - 0x4002 1FFF 3 KB 0x4002 1000 - 0x4002 0FFF 2 KB 0x4002 0800- 0x4002 0FFF 2 KB 0x4002 0400 - 0x4002 0FFF 1 KB 0x4002 0400 - 0x4002 0FFF 1 KB				

 Table 18.
 STM32F37x peripheral register boundary addresses

Depending on the SDADCx operation mode, there can be more constraints between $V_{\text{REFSD+}}$, V_{DDSD12} and V_{DDSD3} which are described in reference manual RM0313.

Table 20.Current characteristics

Symbol	Ratings	Max.	Unit
$I_{VDD(\Sigma)}$	Total current into sum of all VDD_x and VDDSDx power lines $(source)^{(1)}$	160	
$I_{VSS(\Sigma)}$	Total current out of sum of all VSS_x and VSSSD ground lines $({\rm sink})^{(1)}$	-160	
I _{VDD(PIN)}	Maximum current into each VDD_x or VDDSDx power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS_x or VSSSD ground pin $(sink)^{(1)}$	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	- 25	mA
ΣI	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT, FTf and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
$\Sigma I_{INJ(PIN)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

 VDDSD12 is the external power supply for PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to V_{SS}). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to V_{SS}). V_{DD} (VDD_x) is the external power supply for all remaining I/O pins (the I/O pin ground is internally connected to V_{SS}).

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.

- A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 19: Voltage characteristics* for the maximum allowed input voltage values.
- A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 62*.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

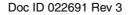
Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 21.Thermal characteristics

					Тур	Unit			
Symbol	Parameter	Conditions	^f HCLK	Peripherals enabled	Peripherals disabled				
			72 MHz	42.8	6.9				
		Running from HSE	64 MHz	38.2	6.2				
		crystal clock 8 MHz,	48 MHz	28.9	4.8				
		code executing from Flash or RAM,	32 MHz	19.5	3.4				
		PLL on	24 MHz	14.7	2.7				
	Supply current in Sleep mode from		16 MHz	10.2	2.0				
I _{DD}	V _{DD} supply		8 MHz	5.2	1.2	mA			
		Running from HSE	4 MHz	3.4	1.1				
		crystal clock 8 MHz, code executing from Flash or RAM, PLL off	2 MHz	2.2	0.9				
			1 MHz	1.6	0.9				
			500 kHz	1.4	0.8				
			125 kHz	1.1	0.8				
			72 MHz	242.9	241.5				
		Running from HSE	64 MHz	213.7	212.7				
		crystal clock 8 MHz,	48 MHz	158.8	158.0				
		code executing from Flash or RAM,	32 MHz	107.6	107.3				
		PLL on	24 MHz	82.7	82.6				
ı (1)	Supply current in		16 MHz	58.3	58.2				
$I_{DDA}^{(1)}$	Sleep mode from V _{DDA} supply		8 MHz	1.2	1.2	μA			
		Running from HSE	4 MHz	1.2	1.2	-			
		crystal clock 8 MHz,	2 MHz	1.2	1.2				
		code executing from Flash or RAM,	1 MHz	1.2	1.2				
		PLL off	500 kHz	1.2	1.2				
			125 kHz	1.2	1.2				

Table 34. Typical current consumption in Sleep mode, code running from Flash or RAM

1. V_{DDA} monitoring is off, V_{DDSD12} monitoring is off.


On-chip peripheral current consumption

The MCU is placed under the following conditions:

- all I/O pins are in analog input configuration
- all peripherals are disabled unless otherwise mentioned
- the given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature at 25°C and V_{DD} = V_{DDA}= 3.3 Volts

Table 36. Peripheral current consumption

Peripheral	Typical consumption ⁽¹⁾	Unit
AHB pe	ripherals	
BusMatrix ⁽²⁾	6.9	
DMA1	18.3	
DMA2	4.8	
CRC	2.6	
GPIOA	12.2	
GPIOB	11.9	
GPIOC	4.3	
GPIOD	12.0	
GPIOE	4.4	
GPIOF	3.7	
TSC	5.7	
APB2 pe	eripherals	μA/MHz
APB2-Bridge ⁽³⁾	4.2	μ-νινιι ιΖ
SYSCFG	2.8	
ADC1	17.7	
SPI1	12.3	
USART1	22.9	
TIM15	15.7	
TIM16	12.2	
TIM17	12.1	
TIM19	18.5	
SDAC1	10.8	
SDAC2	10.5	
SDAC3	10.3	

Peripheral	Typical consumption ⁽¹⁾	Unit			
	peripherals				
APB1-Bridge ⁽³⁾	6.9				
TIM2	47.9				
ТІМЗ	36.8				
TIM4	36.9				
TIM5	45.5				
TIM6	8.4				
TIM7	8.2				
TIM12	21.3				
TIM13	14.2				
TIM14	14.4				
TIM18	10.1				
WWDG	4.7	µA/MHz			
SPI2	24.3				
SPI3	25.3				
USART2	45.3				
USART3	43.1				
I2C1	14.0				
I2C2	13.9				
USB	27.9				
CAN	38.1				
DAC2	7.7				
PWR	5.4				
DAC1	14.8				
CEC	5.4				

Table 36. Peripheral current consumption

1. When peripherals are enabled, power consumption of the analog part of peripherals such as ADC, DACs, Comparators, etc. is not included. Refer to those peripherals characteristics in the subsequent sections.

2. The BusMatrix is automatically active when at least one master is ON (CPU, DMA1 or DMA2).

3. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 41*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		LSEDRV[1:0]=00 lower driving capability		0.5	0.9	
		LSEDRV[1:0]= 01 medium low driving capability			1	
I _{DD}	LSE current consumption	LSEDRV[1:0] = 10 medium high driving capability			1.3	μA
		LSEDRV[1:0]=11 higher driving capability			1.6	
		LSEDRV[1:0]=00 lower driving capability	5			
~	Oscillator transconductance	LSEDRV[1:0]= 01 medium low driving capability	8			
9 _m		LSEDRV[1:0] = 10 medium high driving capability	15			µA/V
		LSEDRV[1:0]=11 higher driving capability	25			
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized		2		S

Table 41.	LSE oscillator characteristics	(f _{I SF} = 32.768 kHz)
-----------	--------------------------------	----------------------------------

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol Parameter		Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol	Farameter	Conditions	frequency band	8/72 MHz	Unit
			0.1 to 30 MHz	9	
6	Peak level	$V_{DD} = 3.3 V, T_A = 25 °C,$ LQFP100 package	30 to 130 MHz	26	dBµV
S _{EMI}	CC	compliant with IEC 61967-2	130 MHz to 1 GHz	30	
		01307-2	SAE EMI Level	4	-

Table 48. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Table 49.ESD absolute maximum ratings

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	_	T _A = +25 °C, conforming to JESD22-A114	2	2000	
V _{ESD(CDM)}		$T_A = +25$ °C, conforming to JESD22-C101, LQFP100, LQFP64, LQFP48 and BGA100 packages	II	500	V
		T _A = +25 °C, conforming to JESD22-C101, WLCSP66 package	II	250	

1. Data based on characterization results, not tested in production.

Symbol	Description	Func suscep	Unit	
	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	-0	NA	
	Injected current on PC0 pin	-0	+5	
	Injected current on TC type I/O pins on VDDSD12 power domain: PB0, PB1, PB2, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB10 with induced leakage current on other pins from this group less than -50 µA	-5	+5	
I _{INJ}	Injected current on TC type I/O pins on VDDSD3 power domain: PB14, PB15, PD8, PD9, PD10, PD12, PD13, PD14, PD15 with induced leakage current on other pins from this group less than -50 µA	-5	+5	mA
	Injected current on TTa type pins: PA4, PA5, PA6 with induced leakage current on adjacent pins less than -10 μA	-5	+5	
	Injected current on any other FT and FTf pins	-5	NA	
	Injected current on any other pins	-5	+5	

 Table 51.
 I/O current injection susceptibility

Note: 1 It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Equation 1: $R_{SRC} \max_{T}$ formula

$$R_{SRC} < \frac{r_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external signal source impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

Table 61. R_{SRC} max for $f_{ADC} = 14 \text{ MHz}^{(1)}$

T _s (cycles)	t _S (μs)	R _{SRC} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	50
239.5	17.1	50

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±3	
EO	Offset error	f _{ADC} = 14 MHz, R _{SRC} < 10 kΩ,	±1	±2	
EG	Gain error	V _{DDA} = 3 V to 3.6 V	±0.5	±1.5	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{ADC} = 14 MHz, R _{SRC} < 10 kΩ,	±1.9	±2.8	
EG	Gain error	V _{DDA} = 2.7 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	T _A = -40 to 105 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{ADC} = 14 MHz, R _{SRC} < 10 kΩ,	±1.9	±2.8	
EG	Gain error	V _{DDA} = 2.4 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	

Table 62. ADC $accuracy^{(1)(2)}(3)$

1. ADC DC accuracy values are measured after internal calibration.

Symbol	Parameter		Conditions					Тур	Max	Unit	Note							
				f _{ADC} = 1.5 MHz		V _{REFSD+} = 3.3 ⁽²⁾	84	85										
		Θ	gain = 1	f _{ADC} = 6		V _{REFSD+} = 1.2 ⁽³⁾	86	88										
		ial mod	0,	MHz		V _{REFSD+} = 3.3	88	92										
		Differential mode		fferenti	fferenti	fferenti	fferenti	fferenti			f _{ADC} = 6		V _{REFSD+} = 1.2 ⁽³⁾	76	78			
				gain = 8	Jain = 8	MHz		V _{REFSD+} = 3.3	82	86								
SNR ⁽⁴⁾	Signal to noise ratio		0,	f _{ADC} = 1.5 MHz	$\begin{array}{c c} 1.5 \text{ MHz} \\ \hline f_{ADC} = \\ 1.5 \text{ MHz} \\ \hline f_{ADC} = \\ 6 \text{ MHz} \\ \end{array} = 3.3 \\ 3.3^{(2)} \\ \hline V_{\text{REFSD}+} = \\ 1.2^{(3)} \\ \hline V_{\text{REFSD}+} = \\ 77 \\ 81 \\ \hline V_{\text{REFSD}+} = \\ 80 \\ 84 \\ \hline V_{\text{REFSD}+} = \\ 80 \\ \hline V_{\text{REFSD}+ = \\ 80 \\ \hline V_{\text{REFSD}+} = \\ 80 \\ \hline V_{\text{REFSD}+ = \\ 80 \\ \hline V_{\text{REFSD}+} = \\ 80 \\ \hline V_{\text{REFSD}+ = \\ \hline V_{REFS$	$V_{\text{REFSD+}}=$ 3.3 ⁽²⁾	76	80		dB								
				f _{ADC} = 1.5MHz		V _{REFSD+} = 3.3	80	84										
		mode	gain = 1	f _{ADC} =		81												
		Single ended	0,	6 MHz		V _{REFSD+} = 3.3	85	90										
			Single	Single	Single		П	Ш	Single gain = 8	f _{ADC} =		V _{REFSD+} = 1.2 ⁽³⁾	66	71				
				6 MHz	MHz	V _{REFSD+} = 3.3	74	78										

 Table 74.
 SDADC characteristics (continued)⁽¹⁾

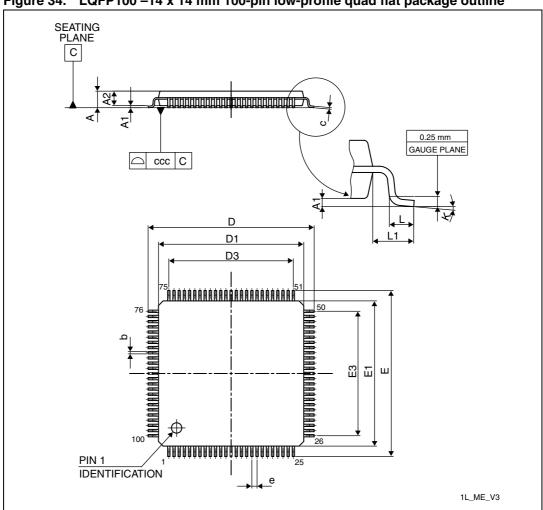
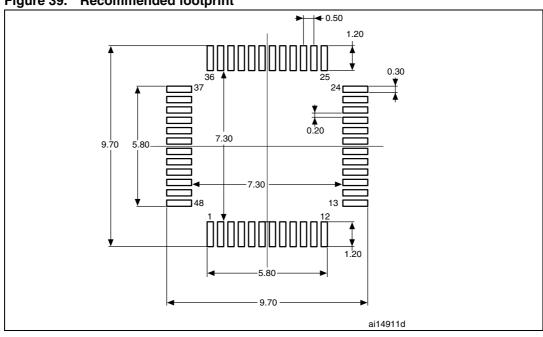


Figure 34. LQFP100 –14 x 14 mm 100-pin low-profile quad flat package outline

^{1.} Drawing is not to scale.

Table 77. LQPF100 – 14 x 14 mm low-profile quad flat package mechanical


Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
А			1.60			0.063
A1	0.05		0.15	0.002		0.0059
A2	1.35	1.40	1.45	0.0531	0.0551	0.0571
b	0.17	0.22	0.27	0.0067	0.0087	0.0106
с	0.09		0.20	0.0035		0.0079
D	15.80	16.00	16.20	0.622	0.6299	0.6378
D1	13.80	14.00	14.20	0.5433	0.5512	0.5591
D3		12.00			0.4724	
E	15.80	16.00	16.20	0.622	0.6299	0.6378

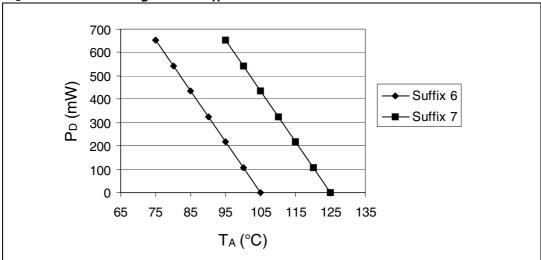
Symbol		millimeters				
	Min	Тур	Мах	Min	Тур	Max
е		0.50			0.0197	
L	0.45	0.60	0.75	0.0177	0.0236	0.0295
L1		1.00			0.0394	
К	0°	3.5°	7°	0°	3.5°	7°
ccc			0.08			0.0031

Table 79. LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 39. Recommended footprint

1. Dimensions are in millimeters.



Using the values obtained in *Table 80* T_{Jmax} is calculated as follows:

- For LQFP100, 46°C/W
- $T_{Jmax} = 115 \ ^{\circ}C + (46 \ ^{\circ}C/W \times 98.8 \ mW) = 115 \ ^{\circ}C + 4.54 \ ^{\circ}C = 119.5 \ ^{\circ}C$

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Part numbering*).

