
NXP USA Inc. - MC68020EH20E Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68020

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 20MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 132-BQFP Bumpered

Supplier Device Package 132-PQFP (46x46)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68020eh20e

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68020eh20e-4473237
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

9/29/95 SECTION 1: OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xvii

LIST OF ILLUSTRATIONS (Concluded)
Figure Page

Number Title Number

7-45 MC68020/EC020 Postinstruction Stack Frame.. 7-48

8-1 Concurrent Instruction Execution ... 8-3
8-2 Instruction Execution for Instruction Timing Purposes 8-3
8-3 Processor Activity for Example 1 ... 8-5
8-4 Processor Activity for Example 2 ... 8-6
8-5 Processor Activity for Example 3 ... 8-7
8-6 Processor Activity for Example 4 ... 8-8

9-1 32-Bit Data Bus Coprocessor Connection.. 9-2
9-2 Chip Select Generation PAL .. 9-3
9-3 Chip Select PAL Equations .. 9-4
9-4 Bus Cycle Timing Diagram ... 9-4
9-5 Example MC68020/EC020 Byte Select PAL System Configuration 9-7
9-6 MC68020/EC020 Byte Select PAL Equations .. 9-8
9-7 High-Resolution Clock Controller ... 9-11
9-8 Alternate Clock Solution ... 9-11
9-9 Access Time Computation Diagram ... 9-12
9-10 Module Descriptor Format .. 9-15
9-11 Module Entry Word .. 9-15
9-12 Module Call Stack Frame ... 9-16
9-13 Access Level Control Bus Registers .. 9-17

10-1 Drive Levels and Test Points for AC Specifications 10-6
10-2 Clock Input Timing Diagram ... 10-7
10-3 Read Cycle Timing Diagram .. 10-11
10-4 Write Cycle Timing Diagram... 10-12
10-5 Bus Arbitration Timing Diagram ... 10-13

A-1 Bus Arbitration Circuit—MC68EC020 (Two-Wire) to DMA (Three-Wire) A-1

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

1-2 M68020 USER’S MANUAL MOTOROLA

1.1 FEATURES

The main features of the MC68020/EC020 are as follows:

• Object-Code Compatible with Earlier M68000 Microprocessors

• Addressing Mode Extensions for Enhanced Support of High-Level Languages

• New Bit Field Data Type Accelerates Bit-Oriented Applications—e.g., Video Graphics

• An On-Chip Instruction Cache for Faster Instruction Execution

• Coprocessor Interface to Companion 32-Bit Peripherals—the MC68881 and
MC68882 Floating-Point Coprocessors and the MC68851 Paged Memory
Management Unit

• Pipelined Architecture with High Degree of Internal Parallelism Allowing Multiple
Instructions To Be Executed Concurrently

• High-Performance Asynchronous Bus Is Nonmultiplexed and Full 32 Bits

• Dynamic Bus Sizing Efficiently Supports 8-/16-/32-Bit Memories and Peripherals

• Full Support of Virtual Memory and Virtual Machine

• Sixteen 32-Bit General-Purpose Data and Address Registers

• Two 32-Bit Supervisor Stack Pointers and Five Special-Purpose Control Registers

• Eighteen Addressing Modes and Seven Data Types

• 4-Gbyte Direct Addressing Range for the MC68020

• 16-Mbyte Direct Addressing Range for the MC68EC020

• Selection of Processor Speeds for the MC68020: 16.67, 20, 25, and 33.33 MHz

• Selection of Processor Speeds for the MCEC68020: 16.67 and 25 MHz

A block diagram of the MC68020/EC020 is shown in Figure 1-1.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-10 M68020 USER’S MANUAL MOTOROLA

Figure 5-5 shows the transfer (write) of a long-word operand to a word port. In the first bus
cycle, the MC68020/EC020 places the four operand bytes on the external bus. Since the
address is long-word aligned in this example, the multiplexer follows the pattern in the
entry of Table 5-5 corresponding to SIZ0, SIZ1, A0, A1 = 0000. The port latches the data
on D31–D16, asserts DSACK1 (DSACK0 remains negated), and the processor terminates
the bus cycle. It then starts a new bus cycle with SIZ1, SIZ0, A1, A0 = 1010 to transfer the
remaining 16 bits. SIZ1 and SIZ0 indicate that a word remains to be transferred; A1 and
A0 indicate that the word corresponds to an offset of two from the base address. The
multiplexer follows the pattern corresponding to this configuration of SIZ1, SIZ0, A1, and
A0 and places the two least significant bytes of the long word on the word portion of the
bus (D31–D16). The bus cycle transfers the remaining bytes to the word-sized port. Figure
5-6 shows the timing of the bus transfer signals for this operation.

DATA BUSD31 D16

LONG-WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

OP0 OP1

OP2 OP3

MC68020/EC020

SIZ1 SIZ0 A1 A0

0 0 0 0

1 0 1 0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

Figure 5-5. Long-Word Operand Write to Word Port Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-12 M68020 USER’S MANUAL MOTOROLA

Figure 5-7 shows a word write to an 8-bit bus port. Like the preceding example, this
example requires two bus cycles. Each bus cycle transfers a single byte. SIZ1 and SIZ0
for the first cycle specify two bytes; for the second cycle, one byte. Figure 5-8 shows the
associated bus transfer signal timing.

OP2 OP3

15 0WORD OPERAND

D31 DATA BUS D24

BYTE MEMORY

OP2

OP3

MC68020/EC020

SIZ1 SIZ0 A1 A0
1 0 0 0

0 1 0 1

MEMORY CONTROL

DSACK1 DSACK0
H L

H L

Figure 5-7. Word Operand Write to Byte Port Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-14 M68020 USER’S MANUAL MOTOROLA

5.2.2 Misaligned Operands

Since operands may reside at any byte boundary, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd
address; a long word is misaligned at an address that is not evenly divisible by four. The
MC68000, MC68008, and MC68010 implementations allow long-word transfers on odd-
word boundaries but force exceptions if word or long-word operand transfers are
attempted at odd-byte addresses. Although the MC68020/EC020 does not enforce any
alignment restrictions for data operands (including PC relative data addresses), some
performance degradation occurs when additional bus cycles are required for long-word or
word operands that are misaligned. For maximum performance, data items should be
aligned on their natural boundaries. All instruction words and extension words must reside
on word boundaries. Attempting to prefetch an instruction word at an odd address causes
an address error exception.

Figure 5-9 shows the transfer (write) of a long-word operand to an odd address in word-
organized memory, which requires three bus cycles. For the first cycle, SIZ1 and SIZ0
specify a long-word transfer, and A2–A0 = 001. Since the port width is 16 bits, only the
first byte of the long word is transferred. The slave device latches the byte and
acknowledges the data transfer, indicating that the port is 16 bits wide. When the
processor starts the second cycle, SIZ1 and SIZ0 specify that three bytes remain to be
transferred with A2–A0 = 010. The next two bytes are transferred during this cycle. The
processor then initiates the third cycle, with SIZ1 and SIZ0 indicating one byte remaining
to be transferred with A2–A0 = 100. The port latches the final byte, and the operation is
complete. Figure 5-10 shows the associated bus transfer signal timing. Figure 5-11 shows
the equivalent operation for a data read cycle.

DATA BUSD31 D16

LONG-WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP3 XXX

A0

1

0

0 1 1 0 0 L H

Figure 5-9. Misaligned Long-Word Operand Write to Word Port Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 5-21

Table 5-6 demonstrates that the processor always prefetches instructions by reading a
long word from a long-word address (A1, A0 = 00), regardless of port size or alignment.
When the required instruction begins at an odd-word boundary, the processor attempts to
fetch the entire 32 bits and loads both words into the instruction cache, if possible,
although the second one is the required word. Even if the instruction access is not cached,
the entire 32 bits are latched into an internal cache holding register from which the two
instructions words can subsequently be referenced. Refer to Section 8 Instruction
Execution Timing for a complete description of the cache holding register and pipeline
operation.

5.2.4 Address, Size, and Data Bus Relationships

The data transfer examples show how the MC68020/EC020 drives data onto or receives
data from the correct byte sections of the data bus. Table 5-7 shows the combinations of
the SIZ1, SIZ0, A1, and A0 signals that can be used to generate byte enable signals for
each of the four sections of the data bus for read and write cycles if the addressed device
requires them. The port size also affects the generation of these enable signals as shown
in the table. The four columns on the right correspond to the four byte enable signals.
Letters B, W, and L refer to port sizes: B for 8-bit ports, W for 16-bit ports, and L for 32-bit
ports. The letters B, W, and L imply that the byte enable signal should be true for that port
size. A dash (—) implies that the byte enable signal does not apply.

The MC68020/EC020 always drives all sections of the data bus because, at the beginning
of a write cycle, the bus controller does not know the port size.

Table 5-7 reveals that the MC68020/EC020 transfers the number of bytes specified by
SIZ1, SIZ0 to or from the specified address unless the operand is misaligned or unless the
number of bytes is greater than the port width. In these cases, the device transfers the
greatest number of bytes possible for the port. For example, if the size is four and A1, A0
= 01, a 32-bit slave can only receive three bytes in the current bus cycle. A 16- or 8-bit
slave can only receive one byte. The table defines the byte enables for all port sizes. Byte
data strobes can be obtained by combining the enable signals with the DS signal. Devices
residing on 8-bit ports can use the data strobe by itself since there is only one valid byte
for every transfer. These enable or strobe signals select only the bytes required for write
or read cycles. The other bytes are not selected, which prevents incorrect accesses in
sensitive areas such as I/O.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-34 M68020 USER’S MANUAL MOTOROLA

WRITE

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D0

 LONG WORD

CLK

WRITEBYTE READ

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 Sw Sw S4

READ WITH WAIT STATES

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-25. Read-Write-Read Cycles—32-Bit Port

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6-20 M68020 USER’S MANUAL MOTOROLA

The priority scheme is very important in determining the order in which exception handlers
execute when several exceptions occur at the same time. As a general rule, the lower the
priority of an exception, the sooner the handler routine for that exception executes. For
example, if simultaneous trap, trace, and interrupt exceptions are pending, the exception
processing for the trap occurs first, followed immediately by exception processing for the
trace, and then for the interrupt. When the processor resumes normal instruction
execution, it is in the interrupt handler, which returns to the trace handler, which returns to
the trap exception handler. This rule does not apply to the reset exception; its handler is
executed first even though it has the highest priority because the reset operation clears all
other exceptions.

6.1.12 Return from Exception

After the MC68020/EC020 has completed exception processing for all pending
exceptions, it resumes normal instruction execution at the address in the vector for the last
exception processed. Once the exception handler has completed execution, the processor
must return to the system context prior to the exception (if possible). The RTE instruction
returns from the handler to the previous system context for any exception.

When the processor executes an RTE instruction, it examines the stack frame on top of
the active supervisor stack to determine if it is a valid frame and what type of context
restoration it requires. The following paragraphs describe the processing for each of the
stack frame types; refer to 6.3 Coprocessor Considerations for a description of the
stack frame type formats.

For a normal four-word frame, the processor updates the SR and PC with the data read
from the stack, increments the stack pointer by eight, and resumes normal instruction
execution.

For the throwaway four-word frame, the processor reads the SR value from the frame,
increments the active stack pointer by eight, updates the SR with the value read from the
stack, and then begins RTE processing again, as shown in Figure 6-7. The processor
reads a new format word from the stack frame on top of the active stack (which may or
may not be the same stack used for the previous operation) and performs the proper
operations corresponding to that format. In most cases, the throwaway frame is on the
interrupt stack and when the SR value is read from the stack, the S and M bits are set. In
that case, there is a normal four-word frame or a ten-word coprocessor midinstruction
frame on the master stack. However, the second frame may be any format (even another
throwaway frame) and may reside on any of the three system stacks.

For the six-word stack frame, the processor restores the SR and PC values from the
stack, increments the active supervisor stack pointer by 12, and resumes normal
instruction execution.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7-4 M68020 USER’S MANUAL MOTOROLA

MC68020/EC020 to begin exception processing. The MC68020/EC020 never generates
coprocessor interface bus cycles with the CpID equal to zero (except via the MOVES
instruction).

CpID codes of 000–101 are reserved for current and future Motorola coprocessors, and
CpID codes of 110–111 are reserved for user-defined coprocessors. The Motorola CpID
code of 001 designates the MC68881 or MC68882 floating-point coprocessor. By default,
Motorola assemblers will use a CpID code of 001 when generating the instruction
operation codes for the MC68881 or MC68882.

The encoding of bits 8–0 of the coprocessor instruction operation word is dependent on
the particular instruction being implemented (refer to 7.2 Coprocessor Instruction
Types).

7.1.4 Coprocessor System Interface

The communication protocol between the main processor and coprocessor necessary to
execute a coprocessor instruction uses a group of interface registers, CIRs, resident
within the coprocessor. By accessing one of the CIRs, the MC68020/EC020 hardware
initiates coprocessor instructions. The coprocessor uses a set of response primitive codes
and format codes defined for the M68000 coprocessor interface to communicate status
and service requests to the main processor through these registers. The CIRs are also
used to pass operands between the main processor and the coprocessor. The CIR set,
response primitives, and format codes are discussed in 7.3 Coprocessor Interface
Register Set and 7.4 Coprocessor Response Primitives.

7.1.4.1 COPROCESSOR CLASSIFICATION. M68000 coprocessors can be classified into
two categories depending on their bus interface capabilities. The first category, non-DMA
coprocessors, consists of coprocessors that always operate as bus slaves. The second
category, DMA coprocessors, consists of coprocessors that operate as bus slaves while
communicating with the main processor across the coprocessor interface. These
coprocessors also have the ability to operate as bus masters, directly controlling the
system bus.

If the operation of a coprocessor does not require a large portion of the available bus
bandwidth or has special requirements not directly satisfied by the main processor, that
coprocessor can be efficiently implemented as a non-DMA coprocessor. Since non-DMA
coprocessors always operate as bus slaves, all external bus-related functions that the
coprocessor requires are performed by the main processor. The main processor transfers
operands from the coprocessor by reading the operand from the appropriate CIR and then
writing the operand to a specified effective address with the appropriate address space
specified on the FC2–FC0. Likewise, the main processor transfers operands to the
coprocessor by reading the operand from a specified effective address (and address
space) and then writing that operand to the appropriate CIR using the coprocessor
interface. The bus interface circuitry of a coprocessor operating as a bus slave is not as
complex as that of a device operating as a bus master.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7-18 M68020 USER’S MANUAL MOTOROLA

information to the main processor during the execution of these instructions. These
coprocessor format codes are discussed in detail in 7.2.3.2 Coprocessor Format Words.

7.2.3.1 COPROCESSOR INTERNAL STATE FRAMES. The context save (cpSAVE) and
context restore (cpRESTORE) instructions transfer an internal coprocessor state frame
between memory and a coprocessor. This internal coprocessor state frame represents the
state of coprocessor operations. Using the cpSAVE and cpRESTORE instructions, it is
possible to interrupt coprocessor operation, save the context associated with the current
operation, and initiate coprocessor operations with a new context.

A cpSAVE instruction stores a coprocessor internal state frame as a sequence of long-
word entries in memory. Figure 7-14 shows the format of a coprocessor state frame. The
format and length fields of the coprocessor state frame format comprise the format word.
During execution of the cpSAVE instruction, the MC68020/EC020 calculates the state
frame effective address from information in the operation word of the instruction and
stores a format word at this effective address. The processor writes the long words that
form the coprocessor state frame to descending memory addresses, beginning with the
address specified by the sum of the effective address and the length field multiplied by
four. During execution of the cpRESTORE instruction, the MC68020/EC020 reads the
state frame from ascending addresses beginning with the effective address specified in
the instruction operation word.

31

FORMAT

24 23

LENGTH

16 15

(UNUSED, RESERVED)

0

COPROCESSOR-DEPENDENT INFORMATION

0

SAVE
ORDER

0

RESTORE
ORDER

n 1

n–1 2

n–2 3

1 n

Figure 7-14. Coprocessor State Frame Format in Memory

The processor stores the coprocessor format word at the lowest address of the state
frame in memory, and this word is the first word transferred for both the cpSAVE and
cpRESTORE instructions. The word following the format word does not contain
information relevant to the coprocessor state frame, but serves to keep the information in
the state frame a multiple of four bytes in size. The number of entries following the format
word (at higher addresses) is determined by the format word length for a given
coprocessor state.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7-26 M68020 USER’S MANUAL MOTOROLA

15

(UNDEFINED, RESERVED)

2

XA

1

AB

0

Figure 7-19. Control CIR Format

When the MC68020/EC020 receives one of the three take exception coprocessor
response primitives, it acknowledges the primitive by setting the exception acknowledge
bit (XA) in the control CIR. The MC68020/EC020 sets the abort bit (AB) in the control CIR
to abort any coprocessor instruction in progress. (The 14 most significant bits of both
masks are undefined.) The MC68020/EC020 aborts a coprocessor instruction when it
detects one of the following exception conditions:

• An F-line emulator exception condition after reading a response primitive

• A privilege violation exception as it performs a supervisor check in response to a
supervisor check primitive

• A format error exception when it receives an invalid format word or a valid format
word that contains an invalid length

7.3.3 Save CIR

The coprocessor uses the 16-bit save CIR to communicate status and state frame format
information to the main processor while executing a cpSAVE instruction. The main
processor reads the save CIR to initiate execution of the cpSAVE instruction by the
coprocessor. The offset from the base address of the CIR set for the save CIR is $04.
Refer to 7.2.3.2 Coprocessor Format Words for more information on the save CIR.

7.3.4 Restore CIR

The main processor initiates the cpRESTORE instruction by writing a coprocessor format
word to the 16-bit restore register. During the execution of the cpRESTORE instruction,
the coprocessor communicates status and state frame format information to the main
processor through the restore CIR. The offset from the base address of the CIR set for the
restore CIR is $06. Refer to 7.2.3.2 Coprocessor Format Words for more information on
the restore CIR.

7.3.5 Operation Word CIR

The main processor writes the F-line operation word of the instruction in progress to the
16-bit operation word CIR in response to a transfer operation word coprocessor response
primitive (refer to 7.4.6 Transfer Operation Word Primitive). The offset from the base
address of the CIR set for the operation word CIR is $08.

7.3.6 Command CIR

The main processor initiates a coprocessor general category instruction by writing the
instruction command word, which follows the instruction F-line operation word in the
instruction stream, to the 16-bit command CIR. The offset from the base address of the
CIR set for the command CIR is $0A.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-31

7.4.3 Busy Primitive

The busy response primitive causes the main processor to reinitiate a coprocessor
instruction. This primitive applies to instructions in the general and conditional categories.
Figure 7-23 shows the format of the busy primitive.

15 0

1 PC 1

14 13 12

0 0

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

Figure 7-23. Busy Primitive Format

The busy primitive uses the PC bit as described in 7.4.2 Coprocessor Response
Primitive General Format.

Coprocessors that can operate concurrently with the main processor but cannot buffer
write operations to their command or condition CIR use the busy primitive. A coprocessor
may execute a cpGEN instruction concurrently with an instruction in the main processor. If
the main processor attempts to initiate an instruction in the general or conditional
instruction category while the coprocessor is executing a cpGEN instruction, the
coprocessor can place the busy primitive in the response CIR. When the main processor
reads this primitive, it services pending interrupts using a preinstruction exception stack
frame (refer to Figure 7-41). The processor then restarts the general or conditional
coprocessor instruction that it had attempted to initiate earlier.

The busy primitive should only be used in response to a write to the command or condition
CIR. It should be the first primitive returned after the main processor attempts to initiate a
general or conditional category instruction. In particular, the busy primitive should not be
issued after program-visible resources have been altered by the instruction. (Program-
visible resources include coprocessor and main processor program-visible registers and
operands in memory, but not the scanPC.) The restart of an instruction after it has altered
program-visible resources causes those resources to have inconsistent values when the
processor reinitiates the instruction.

The MC68020/EC020 responds to the busy primitive differently in a special case that can
occur during a breakpoint operation (refer to Section 6 Exception Processing). This
special case occurs when a breakpoint acknowledge cycle initiates a coprocessor F-line
instruction, the coprocessor returns the busy primitive in response to the instruction
initiation, and an interrupt is pending. When these three conditions are met, the processor
reexecutes the breakpoint acknowledge cycle after completion of interrupt exception
processing. A design that uses a breakpoint to monitor the number of passes through a
loop by incrementing or decrementing a counter may not work correctly under these
conditions. This special case may cause several breakpoint acknowledge cycles to be
executed during a single pass through a loop.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-43

After reading a valid code from the register select CIR, if DR = 0, the main processor
writes the long-word operand from the specified control register to the operand CIR. If
DR = 1, the main processor reads a long-word operand from the operand CIR and places
it in the specified control register.

7.4.15 Transfer Multiple Main Processor Registers Primitive

The transfer multiple main processor registers primitive transfers long-word operands
between one or more of its data or address registers and the coprocessor. This primitive
applies to general and conditional category instructions. Figure 7-35 shows the format of
the transfer multiple main processor registers primitive.

15

CA PC DR

14 13 12

0 0

11 10 9 07

1 1

2

0

3

0

4

0

5

0

6

000

8

0 0

1

Figure 7-35. Transfer Multiple Main Processor Registers Primitive Format

The transfer multiple main processor registers primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format. If the
coprocessor issues this primitive with CA = 0 during a conditional category instruction, the
main processor initiates protocol violation exception processing.

When the main processor receives this primitive, it reads a 16-bit register select mask
from the register select CIR. The format of the register select mask is shown in Figure
7-36. A register is transferred if the bit corresponding to the register in the register select
mask is set. The selected registers are transferred in the order D7–D0 and then A7–A0.

15

A7 A6 A5

14 13 12

A4 A3

11 10 9 07

A2 A1

2

D1

3

D3

4

D4

5

D5

6

D6D7A0

8

D2 D0

1

Figure 7-36. Register Select Mask Format

If DR = 0, the main processor writes the contents of each register indicated in the register
select mask to the operand CIR using a sequence of long-word transfers. If DR = 1, the
main processor reads a long-word operand from the operand CIR into each register
indicated in the register select mask. The registers are transferred in the same order,
regardless of the direction of transfer indicated by the DR bit.

7.4.16 Transfer Multiple Coprocessor Registers Primitive

The transfer multiple coprocessor registers primitive transfers from 0–16 operands
between the effective address specified in the coprocessor instruction and the
coprocessor. This primitive applies to general category instructions. If the coprocessor
issues this primitive during the execution of a conditional category instruction, the main
processor initiates protocol violation exception processing. Figure 7-37 shows the format
of the transfer multiple coprocessor registers primitive.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7-44 M68020 USER’S MANUAL MOTOROLA

15 0

CA PC DR

14 13 12

0 0

11 10 9 8 7

LENGTH0 0 1

Figure 7-37. Transfer Multiple Coprocessor Registers Primitive Format

The transfer multiple coprocessor registers primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format.

The length field of the primitive format indicates the length in bytes of each operand
transferred. The operand length must be an even number of bytes; odd length operands
cause the MC68020/EC020 to initiate protocol violation exception processing (refer to
7.5.2.1 Protocol Violations).

When the main processor reads this primitive, it calculates the effective address specified
in the coprocessor instruction. The scanPC should be pointing to the first of any necessary
effective address extension words when this primitive is read from the response CIR; the
scanPC is incremented by two for each extension word referenced during the effective
address calculation. For transfers from the effective address to the coprocessor (DR = 0),
the control addressing modes and the postincrement addressing mode are valid. For
transfers from the coprocessor to the effective address (DR = 1), the control alterable and
predecrement addressing modes are valid. Invalid addressing modes cause the
MC68020/EC020 to abort the instruction by writing an abort mask to the control CIR (refer
to 7.3.2 Control CIR) and to initiate F-line emulator exception processing (refer to 7.5.2.2
F-Line Emulator Exceptions).

After performing the effective address calculation, the MC68020/EC020 reads a 16-bit
register select mask from the register select CIR. The coprocessor uses the register select
mask to specify the number of operands to transfer; the MC68020/EC020 counts the
number of ones in the register select mask to determine the number of operands. The
order of the ones in the register select mask is not relevant to the operation of the main
processor. As many as 16 operands can be transferred by the main processor in response
to this primitive. The total number of bytes transferred is the product of the number of
operands transferred and the length of each operand specified in the length field of the
primitive format.

If DR = 1, the main processor reads the number of operands specified in the register
select mask from the operand CIR and writes these operands to the effective address
specified in the instruction using long-word transfers whenever possible. If DR = 0, the
main processor reads the number of operands specified in the register select mask from
the effective address and writes them to the operand CIR.

For the control addressing modes, the operands are transferred to or from memory using
ascending addresses. For the postincrement addressing mode, the operands are read
from memory with ascending addresses also, and the address register used is
incremented by the size of an operand after each operand is transferred. The address
register used with the (An)+ addressing mode is incremented by the total number of bytes
transferred during the primitive execution.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-55

When the MC68020/EC020 detects a protocol violation, it does not automatically notify the
coprocessor of the resulting exception by writing to the control CIR. However, the
exception handling routine may use the MOVES instruction to read the response CIR and
thus determine the primitive that caused the MC68020/EC020 to initiate protocol violation
exception processing. The main processor initiates exception processing using the
midinstruction stack frame (refer to Figure 7-43) and the coprocessor protocol violation
exception vector number 13. If the exception handler does not modify the stack frame, the
main processor reads the response CIR again following the execution of an RTE
instruction to return from the exception handler. This protocol allows extensions to the
M68000 coprocessor interface to be emulated in software by a main processor that does
not provide hardware support for these extensions. Thus, the protocol violation is
transparent to the coprocessor if the primitive execution can be emulated in software by
the main processor.

7.5.2.2 F-LINE EMULATOR EXCEPTIONS. The F-line emulator exceptions detected by
the MC68020/EC020 are either explicitly or implicitly related to the encodings of F-line
operation words in the instruction stream. If the main processor determines that an F-line
operation word is not valid, it initiates F-line emulator exception processing. Any F-line
operation word with bits 8–6 = 110 or 111 causes the MC68020/EC020 to initiate
exception processing without initiating any communication with the coprocessor for that
instruction. Also, an operation word with bits 8–6 = 000–101 that does not map to one of
the valid coprocessor instructions in the instruction set causes the MC68020/EC020 to
initiate F-line emulator exception processing. If the F-line emulator exception is either of
these two situations, the main processor does not write to the control CIR prior to initiating
exception processing.

F-line exceptions can also occur if the operations requested by a coprocessor response
primitive are not compatible with the effective address type in bits 5–0 of the coprocessor
instruction operation word. The F-line emulator exceptions that can result from the use of
the M68000 coprocessor response primitives are summarized in Table 7-6. If the
exception is caused by receiving an invalid primitive, the main processor aborts the
coprocessor instruction in progress by writing an abort mask (refer to 7.3.2 Control CIR)
to the control CIR prior to F-line emulator exception processing.

Another type of F-line emulator exception occurs when a bus error occurs during the CIR
access that initiates a coprocessor instruction. The main processor assumes that the
coprocessor is not present and takes the exception.

When the main processor initiates F-line emulator exception processing, it uses the four-
word preinstruction exception stack frame (refer to Figure 7-41) and the F-line emulator
exception vector number 11. Thus, if the exception handler does not modify the stack
frame, the main processor attempts to restart the instruction that caused the exception
after it executes an RTE instruction to return from the exception handler.

If the cause of the F-line exception can be emulated in software, the handler stores the
results of the emulation in the appropriate registers of the programming model and in the
status register field of the saved stack frame. The exception handler adjusts the program

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 8-23

CACHE CASE

Source Destination

Address Mode An Dn (An) (An)+ –(An) (d16,An) (xxx).W (xxx).L

Rn 2(0/0/0) 2(0/0/0) 4(0/0/1) 4(0/0/1) 5(0/0/1) 5(0/0/1) 4(0/0/1) 6(0/0/1)

#<data>.B,W 4(0/0/0) 4(0/0/0) 6(0/0/1) 6(0/0/1) 7(0/0/1) 7(0/0/1) 6(0/0/1) 8(0/0/1)

#<data>.L 6(0/0/0) 6(0/0/0) 8(0/0/1) 8(0/0/1) 9(0/0/1) 9(0/0/1) 8(0/0/1) 10(0/0/1)

(An) 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(An)+ 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

–(An) 7(1/0/0) 7(1/0/0) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 10(1/0/1)

(d16,An) or
(d16,PC)

7(1/0/0) 7(1/0/0) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 8(1/0/1) 10(1/0/1)

(xxx).W 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(xxx).L 6(1/0/0) 6(1/0/0) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 7(1/0/1) 9(1/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

9(1/0/0) 9(1/0/0) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

9(1/0/0) 9(1/0/0) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1)

(B) 9(1/0/0) 9(1/0/0) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1)

(d16,B) 11(1/0/0) 11(1/0/0) 12(1/0/1) 12(1/0/1) 12(1/0/1) 12(1/0/1) 12(1/0/1) 14(1/0/1)

(d32,B) 15(1/0/0) 15(1/0/0) 16(1/0/1) 16(1/0/1) 16(1/0/1) 16(1/0/1) 16(1/0/1) 18(1/0/1)

([B],I) 14(2/0/0) 14(2/0/0) 15(2/0/1) 15(2/0/1) 15(2/0/1) 15(2/0/1) 15(2/0/1) 17(2/0/1)

([B],I,d16) 16(2/0/0) 16(2/0/0) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 19(2/0/1)

([B],I,d32) 16(2/0/0) 16(2/0/0) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 19(2/0/1)

([d16,B],I) 16(2/0/0) 16(2/0/0) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 17(2/0/1) 19(2/0/1)

([d16,B],I,d16) 18(2/0/0) 18(2/0/0) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 21(2/0/1)

([d16,B],d32) 18(2/0/0) 18(2/0/0) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 19(2/0/1) 21(2/0/1)

([d32,B],I) 20(2/0/0) 20(2/0/0) 21(2/0/1) 21(2/0/1) 21(2/0/1) 21(2/0/1) 21(2/0/1) 23(2/0/1)

([d32,B],I,d16) 22(2/0/0) 22(2/0/0) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 25(2/0/1)

([d32,B],I,d32) 22(2/0/0) 22(2/0/0) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 23(2/0/1) 25(2/0/1)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8-30 M68020 USER’S MANUAL MOTOROLA

8.2.8 Arithmetic/Logical Instructions

The arithmetic/logical instructions table indicates the number of clock periods needed for
the processor to perform the specified arithmetic/logical operation using the specified
addressing mode. It also includes, in worst case, the amount of time needed to prefetch
the next instruction. Footnotes specify when to add either fetch address or fetch
immediate effective address time. This sum gives the total effective execution time for the
operation using the specified addressing mode. The total number of clock cycles is
outside the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

* ADD EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* ADDA EA,An 0(0/0/0) 2(0/0/0) 3(0/1/0)

* ADD Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* AND EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* AND Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* EOR Dn,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* EOR Dn,Mem 3(0/0/1) 4(0/0/1) 6(0/1/1)

* OR EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* OR Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* SUB EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* SUBA EA,An 0(0/0/0) 2(0/0/0) 3(0/1/0)

* SUB Dn,EA 3(0/0/1) 4(0/0/1) 6(0/1/1)

* CMP EA,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

* CMPA EA,An 1(0/0/0) 4(0/0/0) 4(0/1/0)

** CMP2 EA,Rn 16(1/0/0) 18(1/0/0) 18(1/1/0)

* MUL.W EA,Dn 25(0/0/0) 27(0/0/0) 28(0/1/0)

** MUL.L EA,Dn 41(0/0/0) 43(0/0/0) 44(0/1/0)

* DIVU.W EA,Dn 42(0/0/0) 44(0/0/0) 44(0/1/0)

** DIVU.L EA,Dn 76(0/0/0) 78(0/0/0) 79(0/1/0)

* DIVS.W EA,Dn 54(0/0/0) 56(0/0/0) 57(0/1/0)

** DIVS.L EA,Dn 88(0/0/0) 90(0/0/0) 91(0/1/0)

*Add Fetch Effective Address Time
**Add Fetch Immediate Address Time

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 9-11

MC68020/EC020
25 MHz

12.5-MHz
OSCILLATOR

CONTROLLER
CLOCK (25 MHz)

BUS CLOCKS
(25 MHz)

MC88916

CLOCK
(50 MHz)

12.5 MHz

2

CLOCK
(25 MHz)

Figure 9-7. High-Resolution Clock Controller

MC68020/EC020
25 MHz

50-MHz
OSCILLATOR

CONTROLLER
CLOCK (25 MHz)

BUS CLOCKS
(25 MHz)

MC74F803

CLOCK
(25 MHz)

2

Figure 9-8. Alternate Clock Solution

9.5 MEMORY INTERFACE

The MC68020/EC020 is capable of running an external bus cycle in a minimum of three
clocks (refer to Section 5 Bus Operation). The MC68020/EC020 runs an asynchronous
bus cycle, terminated by the DSACK1/DSACK0 signals, and has a minimum duration of
three controller clock periods in which up to four bytes (32 bits) are transferred.

During read operations, the MC68020/EC020 latches data on the last falling clock edge of
the bus cycle, one-half clock before the bus cycle ends. Latching data here, instead of the
next rising clock edge, helps to avoid data bus contention with the next bus cycle and
allows the MC68020/EC020 to receive the data into its execution unit sooner for a net
performance increase.

Write operations also use this data bus timing to allow data hold times from the negating
strobes and to avoid any bus contention with the following bus cycle. This
MC68020/EC020 characteristic allows the system to be designed with a minimum of bus
buffers and latches.

One benefit of the MC68020/EC020 on-chip instruction cache is that the effect of external
wait states on performance is lessened because the caches are always accessed in fewer
than “no wait states,” regardless of the external memory configuration.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

10-6 M68020 USERÕS MANUAL MOTOROLA

0.8 V

2.0 V

B

ADRIVE TO
0.5 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n + 1

2.0 V

0.8 V

2.0 V

0.8 V

2.0 V

0.8 V

VALID
OUTPUT n

VALID
OUTPUT n+1

2.0 V

0.8 V

B

A

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

DC

DRIVE TO
0.5 V

DRIVE TO
2.4 V

VALID
INPUT

2.0 V

0.8 V

2.0 V

0.8 V

DC

DRIVE
TO 0.5 V

DRIVE
TO 2.4 V

2.0 V

0.8 V

2.0 V

0.8 V

F

E

CLK

OUTPUTS CLK

OUTPUTS CLK

INPUTS CLK

INPUTS CLK

ALL SIGNALS

NOTES:
1. This output timing is applicable to all parameters specified relative to the rising edge of the clock.�
2. This output timing is applicable to all parameters specified relative to the falling edge of the clock.�
3. This input timing is applicable to all parameters specified relative to the rising edge of the clock.�
4. This input timing is applicable to all parameters specified relative to the falling edge of the clock.�
5. This timing is applicable to all parameters specified relative to the assertion/negation of another signal.

�
�
�
�

LEGEND:
A. Maximum output delay specification.�
B. Minimum output hold time.�
C. Minimum input setup time specification.�
D. Minimum input hold time specification.�
E. Signal valid to signal valid specification (maximum or minimum).�
F. Signal valid to signal invalid specification (maximum or minimum).

�
�

�
�
�

FIGURE 10-1
MC68020UM

DRIVE
TO 2.4 V

1

2

3

4

5

Figure 10-1. Drive Levels and Test Points for AC Specifications

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL INDEX-1

INDEX

— A —
A1, A0 Signals, 5-2, 5-7, 5-9, 5-21, 9-5
A15–A13 Signals, 7-6
A19–A16 Signals, 7-6
A31–A24 Signals, 4-1, 5-3
AC Specifications, 10-5
Access Level, 9-17
Access Time Calculations, 9-12
Address Bus, 3-2, 5-3, 5-25
Address Error Exception, 5-14, 6-6
Address Registers, 1-4
Address Space, 2-4, 5-3
Addressing Modes, 1-8
Arithmetic/Logical Instruction, 8-30, 8-31
AS Signal, 3-4, 5-2, 5-3
Autovector, 5-48
Autovector Interrupt Acknowledge Cycle, 5-48
AVEC Signal, 3-5, 5-4, 5-48, 5-53

— B —
BERR Signal, 3-7, 5-4, 5-25, 5-53, 5-55, 6-4
BG Signal, 3-6, 5-63, 5-66, 5-70
BGACK Signal, 3-6, 5-62, 5-63, 5-66
Binary-Coded Decimal, 8-32
Bit Field Manipulation Instructions, 8-36
Bit Manipulation Instructions, 8-35
BKPT Instruction, 5-50

Flowchart, 6-17
Block Diagram, 1-2
BR Signal, 3-6, 5-63, 5-66, 5-70, 5-71
Breakpoint Acknowledge Cycle, 5-50, 6-17

Flowchart, 5-50
Timing, 5-50

Breakpoint Instruction Exception, 6-17
Bus, 5-24

Arbitration, 5-62
Cycles, 5-1
Master, 5-1
Operation, 5-1, 5-24

Bus Arbitration (MC68020), 5-63

Control Unit, 5-67
Flowchart, 5-63
Read-Modify-Write, 5-68
Timing, 5-63

Bus Arbitration (MC68EC020), 5-70
Control Unit, 5-73
Flowchart, 5-70
Timing, 5-70
Two-Wire, 5-75, A-1

Bus Controller, 5-22, 8-2, 8-5
Bus Cycles, 5-1, 5-25
Bus Error Exception, 6-4, 6-21
Bus Fault, 6-21
Bus Master, 5-1, 5-25, 5-62
Bus Operation, 5-24
Byte Enable Signals, 5-21
Byte Select Control Signals, 9-5

— C —
Cache, 1-13, 4-1, 5-2, 5-22, 5-62, 8-1, 8-7, 9-11

Control, 4-3
Internal Cache Holding Register, 5-21
Reset, 4-3

Cache Address Register (CAAR), 1-7, 4-3, 4-4
Cache Control Register (CACR), 1-7, 4-2, 4-3
CALLM Instruction, 9-14, 9-16, 9-18
CAS Instruction, 5-39
CAS2 Instruction, 5-39
CDIS Signal, 3-7, 4-3
CLK Signal, 3-7
Clock Drivers, 9-10
Condition Codes, 1-7
Conditional Branch Instructions, 8-37
Control Instructions, 8-38
Coprocessor, 6-25, 7-1

Classification, 7-4
Communication Protocol, 7-4
Conditional Instruction Category, 7-10
Coprocessor Context Restore Instruction

Category, 7-22

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

