
Freescale Semiconductor - MC68020RC20E Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68020

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 20MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 114-BPGA

Supplier Device Package 114-PGA (34.55x34.55)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68020rc20e

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68020rc20e-4470316
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

MOTOROLA M68020 USER’S MANUAL 1-5

078151631

D0

D1

D2

D3

D4

D5

D6

D7

DATA
REGISTERS

0151631

A0

A1

A2

A3

A4

A5

A6

ADDRESS
REGISTERS

0151631

A7 (USP)

PC

CCR
CONDITION CODE
REGISTER

78

031

15

0

PROGRAM
COUNTER

USER STACK
POINTER

0

Figure 1-2. User Programming Model

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 2-5

2.3 EXCEPTION PROCESSING

An exception is defined as a special condition that preempts normal processing. Both
internal and external conditions can cause exceptions. External conditions that cause
exceptions are interrupts from external devices, bus errors, coprocessor-detected errors,
and reset. Instructions, address errors, tracing, and breakpoints are internal conditions
that cause exceptions. The TRAP, TRAPcc, TRAPV, cpTRAPcc, CHK, CHK2, RTE,
BKPT, CALLM, RTM, cp RESTORE, DIVS and DIVU instructions can generate exceptions
as part of their normal execution. In addition, illegal instructions, privilege violations, and
coprocessor protocol violations cause exceptions.

Exception processing, which is the transition from the normal processing of a program to
the processing required for the exception condition, involves the exception vector table
and an exception stack frame. The following paragraphs describe the exception vectors
and a generalized exception stack frame. Exception processing is discussed in detail in
Section 6 Exception Processing. Coprocessor-detected exceptions are discussed in
detail in Section 7 Coprocessor Interface Description.

2.3.1 Exception Vectors

The VBR contains the base address of the 1024-byte exception vector table, which
consists of 256 exception vectors. Exception vectors contain the memory addresses of
routines that begin execution at the completion of exception processing. These routines
perform a series of operations appropriate for the corresponding exceptions. Because the
exception vectors contain memory addresses, each consists of one long word, except for
the reset vector. The reset vector consists of two long words: the address used to initialize
the ISP and the address used to initialize the PC.

The address of an exception vector is derived from an 8-bit vector number and the VBR.
The vector numbers for some exceptions are obtained from an external device; others are
supplied automatically by the processor. The processor multiplies the vector number by
four to calculate the vector offset, which it adds to the VBR. The sum is the memory
address of the vector. All exception vectors are located in supervisor data space, except
the reset vector, which is located in supervisor program space. Only the initial reset vector
is fixed in the processor's memory map; once initialization is complete, there are no fixed
assignments. Since the VBR provides the base address of the vector table, the vector
table can be located anywhere in memory; it can even be dynamically relocated for each
task that is executed by an operating system. Details of exception processing are provided
in Section 6 Exception Processing , and Table 6-1 lists the exception vector
assignments.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

2-6 M68020 USER’S MANUAL MOTOROLA

2.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on
the top of the supervisor stack. This context is organized in a format called the exception
stack frame. This information always includes a copy of the SR, the PC, the vector offset
of the vector, and the frame format field. The frame format field identifies the type of stack
frame. The RTE instruction uses the value in the format field to properly restore the
information stored in the stack frame and to deallocate the stack space. The general form
of the exception stack frame is illustrated in Figure 2-1. Refer to Section 6 Exception
Processing for a complete list of exception stack frames.

015

SSP

12

FORMAT

STATUS REGISTER

PROGRAM COUNTER

VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2, 6, 12, OR 42 WORDS, IF NEEDED)

Figure 2-1. General Exception Stack Frame

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-8 M68020 USER’S MANUAL MOTOROLA

Table 5-4 lists the bytes required on the data bus for read cycles. The entries shown as
OP3, OP2, OP1, and OP0 are portions of the requested operand that are read or written
during that bus cycle and are defined by SIZ1, SIZ0, A1, and A0 for the bus cycle.

Table 5-4. Data Bus Requirements for Read Cycles

Byte Port
External

Data Bytes
Required

Word Port
External Data Bytes

Required

Long-Word Port
External Data Bytes

Required
AddressSizeTransfer

Size

SIZ1 SIZ0 A1 A0

OP3 OP3

OP3

OP3

OP3 OP3

OP3

OP3

OP3

D31–D24D23–D16D31–D24D23–D16D31–D24 D7–D0D15–D8

OP3

OP3

OP3

Byte 0

1

1

1

1 0 0

0

0

0

1

1

0 1

0

1

OP2 OP2

OP2

OP2

OP2 OP2

OP2

OP2

OP2

OP2

OP2

OP2

Word 1

0

1

1

0 0 0

1

1

1

0

0

0 1

0

1

OP1 OP1

OP1

OP1

OP1 OP1

OP1

OP1

OP1

OP1

OP1

OP1

3 Bytes 1

1

1

1

1 0 0

1

1

1

1

1

0 1

0

1

OP0 OP0

OP0

OP0

OP0 OP0

OP0

OP0

OP0

OP0

OP0

OP0

Long Word 0

0

1

1

0 0 0

0

0

0

0

0

0 1

0

1

OP3

OP3

OP2

OP2

OP1

OP1

OP1

OP1

OP2

OP1

OP2

OP3

OP2

OP3OP2

OP3OP2

OP3

OP3

OP3

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-14 M68020 USER’S MANUAL MOTOROLA

5.2.2 Misaligned Operands

Since operands may reside at any byte boundary, they may be misaligned. A byte
operand is properly aligned at any address; a word operand is misaligned at an odd
address; a long word is misaligned at an address that is not evenly divisible by four. The
MC68000, MC68008, and MC68010 implementations allow long-word transfers on odd-
word boundaries but force exceptions if word or long-word operand transfers are
attempted at odd-byte addresses. Although the MC68020/EC020 does not enforce any
alignment restrictions for data operands (including PC relative data addresses), some
performance degradation occurs when additional bus cycles are required for long-word or
word operands that are misaligned. For maximum performance, data items should be
aligned on their natural boundaries. All instruction words and extension words must reside
on word boundaries. Attempting to prefetch an instruction word at an odd address causes
an address error exception.

Figure 5-9 shows the transfer (write) of a long-word operand to an odd address in word-
organized memory, which requires three bus cycles. For the first cycle, SIZ1 and SIZ0
specify a long-word transfer, and A2–A0 = 001. Since the port width is 16 bits, only the
first byte of the long word is transferred. The slave device latches the byte and
acknowledges the data transfer, indicating that the port is 16 bits wide. When the
processor starts the second cycle, SIZ1 and SIZ0 specify that three bytes remain to be
transferred with A2–A0 = 010. The next two bytes are transferred during this cycle. The
processor then initiates the third cycle, with SIZ1 and SIZ0 indicating one byte remaining
to be transferred with A2–A0 = 100. The port latches the final byte, and the operation is
complete. Figure 5-10 shows the associated bus transfer signal timing. Figure 5-11 shows
the equivalent operation for a data read cycle.

DATA BUSD31 D16

LONG-WORD OPERAND

OP0 OP1 OP2 OP3

31 0

WORD MEMORY

MSB LSB

XXX OP0

OP1 OP2

MC68020/EC020

SIZ1 SIZ0 A2 A1

0 0 0 0

1 1 0 1

MEMORY CONTROL

DSACK1 DSACK0

L H

L H

OP3 XXX

A0

1

0

0 1 1 0 0 L H

Figure 5-9. Misaligned Long-Word Operand Write to Word Port Example

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 5-27

ACQUIRE DATA

1) LATCH DATA
2) NEGATE AS AND DS
3) NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1) DECODE ADDRESS
2) PLACE DATA ON D31–D24 OR
 D23–D16 OR
 D15–D8 OR
 D7–D0
 (BASED ON A1, A0, AND BUS WIDTH)
3) ASSERT DSACK1/DSACK0

TERMINATE CYCLE

1) REMOVE DATA FROM D31–D0
2) NEGATE DSACK1/DSACK0

EXTERNAL DEVICEPROCESSOR

ADDRESS DEVICE

1) ASSERT ECS/OCS FOR ONE-HALF CLOCK
2) SET R/W TO READ
3) DRIVE ADDRESS ON A31–A0
4) DRIVE FUNCTION CODE ON FC2–FC0
5) DRIVE SIZ1, SIZ0 (FOUR BYTES)
6) ASSERT AS
7) ASSERT DS
8) ASSERT DBEN*

* This step does not apply to the MC68EC020.
For the MC68EC020, A23–A0.**

*

**

*

Figure 5-20. Byte Read Cycle Flowchart

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-46 M68020 USER’S MANUAL MOTOROLA

The interrupt acknowledge cycle is a read cycle. It differs from the read cycle described in
5.3.1 Read Cycle in that it accesses the CPU address space. Specifically, the differences
are:

1. FC2–FC0 are set 111 for CPU address space.

2. A3, A2, and A1 are set to the interrupt request level (the inverted values of IPL2,
IPL1, and IPL0, respectively).

3. The CPU space type field (A19–A16) is set to 1111, the interrupt acknowledge code.

4. Other address signals (A31–A20, A15–A4, and A0 for the MC68020; A23–A20,
A15–A4, and A0 for the MC68EC020) are set to one.

The responding device places the vector number on the data bus during the interrupt
acknowledge cycle. Beyond this, the cycle is terminated normally with DSACK1/DSACK0.
Figure 5-32 is the flowchart of the interrupt acknowledge cycle.

Figure 5-33 shows the timing for an interrupt acknowledge cycle terminated with
DSACK1/DSACK0 .

REQUEST INTERRUPT

 INTERRUPTING DEVICEPROCESSOR

1) PLACE VECTOR NUMBER ON LEAST
 SIGNIFICANT BYTE OF DATA PORT
 (DEPENDS ON PORT SIZE)
2) ASSERT DSACK1/DSACK0
 OR
 ASSERT AVEC FOR AUTOMATIC GENERA-
 TION OF VECTOR NUMBER

PROVIDE VECTOR INFORMATION

ACKNOWLEDGE INTERRUPT

1) INTERRUPT PENDING CONDITION (IPEND FOR
MC68020) RECOGNIZED BY CURRENT INSTRUC-
TION—WAIT FOR INSTRUCTION BOUNDARY.
2) SET R/W TO READ
3) SET FUNCTION CODE TO CPU SPACE
4) PLACE INTERRUPT LEVEL ON A1, A2, AND A3.
 TYPE FIELD = IACK
5) SET SIZE TO BYTE
6) NEGATE IPEND
7) ASSERT AS AND DS

ACQUIRE VECTOR NUMBER

1) LATCH VECTOR NUMBER
2) NEGATE AS AND DS

CONTINUE INTERRUPT EXCEPTION PROCESSING

RELEASE

1) REMOVE VECTOR NUMBER FROM DATA BUS
2) NEGATE DSACK1/DSACK0

* This step does not apply to the MC68EC020.

*

Figure 5-32. Interrupt Acknowledge Cycle Flowchart

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-58 M68020 USER’S MANUAL MOTOROLA

CLK

A31–A0

FC2–FC0

R/W

ECS

OCS

AS

DS

DSACK0

DBEN

D31–D0

IPL2–IPL0

DSACK1

S0 S2 Sw S4 S0 S2Sw S4

SIZ1–SIZ0

BERR

HALT

WRITE WITH BERR ASSERTED INTERNAL
PROCESSING

STACK WRITE

**

**

**

*

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-39. Late Bus Error with DSACK1/DSACK0

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

5-76 M68020 USER’S MANUAL MOTOROLA

An example of MC68EC020 bus arbitration to a DMA device that supports three-wire bus
arbitration is described in Appendix A Interfacing an MC68EC020 to a DMA Device
That Supports a Three-Wire Bus Arbitration Protocol .

AS

BG

BR

BGACK

ALTERNATE
 BUS MASTER

AS

BG

MC68EC020

BR

Figure 5-50. Interface for Three-Wire to Two-Wire Bus Arbitration

5.8 RESET OPERATION

RESET is a bidirectional signal with which an external device resets the system or the
processor resets external devices. When power is applied to the system, external circuitry
should assert RESET for a minimum of 520 clocks after VCC and clock timing have
stabilized and are within specification limits. Figure 5-51 is a timing diagram of the power-
up reset operation, showing the relationships between RESET, VCC, and bus signals. The
clock signal is required to be stable by the time VCC reaches the minimum operating
specification. During the reset period, the entire bus three-states (except for non-three-
statable signals, which are driven to their inactive state). Once RESET negates, all control
signals are negated, the data bus is in read mode, and the address bus is driven. After
this, the first bus cycle for reset exception processing begins.

The external RESET signal resets the processor and the entire system. Except for the
initial reset, RESET should be asserted for at least 520 clock periods to ensure that the
processor resets. Asserting RESET for 10 clock periods is sufficient for resetting the
processor logic; the additional clock periods prevent a RESET instruction from overlapping
the external RESET signal.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 5-77

ISP
READ
STARTS

ALL CONTROL SIGNALS
NEGATED, DATA BUS IN
READ MODE, ADDRESS

BUS DRIVEN

ENTIRE BUS
THREE-
STATED

BUS STATE UNKNOWN

t ≥ 520 CLOCKS

t < 4 CLOCKS

4 CLOCKS

CLK

 +5 V

VCC

BUS
CYCLES

RESET

Figure 5-51. Initial Reset Operation Timing

Resetting the processor causes any bus cycle in progress to terminate as if
DSACK1/DSACK0 or BERR had been asserted. In addition, the processor initializes
registers appropriately for a reset exception. Exception processing for a reset operation is
described in Section 6 Exception Processing.

When a RESET instruction is executed, the processor drives the RESET signal for 512
clock cycles. In this case, the processor resets the external devices of the system, and the
internal registers of the processor are unaffected. The external devices connected to the
RESET signal are reset at the completion of the RESET instruction. An external RESET

signal that is asserted to the processor during execution of a RESET instruction must
extend beyond the reset period of the instruction by at least eight clock cycles to reset the
processor. Figure 5-52 shows the timing information for the RESET instruction.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-3

model of sequential, nonconcurrent instruction execution at the user level. Consequently,
the programmer can assume that the images of registers and memory affected by a given
instruction have been updated when the next instruction in the sequence accessing these
registers or memory locations is executed.

The M68000 coprocessor interface provides full support of all operations necessary for
nonconcurrent operation of the main processor and its associated coprocessors. Although
the M68000 coprocessor interface allows concurrency in coprocessor execution, the
coprocessor designer is responsible for implementing this concurrency while maintaining a
programming model based on sequential nonconcurrent instruction execution.

For example, if the coprocessor determines that instruction B does not use or alter
resources to be altered or used by instruction A, instruction B can be executed
concurrently (if the execution hardware is also available). Thus, the required instruction
interdependencies and sequences of the program are always respected. The MC68882
coprocessor offers concurrent instruction execution; whereas, the MC68881 coprocessor
does not. However, the MC68020/EC020 can execute instructions concurrently with
coprocessor instruction execution in the MC68881.

7.1.3 Coprocessor Instruction Format

The instruction set for a given coprocessor is defined by the design of that coprocessor.
When a coprocessor instruction is encountered in the main processor instruction stream,
the MC68020/EC020 hardware initiates communication with the coprocessor and
coordinates any interaction necessary to execute the instruction with the coprocessor. A
programmer needs to know only the instruction set and register set defined by the
coprocessor to use the functions provided by the coprocessor hardware.

The instruction set of an M68000 coprocessor uses a subset of the F-line operation words
in the M68000 instruction set. The operation word is the first word of any M68000 family
instruction. The F-line operation word contains ones in bits 15–12 (refer to Figure 7-1); the
remaining bits are coprocessor and instruction dependent. The F-line operation word may
be followed by as many extension words as are required to provide additional information
necessary for the execution of the coprocessor instruction.

15 0

1 1 1

14 13 12

1

11

CpID

9 8

TYPE

6 5

TYPE DEPENDENT

Figure 7-1. F-Line Coprocessor Instruction Operation Word

As shown in Figure 7-1, bits 11–9 of the F-line operation word encode the coprocessor
identification (CpID) field. The MC68020/EC020 uses the CpID field to indicate the
coprocessor to which the instruction applies. F-line operation words, in which the CpID is
zero, are not coprocessor instructions for the MC68020/EC020. Instructions with a CpID of
zero and a nonzero type field are unimplemented instructions that cause the

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

7-10 M68020 USER’S MANUAL MOTOROLA

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 WRITE COPROCESSOR COMMAND WORD TO
COMMAND CIR

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE
FROM RESPONSE CIR
1) PERFORM SERVICE REQUESTED BY RESPONSE
PRIMITIVE
2) IF (COPROCESSOR RESPONSE PRIMITIVE
INDICATES "COME AGAIN") GO TO M3
(SEE NOTE 1)

M4 PROCEED WITH EXECUTION OF NEXT INSTRUCTION
(SEE NOTE 2)

C1 DECODE COMMAND WORD AND INITIATE
COMMAND EXECUTION

C2 WHILE (MAIN PROCESSOR SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW
1) REQUEST SERVICE BY PLACING APPROPRIATE

RESPONSE PRIMITIVE CODE IN RESPONSE CIR
2) RECEIVE SERVICE FROM MAIN PROCESSOR

C3 REFLECT "NO COME AGAIN" IN RESPONSE CIR

C4 COMPLETE COMMAND EXECUTION

C5 REFLECT "PROCESSING FINISHED" STATUS IN
RESPONSE CIR

MAIN PROCESSOR COPROCESSOR

NOTES: 1. "Come Again" indicates that further service of the main processor is being requested by the coprocessor.
2. The next instruction should be the operation word pointed to by the ScanPC at this point. The operation of
				the MC68020/EC020 ScanPC is discussed in 7.4.1 ScanPC.

Figure 7-7. Coprocessor Interface Protocol
for General Category Instructions

7.2.2 Coprocessor Conditional Instructions

The conditional instruction category provides program control based on the operations of
the coprocessor. The coprocessor evaluates a condition and returns a true/false indicator
to the main processor. The main processor completes the execution of the instruction
based on this true/false condition indicator.

The implementation of instructions in the conditional category promotes efficient use of
both the main processor and the coprocessor hardware. The condition specified for the
instruction is related to the coprocessor operation and is therefore evaluated by the
coprocessor. However, the instruction completion following the condition evaluation is
directly related to the operation of the main processor. The main processor performs the
change of flow, the setting of a byte, or the TRAP operation, since its architecture explicitly
implements these operations for its instruction set.

Figure 7-8 shows the protocol for a conditional category coprocessor instruction. The main
processor initiates execution of an instruction in this category by writing a condition
selector to the condition CIR. The coprocessor decodes the condition selector to
determine the condition to evaluate. The coprocessor can use response primitives to
request that the main processor provide services required for the condition evaluation.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-27

7.3.7 Condition CIR

The main processor initiates a conditional category instruction by writing the condition
selector to bits 5–0 of the 16-bit condition CIR. Bits 15–6 are undefined and reserved by
Motorola. The offset from the base address of the CIR set for the condition CIR is $0E.
Figure 7-20 shows the format of the condition CIR.

15

(UNDEFINED, RESERVED)

0

CONDITION SELECTOR

56

Figure 7-20. Condition CIR Format

7.3.8 Operand CIR

When the coprocessor requests the transfer of an operand, the main processor performs
the transfer by reading from or writing to the 32-bit operand CIR. The offset from the base
address of the CIR set for the operand CIR is $10.

The MC68020/EC020 aligns all operands transferred to and from the operand CIR to the
most significant byte of this CIR. The processor performs a sequence of long-word
transfers to read or write any operand larger than four bytes. If the operand size is not a
multiple of four bytes, the portion remaining after the initial long-word transfer is aligned to
the most significant byte of the operand CIR. Figure 7-21 shows the operand alignment
used by the MC68020/EC020 when accessing the operand CIR.

031 7

NO TRANSFER

WORD OPERAND

THREE-BYTE OPERAND

LONG-WORD OPERAND

23 15

NO TRANSFER

NO TRANSFER

NO TRANSFEROPERAND

BYTE-

TEN-

BYTE OPERAND

24 16 8

Figure 7-21. Operand Alignment for Operand CIR Accesses

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-31

7.4.3 Busy Primitive

The busy response primitive causes the main processor to reinitiate a coprocessor
instruction. This primitive applies to instructions in the general and conditional categories.
Figure 7-23 shows the format of the busy primitive.

15 0

1 PC 1

14 13 12

0 0

11

1

10

0

9

0

8

0

7

0

6

0

5

0

4

0

3

0

2

0

1

0

Figure 7-23. Busy Primitive Format

The busy primitive uses the PC bit as described in 7.4.2 Coprocessor Response
Primitive General Format.

Coprocessors that can operate concurrently with the main processor but cannot buffer
write operations to their command or condition CIR use the busy primitive. A coprocessor
may execute a cpGEN instruction concurrently with an instruction in the main processor. If
the main processor attempts to initiate an instruction in the general or conditional
instruction category while the coprocessor is executing a cpGEN instruction, the
coprocessor can place the busy primitive in the response CIR. When the main processor
reads this primitive, it services pending interrupts using a preinstruction exception stack
frame (refer to Figure 7-41). The processor then restarts the general or conditional
coprocessor instruction that it had attempted to initiate earlier.

The busy primitive should only be used in response to a write to the command or condition
CIR. It should be the first primitive returned after the main processor attempts to initiate a
general or conditional category instruction. In particular, the busy primitive should not be
issued after program-visible resources have been altered by the instruction. (Program-
visible resources include coprocessor and main processor program-visible registers and
operands in memory, but not the scanPC.) The restart of an instruction after it has altered
program-visible resources causes those resources to have inconsistent values when the
processor reinitiates the instruction.

The MC68020/EC020 responds to the busy primitive differently in a special case that can
occur during a breakpoint operation (refer to Section 6 Exception Processing). This
special case occurs when a breakpoint acknowledge cycle initiates a coprocessor F-line
instruction, the coprocessor returns the busy primitive in response to the instruction
initiation, and an interrupt is pending. When these three conditions are met, the processor
reexecutes the breakpoint acknowledge cycle after completion of interrupt exception
processing. A design that uses a breakpoint to monitor the number of passes through a
loop by incrementing or decrementing a counter may not work correctly under these
conditions. This special case may cause several breakpoint acknowledge cycles to be
executed during a single pass through a loop.

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 7-33

and PF = 1, and then performs trace exception processing. When IA = 1, the main
processor services pending interrupts before reading the response CIR again.

A coprocessor can be designed to execute a cpGEN instruction concurrently with the
execution of main processor instructions and, also, buffer one write operation to either its
command or condition CIR. This type of coprocessor issues a null primitive with CA = 1
when it is concurrently executing a cpGEN instruction, and the main processor initiates
another general or conditional coprocessor instruction. This primitive indicates that the
coprocessor is busy and the main processor should read the response CIR again without
reinitiating the instruction. The IA bit of this null primitive usually should be set to minimize
interrupt latency while the main processor is waiting for the coprocessor to complete the
general category instruction.

Table 7-3 summarizes the encodings of the null primitive.

Table 7-3. Null Coprocessor Response Primitive Encodings

CA PC IA PF TF General Instructions Conditional Instructions

x 1 x x x Pass Program Counter to Instruction
Address CIR, Clear PC Bit, and Proceed
with Operation Specified by CA, IA, PF,
and TF Bits

Same as General Category

1 0 0 x x Reread Response CIR, Do Not Service
Pending Interrupts

Same as General Category

1 0 1 x x Service Pending Interrupts and Reread the
Response CIR

Same as General Category

0 0 0 0 c If (Trace Pending) Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF = c

0 0 1 0 c If (Trace Pending) Service Pending
Interrupts and Reread Response CIR;
Else, Execute Next Instruction

Main Processor Completes Instruction
Execution Based on TF = c

0 0 x 1 c Coprocessor Instruction Completed;
Service Pending Exceptions or Execute
Next Instruction

Main Processor Completes Instruction
Execution Based on TF = c.

x = Don't Care
c = 1 or 0 Depending on Coprocessor Condition Evaluation

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8-14 M68020 USER’S MANUAL MOTOROLA

8.2.2 Fetch Immediate Effective Address

The fetch immediate effective address table indicates the number of clock periods needed
for the processor to fetch the immediate source operand and calculate and fetch the
specified destination operand. The total number of clock cycles is outside the
parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Address Mode Best Case Cache Case Worst Case

#<data>.W,Dn 0(0/0/0) 2(0/0/0) 3(0/1/0)

#<data>.L,Dn 1(0/0/0) 4(0/0/0) 5(0/1/0)

#<data>.W,(An) 3(1/0/0) 4(1/0/0) 4(1/1/0)

#<data>.L,(An) 3(1/0/0) 4(1/0/0) 7(1/1/0)

#<data>.W,(An)+ 4(1/0/0) 6(1/0/0) 7(1/1/0)

#<data>.L,(An)+ 5(1/0/0) 8(1/0/0) 9(1/1/0)

#<data>.W,–(An) 3(1/0/0) 5(1/0/0) 6(1/1/0)

#<data>.L,–(An) 4(1/0/0) 7(1/0/0) 8(1/1/0)

#<data>.W,(bd,An) 3(1/0/0) 5(1/0/0) 7(1/1/0)

#<data>.L,(bd,An) 4(1/0/0) 7(1/0/0) 10(1/2/0)

#<data>.W,xxx.W 3(1/0/0) 5(1/0/0) 7(1/1/0)

#<data>.L,xxx.W 4(1/0/0) 7(1/0/0) 10(1/2/0)

#<data>.W,xxx.L 3(1/0/0) 6(1/0/0) 10(1/2/0)

#<data>.L,xxx.L 4(1/0/0) 8(1/0/0) 12(1/2/0)

#<data>.W,#<data>.B,W 0(0/0/0) 4(0/0/0) 6(0/2/0)

#<data>.L,#<data>.B,W 1(0/0/0) 6(0/0/0) 8(0/2/0)

#<data>.W,#<data>.L 0(0/0/0) 6(0/0/0) 8(0/2/0)

#<data>.L,#(data>.L 1(0/0/0) 8(0/0/0) 10(0/2/0)

#<data>.W,(d8,An,Xn) or (d8,PC,Xn) 4(1/0/0) 9(1/0/0) 11(1/2/0)

#<data>.L,(d8,An,Xn) or (d8,PC,Xn) 5(1/0/0) 11(1/0/0) 13(1/2/0)

#<data>.W,(d16,An,Xn) or (d16,PC,Xn) 4(1/0/0) 9(1/0/0) 12(1/2/0)

#<data>.L,(d16,An,Xn) or (d16,PC,Xn) 5(1/0/0) 11(1/0/0) 15(1/2/0)

#<data>.W,(B) 4(1/0/0) 9(1/0/0) 12(1/1/0)

#<data>.L,(B) 5(1/0/0) 11(1/0/0) 14(1/2/0)

#<data>.W,(bd,PC) 10(1/0/0) 15(1/0/0) 19(1/3/0)

#<data>.L,(bd,PC) 11(1/0/0) 17(1/0/0) 21(1/3/0)

#<data>.W,(d16,B) 6(1/0/0) 11(1/0/0) 15(1/2/0)

#<data>.L,(d16,B) 7(1/0/0) 13(1/0/0) 17(1/2/0)

#<data>.W,(d32,B) 10(1/0/0) 15(1/0/0) 19(1/3/0)

#<data>.L,(d32,B) 11(1/0/0) 17(1/0/0) 21(1/3/0)

#<data>.W,([B],I) 9(2/0/0) 14(2/0/0) 16(2/2/0)

#<data>.L,([B],I) 10(2/0/0) 16(2/0/0) 18(2/2/0)

#<data>.W,([B],I,d16) 11(2/0/0) 16(2/0/0) 19(2/2/0)

#<data>.L,([B],I,d16) 12(2/0/0) 18(2/0/0) 21(2/2/0)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

8-24 M68020 USER’S MANUAL MOTOROLA

CACHE CASE (Continued)

Source Destination

Address Mode (d8,An,Xn) (d16,An,Xn) (B) (d16,B) (d32,B) ([B],I) ([B],I,d16) ([B],I,d32)

Rn 7(0/0/1) 9(0/0/1) 8(0/0/1) 10(0/0/1) 14(0/0/1) 12(1/0/1) 14(1/0/1) 15(1/0/1)

#<data>.B,W 7(0/0/1) 9(0/0/1) 8(0/0/1) 10(0/0/1) 14(0/0/1) 12(1/0/1) 14(1/0/1) 15(1/0/1)

#<data>.L 9(0/0/1) 11(0/0/1) 10(0/0/1) 12(0/0/1) 16(0/0/1) 14(1/0/1) 16(1/0/1) 17(1/0/1)

(An) 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(An)+ 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

–(An) 10(1/0/1) 12(1/0/1) 11(1/0/1) 13(1/0/1) 17(1/0/1) 15(2/0/1) 17(2/0/1) 18(2/0/1)

(d16,An) or
(d16,PC)

10(1/0/1) 12(2/0/1) 11(1/0/1) 13(1/0/1) 17(1/0/1) 15(2/0/1) 17(2/0/1) 18(2/0/1)

(xxx).W 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(xxx).L 9(1/0/1) 11(1/0/1) 10(1/0/1) 12(1/0/1) 16(1/0/1) 14(2/0/1) 16(2/0/1) 17(2/0/1)

(d8,An,Xn) or
(d8,PC,Xn)

12(1/0/1) 14(1/0/1) 13(1/0/1) 15(1/0/1) 19(1/0/1) 17(2/0/1) 19(2/0/1) 20(2/0/1)

(d16,An,Xn) or
(d16,PC,Xn)

12(1/0/1) 14(1/0/1) 13(1/0/1) 15(1/0/1) 19(1/0/1) 17(2/0/1) 19(2/0/1) 20(2/0/1)

(B) 12(1/0/1) 14(1/0/1) 13(1/0/1) 15(1/0/1) 19(1/0/1) 17(2/0/1) 19(2/0/1) 20(2/0/1)

(d16,B) 14(1/0/1) 16(1/0/1) 15(1/0/1) 17(1/0/1) 21(1/0/1) 19(2/0/1) 21(2/0/1) 22(2/0/1)

(d32,B) 18(1/0/1) 20(1/0/1) 19(1/0/1) 21(1/0/1) 25(1/0/1) 23(2/0/1) 25(2/0/1) 26(2/0/1)

([B],I) 17(2/0/1) 19(2/0/1) 18(2/0/1) 20(2/0/1) 24(2/0/1) 22(3/0/1) 24(3/0/1) 25(3/0/1)

([B],I,d16) 19(2/0/1) 21(2/0/1) 20(2/0/1) 22(2/0/1) 26(2/0/1) 24(3/0/1) 26(3/0/1) 27(3/0/1)

([B],I,d32) 19(2/0/1) 21(2/0/1) 20(2/0/1) 22(2/0/1) 26(2/0/1) 24(3/0/1) 26(3/0/1) 27(3/0/1)

([d16,B],I) 19(2/0/1) 21(2/0/1) 20(2/0/1) 22(2/0/1) 26(2/0/1) 24(3/0/1) 26(3/0/1) 27(3/0/1)

([d16,B],I,d16) 21(2/0/1) 23(2/0/1) 22(2/0/1) 24(2/0/1) 28(2/0/1) 26(3/0/1) 28(3/0/1) 29(3/0/1)

([d16,B],I,d32) 21(2/0/1) 23(2/0/1) 22(2/0/1) 24(2/0/1) 28(2/0/1) 26(3/0/1) 28(3/0/1) 29(3/0/1)

([d32,B],I) 23(2/0/1) 25(2/0/1) 24(2/0/1) 26(2/0/1) 30(2/0/1) 28(3/0/1) 30(3/0/1) 31(3/0/1)

([d32,B],I,d16) 25(2/0/1) 27(2/0/1) 26(2/0/1) 28(2/0/1) 32(2/0/1) 30(3/0/1) 32(3/0/1) 33(3/0/1)

([d32,B],I,d32) 25(2/0/1) 27(2/0/1) 26(2/0/1) 28(2/0/1) 32(2/0/1) 30(3/0/1) 32(3/0/1) 33(3/0/1)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 8-27

WORST CASE (Continued)

Source Destination

Address Mode (d8,An,Xn) (d16,An,Xn) (B) (d16,B) (d32,B) ([B],I) ([B],I,d16) ([B],I,D32)

Rn 9(0/1/1) 12(0/2/1) 10(0/1/1) 14(0/2/1) 19(0/2/1) 14(1/1/1) 17(1/2/1) 20(1/2/1)

#<data>.B,W 9(0/1/1) 12(0/2/1) 10(0/1/1) 14(0/2/1) 19(0/2/1) 14(1/1/1) 17(1/2/1) 20(1/2/1)

#<data>.L 11(0/1/1) 14(0/2/1) 12(0/1/1) 16(0/2/1) 21(0/2/1) 16(1/1/1) 19(1/2/1) 22(1/2/1)

(An) 11(1/1/1) 14(1/2/1) 12(1/1/1) 16(1/2/1) 21(1/2/1) 12(2/1/1) 19(2/2/1) 22(2/2/1)

(An)+ 11(1/1/1) 14(1/2/1) 12(1/1/1) 16(1/2/1) 21(1/2/1) 12(2/1/1) 19(2/2/1) 22(2/2/1)

–(An) 12(1/1/1) 15(1/2/1) 13(1/1/1) 17(1/2/1) 22(1/2/1) 13(2/1/1) 20(2/2/1) 23(2/2/1)

(d16,An) or
(d16,PC)

13(1/2/1) 16(1/3/1) 14(1/2/1) 18(1/3/1) 23(1/3/1) 14(2/2/1) 21(2/3/1) 24(2/3/1)

(xxx).W 12(1/2/1) 15(1/3/1) 13(1/2/1) 17(1/3/1) 22(1/3/1) 13(2/2/1) 20(2/3/1) 23(2/3/1)

(xxx).L 14(1/2/1) 17(1/3/1) 15(1/2/1) 19(1/3/1) 24(1/3/1) 15(2/2/1) 22(2/3/1) 25(2/3/1)

(d8,An,Xn) or
(d8,PC,Xn)

15(1/2/1) 18(1/3/1) 16(1/2/1) 20(1/3/1) 25(1/3/1) 16(2/2/1) 23(2/3/1) 26(2/3/1)

(d16,An,Xn) or
(d16,PC,Xn)

16(1/2/1) 19(1/3/1) 17(1/2/1) 21(1/3/1) 26(1/3/1) 17(2/2/1) 24(2/3/1) 27(2/3/1)

(B) 16(1/2/1) 19(1/3/1) 17(1/2/1) 21(1/3/1) 26(1/3/1) 17(2/2/1) 24(2/3/1) 27(2/3/1)

(d16,B) 19(1/2/1) 22(1/3/1) 20(1/2/1) 24(1/3/1) 29(1/3/1) 20(2/2/1) 27(2/3/1) 30(2/3/1)

(d32,B) 23(1/3/1) 26(1/4/1) 24(1/3/1) 28(1/4/1) 33(1/4/1) 24(2/3/1) 31(2/4/1) 34(2/4/1)

([B],I) 20(2/2/1) 23(2/3/1) 21(2/2/1) 25(2/3/1) 30(2/3/1) 21(3/2/1) 28(3/3/1) 31(3/3/1)

([B],I,d16) 23(2/2/1) 26(2/3/1) 24(2/2/1) 28(2/3/1) 33(2/3/1) 24(3/2/1) 31(3/3/1) 34(3/3/1)

([B],I,d32) 24(2/3/1) 27(2/4/1) 25(2/3/1) 29(2/4/1) 34(2/4/1) 25(3/3/1) 32(3/4/1) 35(3/4/1)

([d16,B],I) 23(2/2/1) 26(2/3/1) 24(2/2/1) 28(2/3/1) 33(2/3/1) 24(3/2/1) 31(3/3/1) 34(3/3/1)

([d16,B],I,d16) 26(2/3/1) 29(2/4/1) 27(2/3/1) 31(2/4/1) 36(2/4/1) 27(3/3/1) 34(3/4/1) 37(3/4/1)

([d16,B],I,d32) 27(2/3/1) 30(2/4/1) 28(2/3/1) 32(2/4/1) 37(2/4/1) 28(3/3/1) 35(3/4/1) 38(3/4/1)

([d32,B],I) 27(2/3/1) 30(2/4/1) 28(2/3/1) 32(2/4/1) 37(2/4/1) 28(3/3/1) 35(3/4/1) 38(3/4/1)

([d32,B],I,d16) 29(2/3/1) 32(2/4/1) 30(2/3/1) 34(2/4/1) 39(2/4/1) 30(3/3/1) 37(3/4/1) 40(3/4/1)

([d32,B],I,d32) 31(2/4/1) 34(2/5/1) 32(2/4/1) 36(2/5/1) 41(2/5/1) 32(3/4/1) 39(3/5/1) 42(3/5/1)

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

9-4 M68020 USER’S MANUAL MOTOROLA

PAL16L8

FPCP CS GENERATION CIRCUITRY FOR 25 MHz OPERATION

MOTOROLA INC., AUSTIN, TEXAS

INPUTS: CLK ~AS FC2 FC1 FC0 A19 A18 A17 A16 A15 A14 A13

OUTPUTS: ~CS CLKD

!~CS = FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*!CLK ;qualified by MPU clock low

+FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*!~AS ;qualified by address strobe low

+FC2 *FC1 *FC0 ;cpu space = $7

*!A19 *!A18 *A17 *!A16 ;coprocessor access = $2

*!A15 *!A14 *A13 ;coprocessor id = $1

*CLKD ;qualified by CLKD (delayed CLK)

CLKD = CLK

Description: There are three terms to the CS generation. The first term denotes the earliest time CS can be asserted.
The second term is used to assert CS until the end of the FPCP access. The third term is to ensure that no race
condition occurs in case of a late AS.

Figure 9-3. Chip Select PAL Equations

9

CLK

AS

CS

8

DSACK1/DSACK0

47A

START

19

FPCP SPECIFICATION MPU SPECIFICATION

Figure 9-4. Bus Cycle Timing Diagram

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

MOTOROLA M68020 USER’S MANUAL 9-13

Figure 9-9. Access Time Computation Diagram

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

Freescale Semiconductor, Inc.

For More Information On This Product,
 Go to: www.freescale.com

n
c

..
.

