
NXP USA Inc. - MC68020RC16E Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68020

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 16MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 114-BPGA

Supplier Device Package 114-PGA (34.55x34.55)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68020rc16e

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68020rc16e-4473095
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

MOTOROLA M68020 USER’S MANUAL 5-13

BYTE WRITE

 WORD OPERAND WRITE

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

BYTE WRITE

 D15–D8

D7–D0

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-8. Word Operand Write to Byte Port Timing

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-14 M68020 USER’S MANUAL MOTOROLA

5.2.2 Misaligned Operands

Since operands may reside at any byte boundary, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd
address; a long word is misaligned at an address that is not evenly divisible by four. The
MC68000, MC68008, and MC68010 implementations allow long-word transfers on odd-
word boundaries but force exceptions if word or long-word operand transfers are
attempted at odd-byte addresses. Although the MC68020/EC020 does not enforce any
alignment restrictions for data operands (including PC relative data addresses), some
performance degradation occurs when additional bus cycles are required for long-word or
word operands that are misaligned. For maximum performance, data items should be
aligned on their natural boundaries. All instruction words and extension words must reside
on word boundaries. Attempting to prefetch an instruction word at an odd address causes
an address error exception.

Figure 5-9 shows the transfer (write) of a long-word operand to an odd address in word-
organized memory, which requires three bus cycles. For the first cycle, SIZ1 and SIZ0
specify a long-word transfer, and A2–A0 = 001. Since the port width is 16 bits, only the
first byte of the long word is transferred. The slave device latches the byte and
acknowledges the data transfer, indicating that the port is 16 bits wide. When the
processor starts the second cycle, SIZ1 and SIZ0 specify that three bytes remain to be
transferred with A2–A0 = 010. The next two bytes are transferred during this cycle. The
processor then initiates the third cycle, with SIZ1 and SIZ0 indicating one byte remaining
to be transferred with A2–A0 = 100. The port latches the final byte, and the operation is
complete. Figure 5-10 shows the associated bus transfer signal timing. Figure 5-11 shows
the equivalent operation for a data read cycle.

DATA BUSD31 D16

LONG-WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP3 XXX

A0

1

0

0 1 1 0 0 L H

Figure 5-9. Misaligned Long-Word Operand Write to Word Port Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-16 M68020 USER’S MANUAL MOTOROLA

OP0 OP1 OP2 OP3

31 0LONG-WORD OPERAND (REGISTER)

DATA BUSD31 D16

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

OP3 XXX

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 0 1

1 1 0 1 0

0 1 1 0 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

L H

Figure 5-11. Misaligned Long-Word Operand Read
from Word Port Example

Figures 5-12 and 5-13 show a word transfer (write) to an odd address in word-organized
memory. This example is similar to the one shown in Figures 5-9 and 5-10 except that the
operand is word sized and the transfer requires only two bus cycles. Figure 5-14 shows
the equivalent operation for a data read cycle.

MC68020/EC020

SIZ1 SIZ0 A2 A1

1 0 0 0 1

0 1 0 1 0

A0

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP2 OP3

15 0WORD OPERAND

DATA BUSD31 D16

WORD MEMORY

MSB LSB

XXX

OP3

OP2

XXX

Figure 5-12. Misaligned Word Operand Write to Word Port Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 5-23

A1

SIZ0

SIZ1

R/W

LD

UD

LLD

LMD

UMD

UUD

A0

UUD
UMD
LMD
LLD
UD
LD

UPPER UPPER DATA (32-BIT PORT)
UPPER MIDDLE DATA (32-BIT PORT)
LOWER MIDDLE DATA (32-BIT PORT)
LOWER LOWER DATA (32-BIT PORT)
UPPER DATA (16-BIT PORT)
LOWER DATA (16-BIT PORT)

=
=
=
=
=
=

Figure 5-18. Byte Enable Signal Generation for 16- and 32-Bit Ports

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 5-25

for asynchronous operation can be ignored. All timing parameters referred to are
described in Section 10 Electrical Characteristics. If a system asserts
DSACK1/DSACK0 for the required window around the falling edge of state 2 and obeys
the proper bus protocol by maintaining DSACK1/DSACK0 (and/or BERR/HALT) until and
throughout the clock edge that negates AS (with the appropriate asynchronous input hold
time specified by parameter #47B), no wait states are inserted. The bus cycle runs at its
maximum speed of three clocks per cycle for bus cycles terminated with
DSACK1/DSACK0.

To ensure proper operation in a synchronous system when BERR or BERR/HALT is
asserted after DSACK1/DSACK0, BERR (and HALT) must meet the appropriate setup time
(parameter #27A) prior to the falling clock edge one clock cycle after DSACK1/DSACK0 is
recognized. This setup time is critical, and the MC68020/EC020 may exhibit erratic
behavior if it is violated.

When operating synchronously, the data-in setup (parameter #27) and hold (parameter
#30) times for synchronous cycles may be used instead of the timing requirements for
data relative to the DS signal.

5.3 DATA TRANSFER CYCLES

The transfer of data between the processor and other devices involves the following
signals:

• Address Bus (A31–A0 for the MC68020) (A23–A0 for the MC68EC020)

• Data Bus (D31–D0)

• Control Signals

The address and data buses are both parallel, nonmultiplexed buses. The bus master
moves data on the bus by issuing control signals, and the bus uses a handshake protocol
to ensure correct movement of the data. In all bus cycles, the bus master is responsible
for de-skewing all signals it issues at both the start and end of the cycle. In addition, the
bus master is responsible for de-skewing DSACK1/DSACK0, D31–D0, BERR, HALT, and,
for the MC68020, DBEN from the slave devices. The following paragraphs define read,
write, and read-modify-write cycle operations.

Each of the bus cycles is defined as a succession of states. These states apply to the bus
operation and are different from the processor states described in Section 2 Processing
States. The clock cycles used in the descriptions and timing diagrams of data transfer
cycles are independent of the clock frequency. Bus operations are described in terms of
external bus states.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-34 M68020 USER’S MANUAL MOTOROLA

WRITE

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D0

 LONG WORD

CLK

WRITEBYTE READ

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 Sw Sw S4

READ WITH WAIT STATES

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-25. Read-Write-Read Cycles—32-Bit Port

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-46 M68020 USER’S MANUAL MOTOROLA

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
5.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are:

1. FC2–FC0 are set 111 for CPU address space.

2. A3, A2, and A1 are set to the interrupt request level (the inverted values of IPL2,
IPL1, and IPL0, respectively).

3. The CPU space type field (A19–A16) is set to 1111, the interrupt acknowledge code.

4. Other address signals (A31–A20, A15–A4, and A0 for the MC68020; A23–A20,
A15–A4, and A0 for the MC68EC020) are set to one.

The responding device places the vector number on the data bus during the interrupt
acknowledge cycle. Beyond this, the cycle is terminated normally with DSACK1/DSACK0.
Figure 5-32 is the flowchart of the interrupt acknowledge cycle.

Figure 5-33 shows the timing for an interrupt acknowledge cycle terminated with
DSACK1/DSACK0 .

REQUEST INTERRUPT

 INTERRUPTING DEVICEPROCESSOR

1) PLACE VECTOR NUMBER ON LEAST
 SIGNIFICANT BYTE OF DATA PORT
 (DEPENDS ON PORT SIZE)
2) ASSERT DSACK1/DSACK0
 OR
 ASSERT AVEC FOR AUTOMATIC GENERA-
 TION OF VECTOR NUMBER

PROVIDE VECTOR INFORMATION

ACKNOWLEDGE INTERRUPT

1) INTERRUPT PENDING CONDITION (IPEND FOR
MC68020) RECOGNIZED BY CURRENT INSTRUC-
TION—WAIT FOR INSTRUCTION BOUNDARY.
2) SET R/W TO READ
3) SET FUNCTION CODE TO CPU SPACE
4) PLACE INTERRUPT LEVEL ON A1, A2, AND A3.
 TYPE FIELD = IACK
5) SET SIZE TO BYTE
6) NEGATE IPEND
7) ASSERT AS AND DS

ACQUIRE VECTOR NUMBER

1) LATCH VECTOR NUMBER
2) NEGATE AS AND DS

CONTINUE INTERRUPT EXCEPTION PROCESSING

RELEASE

1) REMOVE VECTOR NUMBER FROM DATA BUS
2) NEGATE DSACK1/DSACK0

* This step does not apply to the MC68EC020.

*

Figure 5-32. Interrupt Acknowledge Cycle Flowchart

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 5-53

5.4.3 Coprocessor Communication Cycles

The MC68020/EC020 coprocessor interface provides instruction-oriented communication
between the processor and as many as eight coprocessors. Coprocessor accesses use
the MC68020/EC020 bus protocol except that the address bus supplies access
information rather than a 32-bit address. The CPU space type field (A19–A16) for a
coprocessor operation is 0010. A15–A13 contain the coprocessor identification number
(CpID), and A5–A0 specify the coprocessor interface register to be accessed. The
memory management unit of an MC68020/EC020 system is always identified by a CpID of
zero and has an extended register select field (A7–A0) in CPU space 0001 for use by the
CALLM and RTM access level checking mechanism. Refer to Section 9 Applications
Information for more details.

5.5 BUS EXCEPTION CONTROL CYCLES

The MC68020/EC020 bus architecture requires assertion of DSACK1/DSACK0 from an
external device to signal that a bus cycle is complete. DSACK1/DSACK0 or AVEC is not
asserted if:

• The external device does not respond,

• No interrupt vector is provided, or

• Various other application-dependent errors occur.

External circuitry can assert B E R R when no device responds by asserting
DSACK1/DSACK0 or AVEC within an appropriate period of time after the processor
asserts AS. Assertion of BERR allows the cycle to terminate and the processor to enter
exception processing for the error condition.

HALT is also used for bus exception control. HALT can be asserted by an external device
for debugging purposes to cause single bus cycle operation or can be asserted in
combination with BERR to cause a retry of a bus cycle in error.

To properly control termination of a bus cycle for a retry or a bus error condition,
DSACK1/DSACK0 , BERR, and HALT can be asserted and negated with the rising edge of
the MC68020/EC020 clock. This procedure ensures that when two signals are asserted
simultaneously, the required setup time (#47A) and hold time (#47B) for both of them is
met for the same falling edge of the processor clock. (Refer to Section 10 Electrical
Characteristics for timing requirements.) This or some equivalent precaution should be
designed into the external circuitry that provides these signals.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-54 M68020 USER’S MANUAL MOTOROLA

The acceptable bus cycle terminations for asynchronous cycles are summarized in
relation to DSACK1/DSACK0 assertion as follows (case numbers refer to Table 5-8):

Normal Termination:
DSACK1/DSACK0 is asserted; BERR and HALT remain negated (case 1).

Halt Termination:
HALT is asserted at same time or before DSACK1/DSACK0, and BERR remains
negated (case 2).

Bus Error Termination:
BERR is asserted in lieu of, at the same time, or before DSACK1/DSACK0 (case 3) or
after DSACK1/DSACK0 (case 4), and HALT remains negated; BERR is negated at the
same time or after DSACK1/DSACK0 .

Retry Termination:
HALT and BERR are asserted in lieu of, at the same time, or before DSACK1/DSACK0

(case 5) or after DSACK1/DSACK0 (case 6); BERR is negated at the same time or after
DSACK1/DSACK0 ; HALT may be negated at the same time or after BERR.

Table 5-8. DSACK1/DSACK0 , BERR, HALT Assertion Results

Asserted on Rising
Edge of State

Case No. Control Signal n n+2 Result

1 DSACK1/DSACK0

BERR

HALT

A
N
N

S
N
X

Normal cycle terminate and continue.

2 DSACK1/DSACK0

BERR

HALT

A
N

A/S

S
N
S

Normal cycle terminate and halt. Continue when
HALT negated.

3 DSACK1/DSACK0

BERR

HALT

N/A
A
N

X
S
N

Terminate and take bus error exception, possibly
deferred.

4 DSACK1/DSACK0

BERR

HALT

A
N
N

X
A
N

Terminate and take bus error exception, possibly
deferred.

5 DSACK1/DSACK0

BERR

HALT

N/A
A

A/S

X
S
S

Terminate and retry when HALT negated.

6 DSACK1/DSACK0

BERR

HALT

A
N
N

X
A
A

Terminate and retry when HALT negated.

Legend:
n—The number of current even bus state (e.g., S2, S4, etc.)
A—Signal is asserted in this bus state
N—Signal is not asserted and/or remains negated in this bus state
X—Don’t care
S—Signal was asserted in previous state and remains asserted in this state

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-62 M68020 USER’S MANUAL MOTOROLA

5.6 BUS SYNCHRONIZATION

The MC68020/EC020 overlaps instruction execution—that is, during bus activity for one
instruction, instructions that do not use the external bus can be executed. Due to the
independent operation of the on-chip cache relative to the operation of the bus controller,
many subsequent instructions can be executed, resulting in seemingly nonsequential
instruction execution. When this is not desired and the system depends on sequential
execution following bus activity, the NOP instruction can be used. The NOP instruction
forces instruction and bus synchronization by freezing instruction execution until all
pending bus cycles have completed.

An example of the use of the NOP instruction for this purpose is the case of a write
operation of control information to an external register in which the external hardware
attempts to control program execution based on the data that is written with the
conditional assertion of BERR. Since the MC68020/EC020 cannot process the bus error
until the end of the bus cycle, the external hardware has not successfully interrupted
program execution. To prevent a subsequent instruction from executing until the external
cycle completes, the NOP instruction can be inserted after the instruction causing the
write. In this case, bus error exception processing proceeds immediately after the write
and before subsequent instructions are executed. This is an irregular situation, and the
use of the NOP instruction for this purpose is not required by most systems.

5.7 BUS ARBITRATION

The bus design of the MC68020/EC020 provides for a single bus master at any one time:
either the processor or an external device. One or more of the external devices on the bus
can have the capability of becoming bus master. Bus arbitration is the protocol by which
an external device becomes bus master; the bus controller in the MC68020/EC020
manages the bus arbitration signals so that the processor has the lowest priority.

Bus arbitration differs in the MC68020 and MC68EC020 due to the absence of BGACK in
the MC68EC020. Because of this difference, bus arbitration of the MC68020 and
MC68EC020 is discussed separately.

External devices that need to obtain the bus must assert the bus arbitration signals in the
sequences described in 5.7.1 MC68020 Bus Arbitration or 5.7.2 MC68EC020 Bus
Arbitration. Systems having several devices that can become bus master require
external circuitry to assign priorities to the devices, so that when two or more external
devices attempt to become bus master at the same time, the one having the highest
priority becomes bus master first.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 5-65

A31–A0

FC2–FC0

ECS

OCS

AS

DS

DSACK1

CLK

S0 S4 S0

SIZ1–SIZ0

R/W

DSACK0

DBEN

S2 S2

BGACK

BG

BR

D31–D0

PROCESSOR DMA DEVICE PROCESSOR

Figure 5-43. MC68020 Bus Arbitration Operation Timing for Single Request

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 6-3

Table 6-1. Exception Vector Assignments

Vector Offset

Vector Number Hex Space Assignment

0
1
2
3

000
004
008
00C

SP
SP
SD
SD

Reset Initial Interrupt Stack Pointer
Reset Initial Program Counter
Bus Error
Address Error

4
5
6
7

010
014
018
01C

SD
SD
SD
SD

Illegal Instruction
Zero Divide
CHK, CHK2 Instruction
cpTRAPcc, TRAPcc, TRAPV Instructions

8
9

10
11

020
024
028
02C

SD
SD
SD
SD

Privilege Violation
Trace
Line 1010 Emulator
Line 1111 Emulator

12
13
14
15

030
034
038
03C

SD
SD
SD
SD

(Unassigned, Reserved)
Coprocessor Protocol Violation
Format Error
Uninitialized Interrupt

16–23 040
05C

SD
SD

Unassigned, Reserved

24
25
26
27

060
064
068
06C

SD
SD
SD
SD

Spurious Interrupt
Level 1 Interrupt Autovector
Level 2 Interrupt Autovector
Level 3 Interrupt Autovector

28
29
30
31

070
074
078
07C

SD
SD
SD
SD

Level 4 Interrupt Autovector
Level 5 Interrupt Autovector
Level 6 Interrupt Autovector
Level 7 Interrupt Autovector

32–47 080
0BC

SD
SD

TRAP #0–15 Instruction Vectors

48
49
50
51

0C0
0C4
0C8
0CC

SD
SD
SD
SD

FPCP Branch or Set on Unordered Condition
FPCP Inexact Result
FPCP Divide by Zero
FPCP Underflow

52
53
54
55

0D0
0D4
0D8
0DC

SD
SD
SD
SD

FPCP Operand Error
FPCP Overflow
FPCP Signaling NAN
Unassigned, Reserved

56
57
58

0E0
0E4
0E8

SD
SD
SD

PMMU Configuration
PMMU Illegal Operation
PMMU Access Level Violation

59–63 0EC
0FC

SD
SD

Unassigned, Reserved

64–255 100
3FC

SD
SD

User-Defined Vectors (192)

SP—Supervisor Program Space
SD—Supervisor Data Space

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 6-5

OTHERWISE
SP (VECTOR #0)

EXIT

FETCH VECTOR #0

(DOUBLE BUS FAULT)

 S (SR)
M (SR)

T1, T0 (SR)
I2–I0 (SR)

VBR
CACR

1
0
0
$7
$00000000
$00000000

➧
➧
➧
➧
➧
➧

(DOUBLE BUS FAULT)

(DOUBLE BUS FAULT)

ENTRY

OTHERWISE
BEGIN INSTRUCTION

EXECUTION

OTHERWISE

INSTRUCTION CACHE
ENTRIES INVALIDATED

➧

FETCH VECTOR #1

PC (VECTOR #1)

➧

PREFETCH 3 WORDS

EXIT

EXIT

EXIT

BUS ERROR

BUS ERROR

BUS ERROR OR
ADDRESS ERROR

Figure 6-1. Reset Operation Flowchart

The processor begins exception processing for a bus error by making an internal copy of
the current SR. The processor then enters the supervisor privilege level (by setting the S-
bit in the SR) and clears the T1 and T0 bits in the SR. The processor generates exception
vector number 2 for the bus error vector. It saves the vector offset, PC, and the internal
copy of the SR on the active supervisor stack. The saved PC value is the logical address
of the instruction that was executing at the time the fault was detected. This is not
necessarily the instruction that initiated the bus cycle since the processor overlaps

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

6-16 M68020 USER’S MANUAL MOTOROLA

TEMP
S

T1, T0

SR
1
0

➧
➧

➧

UPDATE I2–I0

➧
➧

➧
➧

– (SP) TEMP
– (SP) PC

– (SP) FORMAT WORD
– (SP) OTHER EXCEPTION
DEPENDENT INFORMATION

ONCE PER INSTRUCTION

EXECUTE INTERRUPT
ACKNOWLEDGE CYCLE

AT INSTRUCTION
BOUNDARY

EXIT

M = 1

TEMP SR
M 0

➧
➧

M = 0
PC VECTOR TABLE ENTRY

➧

PREFETCH 3 WORDS

END OF EXCEPTION PROCESSING
FOR THE INTERRUPT

BEGIN EXECUTION OF THE INTERRUPT
HANDLER ROUTINE OR PROCESS A
HIGHER PRIORITY EXCEPTION

THESE
INDIVIDUAL

BUS CYCLES
MAY OCCUR

IN ANY ORDER

NEGATE IPEND*

OTHERWISE

IPEND ASSERTED*

Does not apply to the MC68EC020.*

Figure 6-5. Interrupt Exception Processing Flowchart

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-1

SECTION 7
COPROCESSOR INTERFACE DESCRIPTION

The M68000 family of general-purpose microprocessors provides a level of performance
that satisfies a wide range of computer applications. Special-purpose hardware, however,
can often provide a higher level of performance for a specific application. The coprocessor
concept allows the capabilities and performance of a general-purpose processor to be
enhanced for a particular application without encumbering the main processor
architecture. A coprocessor can efficiently meet specific capability requirements that must
typically be implemented in software by a general-purpose processor. With a general-
purpose main processor and the appropriate coprocessor(s), the processing capabilities of
a system can be tailored to a specific application.

The MC68020/EC020 supports the M68000 coprocessor interface described in this
section. This section is intended for designers who are implementing coprocessors to
interface with the MC68020/EC020.

The designer of a system that uses one or more Motorola coprocessors (the MC68881 or
MC68882 floating-point coprocessor, for example) does not require a detailed knowledge
of the M68000 coprocessor interface. Motorola coprocessors conform to the interface
described in this section. Typically, they implement a subset of the interface, and that
subset is described in the coprocessor user's manual. These coprocessors execute
Motorola-defined instructions that are described in the user's manual for each
coprocessor.

7.1 INTRODUCTION

The distinction between standard peripheral hardware and an M68000 coprocessor is
important from a programming model perspective. The programming model of the main
processor consists of the instruction set, register set, and memory map. An M68000
coprocessor is a device or set of devices that communicates with the main processor
through the protocol defined as the M68000 coprocessor interface. The programming
model for a coprocessor is different than that for a peripheral device. A coprocessor adds
additional instructions and generally additional registers and data types to the
programming model that are not directly supported by the main processor architecture.
The additional instructions are dedicated coprocessor instructions that utilize the
coprocessor capabilities. The necessary interactions between the main processor and the
coprocessor that provide a given service are transparent to the programmer. That is, the
programmer does not need to know the specific communication protocol between the
main processor and the coprocessor because this protocol is implemented in hardware.
Thus, the coprocessor can provide capabilities to the user without appearing separate
from the main processor.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-35

The transfer operation word primitive uses the CA and PC bits as described in 7.4.2
Coprocessor Response Primitive General Format. If this primitive is issued with CA = 0
during a conditional category instruction, the main processor initiates protocol violation
exception processing.

When the main processor reads this primitive from the response CIR, it transfers the
F-line operation word of the currently executing coprocessor instruction to the operation
word CIR. The value of the scanPC is not affected by this primitive.

7.4.7 Transfer from Instruction Stream Primitive

The transfer from instruction stream primitive initiates transfers of operands from the
instruction stream to the coprocessor. This primitive applies to general and conditional
category instructions. Figure 7-27 shows the format of the transfer from instruction stream
primitive.

15 0

CA PC 0

14 13 12

0 1

11

1

10

1

9

1

8 7

LENGTH

Figure 7-27. Transfer from Instruction Stream Primitive Format

The transfer from instruction stream primitive uses the CA and PC bits as described in
7.4.2 Coprocessor Response Primitive General Format. If this primitive is issued with
CA = 0 during a conditional category instruction, the main processor initiates protocol
violation exception processing.

The length field of this primitive specifies the length, in bytes, of the operand to be
transferred from the instruction stream to the coprocessor. The length must be an even
number of bytes. If an odd length is specified, the main processor initiates protocol
violation exception processing (refer to 7.5.2.1 Protocol Violations).

This primitive transfers coprocessor-defined extension words to the coprocessor. When
the main processor reads this primitive from the response CIR, it copies the number of
bytes indicated by the length field from the instruction stream to the operand CIR. The first
word or long word transferred is at the location pointed to by the scanPC when the
primitive is read by the main processor. The scanPC is incremented after each word or
long word is transferred. When execution of the primitive has completed, the scanPC has
been incremented by the total number of bytes transferred and points to the word
following the last word transferred. The main processor transfers the operands from the
instruction stream, using a sequence of long-word writes, to the operand CIR. If the length
field is not an even multiple of four bytes, the last two bytes from the instruction stream are
transferred using a word write to the operand CIR.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7-42 M68020 USER’S MANUAL MOTOROLA

The D/A bit specifies whether the primitive transfers an address or data register. D/A = 0
indicates a data register, and D/A = 1 indicates an address register. The register field
contains the register number.

If DR = 0, the main processor writes the long-word operand in the specified register to the
operand CIR. If DR = 1, the main processor reads a long-word operand from the operand
CIR and transfers it to the specified data or address register.

7.4.14 Transfer Main Processor Control Register Primitive

The transfer main processor control register primitive transfers a long-word operand
between one of its control registers and the coprocessor. This primitive applies to general
and conditional category instructions. Figure 7-34 shows the format of the transfer main
processor control register primitive.

15

CA PC DR

14 13 12

0 1

11 10 9 07

1 0

2

0

3

0

4

0

5

0

6

001

8

0 0

1

Figure 7-34. Transfer Main Processor Control Register Primitive Format

The transfer main processor control register primitive uses the CA, PC, and DR bits as
described in 7.4.2 Coprocessor Response Primitive General Format. If the
coprocessor issues this primitive with CA = 0 during a conditional category instruction, the
main processor initiates protocol violation exception processing.

When the main processor receives this primitive, it reads a control register select code
from the register select CIR. This code determines which main processor control register
is transferred. Table 7-5 lists the valid control register select codes. If the control register
select code is not valid, the MC68020/EC020 initiates protocol violation exception
processing (refer to 7.5.2.1 Protocol Violations).

Table 7-5. Main Processor Control
Register Select Codes

Select Code Control Register

$x000 SFC

$x001 DFC

$x002 CACR

$x800 USP

$x801 VBR

$x802 CAAR

$x803 MSP

$x804 ISP

All other codes cause a protocol violation exception.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-49

The PC value saved in this stack frame is the operation word address of the coprocessor
instruction during which the primitive is received. The scanPC field contains the value of
the MC68020/EC020 scanPC when the primitive is received. If the current instruction does
not evaluate an effective address prior to the exception request primitive, the value of the
effective address field in the stack frame is undefined.

The coprocessor uses this primitive to request exception processing for an exception
during the instruction dialog with the main processor. If the exception handler does not
modify the stack frame, the MC68020/EC020 returns from the exception handler and
reads the response CIR. Thus, the main processor attempts to continue executing the
suspended instruction by reading the response CIR and processing the primitive it
receives.

7.4.20 Take Postinstruction Exception Primitive

The take postinstruction exception primitive initiates exception processing using a
coprocessor-supplied exception vector number and the postinstruction exception stack
frame format. This primitive applies to general and conditional category instructions.
Figure 7-44 shows the format of the take postinstruction exception primitive.

15 0

0 PC 0

14 13 12

1 1

11 10 9 8 7

VECTOR NUMBER1 1 0

Figure 7-44. Take Postinstruction Exception Primitive Format

The take postinstruction exception primitive uses the PC bit as described in 7.4.2
Coprocessor Response Primitive General Format. The vector number field contains
the exception vector number used by the main processor to initiate exception processing.

When the main processor receives this primitive, it acknowledges the coprocessor
exception request by writing an exception acknowledge mask to the control CIR (refer to
7.3.2 Control CIR). The MC68020/EC020 then performs exception processing as
described in Section 6 Exception Processing. The vector number for the exception is
taken from the vector number field of the primitive, and the MC68020/EC020 uses the six-
word stack frame format shown in Figure 7-45.

0111215

STATUS REGISTER

0 0 1 0 VECTOR NUMBER

SCAN PC

+06

+02

SP

PROGRAM COUNTER
+08

Figure 7-45. MC68020/EC020 Postinstruction Stack Frame

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 8-21

BEST CASE (Continued)

Source Destination

Address Mode (d8,An,Xn) (d16,An,Xn) (B) (d16,B) (d32,B) ([B],I) ([B],I,d16) ([B],I,d32)

Rn 4(0/0/1) 6(0/0/1) 5(0/0/1) 7(0/0/1) 11(0/0/1) 9(1/0/1) 11(1/0/1) 12(1/0/1)

#<data>.B,W 4(0/0/1) 6(0/0/1) 5(0/0/1) 7(0/0/1) 11(0/0/1) 9(1/0/1) 11(1/0/1) 12(1/0/1)

#<data>.L 4(0/0/1) 6(0/0/1) 5(0/0/1) 7(0/0/1) 11(0/0/1) 9(1/0/1) 11(1/0/1) 12(1/0/1)

(An) 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(An)+ 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

–(An) 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(d16,An) or
(d16,PC)

8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(xxx).W 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(xxx).L 8(1/0/1) 10(1/0/1) 9(1/0/1) 11(1/0/1) 15(1/0/1) 13(2/0/1) 15(2/0/1) 16(2/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

9(1/0/1) 10(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(B) 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(d16,B) 11(1/0/1) 13(1/0/1) 12(1/0/1) 14(1/0/1) 18(1/0/1) 16(2/0/1) 18(2/0/1) 19(2/0/1)

(d32,B) 15(1/0/1) 17(1/0/1) 18(1/0/1) 18(1/0/1) 22(1/0/1) 20(2/0/1) 22(2/0/1) 23(2/0/1)

([B],I) 14(2/0/1) 16(2/0/1) 17(2/0/1) 17(2/0/1) 21(2/0/1) 19(3/0/1) 21(3/0/1) 22(3/0/1)

([B],I,d16) 16(2/0/1) 18(2/0/1) 19(2/0/1) 19(2/0/1) 23(2/0/1) 21(3/0/1) 23(3/0/1) 24(3/0/1)

([B],I,d32) 16(2/0/1) 18(2/0/1) 19(2/0/1) 19(2/0/1) 23(2/0/1) 21(3/0/1) 23(3/0/1) 24(3/0/1)

([d16,B],I) 16(2/0/1) 18(2/0/1) 19(2/0/1) 19(2/0/1) 23(2/0/1) 21(3/0/1) 23(3/0/1) 24(3/0/1)

([d16,B],I,d16) 18(2/0/1) 20(2/0/1) 21(2/0/1) 21(2/0/1) 25(2/0/1) 23(3/0/1) 25(3/0/1) 26(3/0/1)

([d16,B],I,d32) 18(2/0/1) 20(2/0/1) 21(2/0/1) 21(2/0/1) 25(2/0/1) 23(3/0/1) 25(3/0/1) 26(3/0/1)

([d32,B],I) 20(2/0/1) 22(2/0/1) 23(2/0/1) 23(2/0/1) 27(2/0/1) 25(3/0/1) 27(3/0/1) 28(3/0/1)

([d32,B],I,d16) 22(2/0/1) 24(2/0/1) 25(2/0/1) 25(2/0/1) 29(2/0/1) 27(3/0/1) 29(3/0/1) 30(3/0/1)

([d32,B],I,d32) 22(2/0/1) 24(2/0/1) 25(2/0/1) 25(2/0/1) 29(2/0/1) 27(3/0/1) 29(3/0/1) 30(3/0/1)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 8-39

8.2.17 Exception-Related Instructions

The exception-related instructions table indicates the number of clock periods needed for
the processor to perform the specified exception-related action. Footnotes specify when it
is necessary to add the entry from another table to calculate the total effective execution
time for the given instruction. The total number of clock cycles is outside the parentheses;
the number of read, prefetch, and write cycles is given inside the parentheses as (r/p/w).
These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

BKPT 9(1/0/0) 10(1/0/0) 10(1/0/0)

Interrupt (I-Stack) 26(2/0/4) 26(2/0/4) 33(2/2/4)

Interrupt (M-Stack) 41(2/0/8) 41(2/0/8) 48(2/2/8)

RESET Instruction 518(0/0/0) 518(0/0/0) 519(0/1/0)

STOP 8(0/0/0) 8(0/0/0) 8(0/0/0)

Trace 25(1/0/5) 25(1/0/5) 32(1/2/5)

TRAP #n 20(1/0/4) 20(1/0/4) 27(1/2/4)

Illegal Instruction 20(1/0/4) 20(1/0/4) 27(1/2/4)

A-Line Trap 20(1/0/4) 20(1/0/4) 27(1/2/4)

F-Line Trap 20(1/0/4) 20(1/0/4) 27(1/2/4)

Privilege Violation 20(1/0/4) 20(1/0/4) 27(1/2/4)

TRAPcc (Trap) 23(1/0/5) 25(1/0/5) 32(1/2/5)

TRAPcc (No Trap) 1(0/0/0) 4(0/0/0) 5(0/1/0)

TRAPcc.W (Trap) 23(1/0/5) 25(1/0/5) 33(1/3/5)

TRAPcc.W (No Trap) 3(0/0/0) 6(0/0/0) 7(0/1/0)

TRAPcc.L (Trap) 23(1/0/5) 25(1/0/5) 33(1/3/5)

TRAPcc.L (No Trap) 5(0/0/0) 8(0/0/0) 10(0/2/0)

TRAPV (Trap) 23(1/0/5) 25(1/0/5) 32(1/2/5)

TRAPV (No Trap) 1(0/0/0) 4(0/0/0) 5(0/1/0)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

