
Freescale Semiconductor - MC68020RC25E Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Obsolete

Core Processor 68020

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 25MHz

Co-Processors/DSP -

RAM Controllers -

Graphics Acceleration No

Display & Interface Controllers -

Ethernet -

SATA -

USB -

Voltage - I/O 5.0V

Operating Temperature 0°C ~ 70°C (TA)

Security Features -

Package / Case 114-BPGA

Supplier Device Package 114-PGA (34.55x34.55)

Purchase URL https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68020rc25e

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mc68020rc25e-4468321
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors


9/29/95 SECTION 1:  OVERVIEW UM Rev.1.0

x M68020 USER’S MANUAL MOTOROLA

TABLE OF CONTENTS (Continued)
Paragraph Page

Number Title Number

Section 7
Coprocessor Interface Description

7.1 Introduction ............................................................................................. 7-1
7.1.1 Interface Features ............................................................................... 7-2
7.1.2 Concurrent Operation Support ............................................................ 7-2
7.1.3 Coprocessor Instruction Format .......................................................... 7-3
7.1.4 Coprocessor System Interface ............................................................ 7-4
7.1.4.1 Coprocessor Classification .............................................................. 7-4
7.1.4.2 Processor-Coprocessor Interface .................................................... 7-5
7.1.4.3 Coprocessor Interface Register Selection ....................................... 7-6
7.2 Coprocessor Instruction Types ............................................................... 7-7
7.2.1 Coprocessor General Instructions ....................................................... 7-8
7.2.1.1 Format ............................................................................................. 7-8
7.2.1.2 Protocol............................................................................................ 7-9
7.2.2 Coprocessor Conditional Instructions.................................................. 7-10
7.2.2.1 Branch on Coprocessor Condition Instruction ................................. 7-12
7.2.2.1.1 Format .......................................................................................... 7-12
7.2.2.1.2 Protocol ........................................................................................ 7-12
7.2.2.2 Set on Coprocessor Condition Instruction ....................................... 7-13
7.2.2.2.1 Format .......................................................................................... 7-13
7.2.2.2.2 Protocol ........................................................................................ 7-14
7.2.2.3 Test Coprocessor Condition, Decrement, and Branch Instruction ... 7-14
7.2.2.3.1 Format .......................................................................................... 7-14
7.2.2.3.2 Protocol ........................................................................................ 7-15
7.2.2.4 Trap on Coprocessor Condition Instruction ..................................... 7-15
7.2.2.4.1 Format .......................................................................................... 7-15
7.2.2.4.2 Protocol ........................................................................................ 7-16
7.2.3 Coprocessor Context Save and Restore Instructions ......................... 7-16
7.2.3.1 Coprocessor Internal State Frames ................................................. 7-17
7.2.3.2 Coprocessor Format Words............................................................. 7-18
7.2.3.2.1 Empty/Reset Format Word ........................................................... 7-18
7.2.3.2.2 Not-Ready Format Word .............................................................. 7-19
7.2.3.2.3 Invalid Format Word ..................................................................... 7-19
7.2.3.2.4 Valid Format Word ....................................................................... 7-20
7.2.3.3 Coprocessor Context Save Instruction ............................................ 7-20
7.2.3.3.1 Format .......................................................................................... 7-20
7.2.3.3.2 Protocol ........................................................................................ 7-21
7.2.3.4 Coprocessor Context Restore Instruction ........................................ 7-22
7.2.3.4.1 Format .......................................................................................... 7-22
7.2.3.4.2 Protocol ........................................................................................ 7-23
7.3 Coprocessor Interface Register Set ........................................................ 7-24

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



9/29/95 SECTION 1:  OVERVIEW UM Rev 1

MOTOROLA M68020 USER’S MANUAL xv

LIST OF ILLUSTRATIONS (Continued)
Figure Page

Number Title Number

5-24 Write Cycle Flowchart ...................................................................................... 5-33
5-25 Read-Write-Read Cycles—32-Bit Port ............................................................. 5-34
5-26 Byte and Word Write Cycles—32-Bit Port ........................................................ 5-35
5-27 Long-Word Operand Write—8-Bit Port ............................................................ 5-36
5-28 Long-Word Operand Write—16-Bit Port........................................................... 5-37
5-29 Read-Modify-Write Cycle Flowchart ................................................................. 5-40
5-30 Byte Read-Modify-Write Cycle—32-Bit Port (TAS Instruction) ........................ 5-41
5-31 MC68020/EC020 CPU Space Address Encoding ............................................ 5-45
5-32 Interrupt Acknowledge Cycle Flowchart ........................................................... 5-46
5-33 Interrupt Acknowledge Cycle Timing................................................................ 5-47
5-34 Autovector Operation Timing ........................................................................... 5-49
5-35 Breakpoint Acknowledge Cycle Flowchart ....................................................... 5-50
5-36 Breakpoint Acknowledge Cycle Timing ............................................................ 5-51
5-37 Breakpoint Acknowledge Cycle Timing (Exception Signaled) .......................... 5-52
5-38 Bus Error without DSACK1/DSACK0 ............................................................. 5-57
5-39 Late Bus Error with DSACK1/DSACK0 .......................................................... 5-58
5-40 Late Retry......................................................................................................... 5-59
5-41 Halt Operation Timing ...................................................................................... 5-61
5-42 MC68020 Bus Arbitration Flowchart for Single Request .................................. 5-64
5-43 MC68020 Bus Arbitration Operation Timing for Single Request ...................... 5-65
5-44 MC68020 Bus Arbitration State Diagram ......................................................... 5-67
5-45 MC68020 Bus Arbitration Operation Timing—Bus Inactive ............................. 5-69
5-46 MC68EC020 Bus Arbitration Flowchart for Single Request ............................. 5-71
5-47 MC68EC020 Bus Arbitration Operation Timing for Single Request ................. 5-72
5-48 MC68EC020 Bus Arbitration State Diagram .................................................... 5-73
5-49 MC68EC020 Bus Arbitration Operation Timing—Bus Inactive ........................ 5-75
5-50 Interface for Three-Wire to Two-Wire Bus Arbitration ...................................... 5-76
5-51 Initial Reset Operation Timing .......................................................................... 5-77
5-52 RESET Instruction Timing ................................................................................ 5-78

6-1 Reset Operation Flowchart .............................................................................. 6-5
6-2 Interrupt Pending Procedure ............................................................................ 6-12
6-3 Interrupt Recognition Examples ....................................................................... 6-13
6-4 Assertion of IPEND (MC68020 Only) ............................................................... 6-14
6-5 Interrupt Exception Processing Flowchart ........................................................ 6-15
6-6 Breakpoint Instruction Flowchart ...................................................................... 6-18
6-7 RTE Instruction for Throwaway Four-Word Frame .......................................... 6-20
6-8 Special Status Word Format ............................................................................ 6-22

7-1 F-Line Coprocessor Instruction Operation Word.............................................. 7-3
7-2 Asynchronous Non-DMA M68000 Coprocessor Interface Signal Usage ......... 7-5
7-3 MC68020/EC020 CPU Space Address Encodings .......................................... 7-6

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



2-6 M68020 USER’S MANUAL MOTOROLA

2.3.2 Exception Stack Frame

Exception processing saves the most volatile portion of the current processor context on
the top of the supervisor stack. This context is organized in a format called the exception
stack frame. This information always includes a copy of the SR, the PC, the vector offset
of the vector, and the frame format field. The frame format field identifies the type of stack
frame. The RTE instruction uses the value in the format field to properly restore the
information stored in the stack frame and to deallocate the stack space. The general form
of the exception stack frame is illustrated in Figure 2-1. Refer to Section 6 Exception
Processing for a complete list of exception stack frames.

015

SSP

12

FORMAT

STATUS REGISTER

PROGRAM COUNTER

VECTOR OFFSET

ADDITIONAL PROCESSOR STATE INFORMATION
(2, 6, 12, OR 42 WORDS, IF NEEDED)

Figure 2-1. General Exception Stack Frame

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 5-11

WORD WRITE

 LONG-WORD OPERAND WRITE TO 16-BIT PORT 

S0 S2 S4 S0 S2 S4

CLK

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D24

D23–D16

WORD WRITE

OP0

OP1

OP2

OP3

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-6. Long-Word Operand Write to Word Port Timing

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



5-20 M68020 USER’S MANUAL MOTOROLA

MC68020/EC020

SIZ1 SIZ0 A2 A1

0         0        0        1        1

1         1        1        0        0

A0

MEMORY CONTROL

DSACK1 DSACK0

L

L L

OP0 OP1

31 0LONG-WORD OPERAND (REGISTER)

DATA BUSD31 D0

LONG-WORD MEMORY

MSB UMB

XXX

OP1 OP2

XXX

OP2 OP3

XXX

OP3

OP0

XXX

LMB LSB

L

Figure 5-17. Misaligned Long-Word Operand Read
from Long-Word Port Example

5.2.3 Effects of Dynamic Bus Sizing and Operand Misalignment

The combination of operand size, operand alignment, and port size determine the number
of bus cycles required to perform a particular memory access. Table 5-6 lists the number
of bus cycles required for different operand sizes to different port sizes with all possible
alignment conditions for read/write cycles.

Table 5-6. Memory Alignment and Port Size
Influence on Read/Write Bus Cycles

Number of Bus Cycles
(Data Port Size = 32 Bits:16 Bits:8 Bits)

A1, A0

Operand Size 00 01 10 11

Instruction* 1:2:4 N/A N/A N/A

Byte Operand 1:1:1 1:1:1 1:1:1 1:1:1

Word Operand 1:1:2 1:2:2 1:1:2 2:2:2

Long-Word Operand 1:2:4 2:3:4 2:2:4 2:3:4

*Instruction prefetches are always two words from a long-word boundary

Table 5-6 reveals that bus cycle throughput is significantly affected by port size and
alignment. The MC68020/EC020 system designer and programmer should be aware of
and account for these effects, particularly in time-critical applications.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 5-27

ACQUIRE DATA

1)  LATCH DATA
2)  NEGATE AS AND DS
3)  NEGATE DBEN

START NEXT CYCLE

PRESENT DATA

1)  DECODE ADDRESS
2)  PLACE DATA ON D31–D24 OR
                                   D23–D16 OR
                                   D15–D8 OR
                                   D7–D0
     (BASED  ON A1, A0, AND BUS WIDTH)
3)  ASSERT DSACK1/DSACK0

TERMINATE CYCLE

1)  REMOVE DATA FROM  D31–D0
2)  NEGATE DSACK1/DSACK0

EXTERNAL DEVICEPROCESSOR

ADDRESS DEVICE

1)  ASSERT ECS/OCS FOR ONE-HALF CLOCK
2)  SET R/W TO READ
3)  DRIVE ADDRESS ON A31–A0
4)  DRIVE FUNCTION CODE ON FC2–FC0
5)  DRIVE SIZ1, SIZ0 (FOUR BYTES)
6)  ASSERT AS
7)  ASSERT DS
8)  ASSERT DBEN*

* This step does not apply to the MC68EC020.
For the MC68EC020, A23–A0.**

*

**

*

Figure 5-20. Byte Read Cycle Flowchart

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



5-34 M68020 USER’S MANUAL MOTOROLA

WRITE

A31–A2

A1

A0

FC2–FC0

SIZ1

SIZ0

R/W

ECS

OCS

AS

DS

DSACK1

DSACK0

DBEN

D31–D0

 LONG WORD

CLK

WRITEBYTE READ

S0 S2 S4 S0 S2 S4 S0 S2 S4 S0 S2 Sw  Sw S4

READ WITH WAIT STATES

**

**

**

*

* For the MC68EC020, A23–A2.
This signal does not apply to the MC68EC020.**

Figure 5-25. Read-Write-Read Cycles—32-Bit Port

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 5-59

A31–A0

FC2–FC0

ECS

OCS

AS

DS

DSACK1

CLK

S0 S4 S0

SIZ1–SIZ0

R/W

DSACK0

D31–D0
DATA BUS NOT DRIVEN

BERR

HALT

WRITE CYCLE RETRY SIGNALED HALT RETRY CYCLE

S2 Sw S2 S4

**

**

*

* For the MC68EC020, A23–A0.
This signal does not apply to the MC68EC020.**

Figure 5-40. Late Retry

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



5-74 M68020 USER’S MANUAL MOTOROLA

State changes occur on the next rising edge of the clock after the internal signal is
recognized as valid. The BG signal transitions on the falling edge of the clock after a state
is reached during which G changes. The bus control signals (controlled by T) are driven
by the processor immediately following a state change when bus mastership is returned to
the MC68EC020.

State 0, at the top center of the diagram, in which both G and T are negated, is the state
of the bus arbiter while the processor is bus master. Request R keeps the arbiter in state 0
as long as it is negated. When a request R is received, both grant G and signal T are
asserted (in state 1 at the top left). The next clock causes a change to state 2, at the lower
left, in which G and T are held. The bus arbiter remains in that state until request R is
negated. Then the arbiter changes to the center state, state 3, and negates grant G. The
next clock takes the arbiter to state 4, at the upper right, in which grant G remains negated
and signal T remains asserted. The arbiter returns to the original state, state 0, and
negates signal T. This sequence of states follows the normal sequence of signals for
relinquishing the bus to an external bus master. Other states apply to other possible
sequences of R.

The MC68EC020 does not allow arbitration of the external bus during the read-modify-
write sequence. For the duration of this sequence, the MC68EC020 ignores the BR input.
If mastership of the MC68EC020 bus is required during a read-modify-write operation,
BERR must be used to abort the read-modify-write sequence. The bus arbitration
sequence while the bus is inactive (i.e., executing internal operations such as a multiply
instruction) is shown in Figure 5-49.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



6-6 M68020 USER’S MANUAL MOTOROLA

execution of instructions. The processor also saves the contents of some of its internal
registers. The information saved on the stack is sufficient to identify the cause of the bus
fault and recover from the error.

For efficiency, the MC68020/EC020 uses two different bus error stack frame formats.
When the bus error exception is taken at an instruction boundary, less information is
required to recover from the error, and the processor builds the short bus fault stack frame
as shown in Table 6-5. When the exception is taken during the execution of an instruction,
the processor must save its entire state for recovery and uses the long bus fault stack
frame shown in Table 6-5. The format code in the stack frame distinguishes the two stack
frame formats. Stack frame formats are described in detail in 6.4 Exception Stack Frame
Formats.

If a bus error occurs during the exception processing for a bus error, address error, or
reset or while the processor is loading internal state information from the stack during the
execution of an RTE instruction, a double bus fault occurs and the processor enters the
halted state. In this case, the processor does not attempt to alter the current state of
memory. Only an external RESET can restart a processor halted by a double bus fault.

6.1.3 Address Error Exception

An address error exception occurs when the processor attempts to prefetch an instruction
from an odd address. This exception is similar to a bus error exception but is internally
initiated. A bus cycle is not executed, and the processor begins exception processing
immediately. After exception processing commences, the sequence is the same as that
for bus error exceptions described in the preceding paragraphs, except that the vector
number is 3 and the vector offset in the stack frame refers to the address error vector.
Either a short or long bus fault stack frame may be generated. If an address error occurs
during the exception processing for a bus error, address error, or reset, a double bus fault
occurs.

6.1.4 Instruction Trap Exception

Certain instructions are used to explicitly cause trap exceptions. The TRAP instruction
always forces an exception and is useful for implementing system calls in user programs.
The TRAPcc, TRAPV, cpTRAPcc, CHK, and CHK2 instructions force exceptions if the
user program detects an error, which may be an arithmetic overflow or a subscript value
that is out of bounds.

The DIVS and DIVU instructions force exceptions if a division operation is attempted with
a divisor of zero.

When a trap exception occurs, the processor copies the SR internally, enters the
supervisor privilege level (by setting the S-bit in the SR), and clears the T1 and T0 bits in
the SR. If tracing is enabled for the instruction that caused the trap, a trace exception is
taken after the RTE instruction from the trap handler is executed, and the trace
corresponds to the trap instruction; the trap handler routine is not traced. The processor
generates a vector number according to the instruction being executed; for the TRAP

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



6-10 M68020 USER’S MANUAL MOTOROLA

tracing is enabled, the trace exception processing should also be emulated for the trace
exception handler to account for the emulated instruction.

The exception processing for a trace starts at the end of normal processing for the traced
instruction and before the start of the next instruction. The processor makes an internal
copy of the SR and enters the supervisor privilege level (by setting the S-bit in the SR). It
also clears the T0 and T1 bits of the SR, disabling further tracing. The processor supplies
vector number 9 for the trace exception and saves the trace exception vector offset, PC
value, and the copy of the SR on the supervisor stack. The saved value of the PC is the
logical address of the next instruction to be executed. Instruction execution resumes after
the required prefetches from the address in the trace exception vector.

The STOP instruction does not perform its function when it is traced. A STOP instruction
that begins execution with T1, T0 = 10 forces a trace exception after it loads the SR. Upon
return from the trace handler routine, execution continues with the instruction following the
STOP instruction, and the processor never enters the stopped condition.

6.1.8 Format Error Exception

Just as the processor checks that prefetched instructions are valid, the processor (with the
aid of a coprocessor, if needed) also performs some checks of data values for control
operations, including the type and option fields of the descriptor for CALLM, the
coprocessor state frame format word for a cpRESTORE instruction, and the stack frame
format for an RTE or an RTM instruction.

The RTE instruction checks the validity of the stack format code. For long bus fault format
frames, the RTE instruction also compares the internal version number of the processor to
that contained in the frame at memory location SP + 54 (SP + $36). This check ensures
that the processor can correctly interpret internal state information from the stack frame.

The CALLM and RTM both check the values in the option and type fields in the module
descriptor and module stack frame, respectively. If these fields do not contain proper
values or if an illegal access rights change request is detected by an external memory
management unit, then an illegal call or return is being requested and is not executed.
Refer to Section 9 Applications Information for more information on the module
call/return mechanism.

The cpRESTORE instruction passes the format word of the coprocessor state frame to the
coprocessor for validation. If the coprocessor does not recognize the format value, it
signals the MC68020/EC020 to take a format error exception. Refer to Section 7
Coprocessor Interface Description  for details of coprocessor-related exceptions.

If any of the checks previously described determine that the format of the stacked data is
improper, the instruction generates a format error exception. This exception saves a short
bus fault stack frame, generates exception vector number 14, and continues execution at
the address in the format exception vector. The stacked PC value is the logical address of
the instruction that detected the format error.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



6-26 M68020 USER’S MANUAL MOTOROLA

corresponding fault bit (FB or FC) is cleared, the associated prefetch cycle may or may
not be run by the RTE instruction (depending on whether the stage is required).

If a fault occurs when the RTE instruction attempts to rerun the bus cycle(s), the processor
creates a new stack frame on the supervisor stack after deallocating the previous frame,
and address error or bus error exception processing starts in the normal manner.

The read-modify-write operations of the MC68020/EC020 can also be completed by the
RTE instruction that terminates the handler routine. The rerun operation, executed by the
RTE instruction with the DF bit of the SSW set, reruns the entire instruction. If the cause of
the error has been corrected, the handler does not need to emulate the instruction but can
leave the DF bit set and execute the RTE instruction.

6.3 COPROCESSOR CONSIDERATIONS

Exception handler programmers should consider carefully whether to save and restore the
context of a coprocessor at the beginning and end of handler routines for exceptions that
can occur during the execution of a coprocessor instruction (i.e., bus errors, interrupts,
and coprocessor-related exceptions). The nature of the coprocessor and the exception
handler routine determines whether or not saving the state of one or more coprocessors
with the cpSAVE and cpRESTORE instructions is required. If the coprocessor allows
multiple coprocessor instructions to be executed concurrently, it may require its state to be
saved and restored for all coprocessor-generated exceptions, regardless of whether or not
the coprocessor is accessed during the handler routine. The MC68882 floating-point
coprocessor is an example of this type of coprocessor. On the other hand, the MC68881
floating-point coprocessor requires FSAVE and FRESTORE instructions within an
exception handler routine only if the exception handler itself uses the coprocessor.

6.4 EXCEPTION STACK FRAME FORMATS

The MC68020/EC020 provides six different stack frames for exception processing. The
set of frames includes the normal four- and six-word stack frames, the four-word
throwaway stack frame, the coprocessor midinstruction stack frame, and the short and
long bus fault stack frames.

When the MC68020/EC020 writes or reads a stack frame, it uses long-word operand
transfers wherever possible. Using a long-word-aligned stack pointer with memory that is
on a 32-bit port greatly enhances exception processing performance. The processor does
not necessarily read or write the stack frame data in sequential order.

The system software should not depend on a particular exception generating a particular
stack frame. For compatibility with future devices, the software should be able to handle
any type of stack frame for any type of exception.

Table 6-5 summarizes the stack frames defined for the MC68020/EC020.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 7-3

model of sequential, nonconcurrent instruction execution at the user level. Consequently,
the programmer can assume that the images of registers and memory affected by a given
instruction have been updated when the next instruction in the sequence accessing these
registers or memory locations is executed.

The M68000 coprocessor interface provides full support of all operations necessary for
nonconcurrent operation of the main processor and its associated coprocessors. Although
the M68000 coprocessor interface allows concurrency in coprocessor execution, the
coprocessor designer is responsible for implementing this concurrency while maintaining a
programming model based on sequential nonconcurrent instruction execution.

For example, if the coprocessor determines that instruction B does not use or alter
resources to be altered or used by instruction A, instruction B can be executed
concurrently (if the execution hardware is also available). Thus, the required instruction
interdependencies and sequences of the program are always respected. The MC68882
coprocessor offers concurrent instruction execution; whereas, the MC68881 coprocessor
does not. However, the MC68020/EC020 can execute instructions concurrently with
coprocessor instruction execution in the MC68881.

7.1.3 Coprocessor Instruction Format

The instruction set for a given coprocessor is defined by the design of that coprocessor.
When a coprocessor instruction is encountered in the main processor instruction stream,
the MC68020/EC020 hardware initiates communication with the coprocessor and
coordinates any interaction necessary to execute the instruction with the coprocessor. A
programmer needs to know only the instruction set and register set defined by the
coprocessor to use the functions provided by the coprocessor hardware.

The instruction set of an M68000 coprocessor uses a subset of the F-line operation words
in the M68000 instruction set. The operation word is the first word of any M68000 family
instruction. The F-line operation word contains ones in bits 15–12 (refer to Figure 7-1); the
remaining bits are coprocessor and instruction dependent. The F-line operation word may
be followed by as many extension words as are required to provide additional information
necessary for the execution of the coprocessor instruction.

15 0

1 1 1

14 13 12

1

11

CpID

9 8

TYPE

6 5

TYPE DEPENDENT

Figure 7-1. F-Line Coprocessor Instruction Operation Word

As shown in Figure 7-1, bits 11–9 of the F-line operation word encode the coprocessor
identification (CpID) field. The MC68020/EC020 uses the CpID field to indicate the
coprocessor to which the instruction applies. F-line operation words, in which the CpID is
zero, are not coprocessor instructions for the MC68020/EC020. Instructions with a CpID of
zero and a nonzero type field are unimplemented instructions that cause the

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



7-10 M68020 USER’S MANUAL MOTOROLA

M1 RECOGNIZE COPROCESSOR INSTRUCTION F-LINE
OPERATION WORD

M2 WRITE COPROCESSOR COMMAND WORD TO
COMMAND CIR

M3 READ COPROCESSOR RESPONSE PRIMITIVE CODE
FROM RESPONSE CIR
1)  PERFORM SERVICE REQUESTED BY RESPONSE
PRIMITIVE
2)  IF (COPROCESSOR RESPONSE PRIMITIVE
INDICATES "COME AGAIN") GO TO M3
(SEE NOTE 1)

M4 PROCEED WITH EXECUTION OF NEXT INSTRUCTION
(SEE NOTE 2)

C1 DECODE COMMAND WORD AND INITIATE
COMMAND EXECUTION

C2 WHILE (MAIN PROCESSOR SERVICE IS REQUIRED)
DO STEPS 1) AND 2) BELOW
1)  REQUEST SERVICE BY PLACING APPROPRIATE

RESPONSE PRIMITIVE CODE IN RESPONSE CIR
2)  RECEIVE SERVICE FROM MAIN PROCESSOR

C3 REFLECT "NO COME AGAIN" IN RESPONSE CIR

C4 COMPLETE COMMAND EXECUTION

C5 REFLECT "PROCESSING FINISHED" STATUS IN
RESPONSE CIR

MAIN PROCESSOR COPROCESSOR

NOTES: 1. "Come Again" indicates that further service of the main processor is being requested by the coprocessor.
2. The next instruction should be the operation word pointed to by the ScanPC at this point.  The operation of
				the MC68020/EC020 ScanPC is discussed in 7.4.1 ScanPC.

Figure 7-7. Coprocessor Interface Protocol
for General Category Instructions

7.2.2 Coprocessor Conditional Instructions

The conditional instruction category provides program control based on the operations of
the coprocessor. The coprocessor evaluates a condition and returns a true/false indicator
to the main processor. The main processor completes the execution of the instruction
based on this true/false condition indicator.

The implementation of instructions in the conditional category promotes efficient use of
both the main processor and the coprocessor hardware. The condition specified for the
instruction is related to the coprocessor operation and is therefore evaluated by the
coprocessor. However, the instruction completion following the condition evaluation is
directly related to the operation of the main processor. The main processor performs the
change of flow, the setting of a byte, or the TRAP operation, since its architecture explicitly
implements these operations for its instruction set.

Figure 7-8 shows the protocol for a conditional category coprocessor instruction. The main
processor initiates execution of an instruction in this category by writing a condition
selector to the condition CIR. The coprocessor decodes the condition selector to
determine the condition to evaluate. The coprocessor can use response primitives to
request that the main processor provide services required for the condition evaluation.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 7-25

After writing the format word to the restore CIR, the main processor continues
cpRESTORE dialog by reading that same register. If the coprocessor returns a valid
format word, the main processor transfers the number of bytes specified by the format
word at the effective address to the operand CIR.

If the format word written to the restore CIR does not represent a valid coprocessor state
frame, the coprocessor places an invalid format word in the restore CIR and terminates
any current operations. The main processor receives the invalid format code, writes an
abort mask (refer to 7.2.3.2.3 Invalid Format Word) to the control CIR, and initiates
format error exception processing (refer to 7.5.1.5 Format Errors).

The cpRESTORE instruction is a privileged instruction. When the MC68020/EC020
accesses a cpRESTORE instruction, it checks the S-bit in the SR. If the MC68020/EC020
attempts to execute a cpRESTORE instruction while at the user privilege level (S-bit in the
SR is clear), it initiates privilege violation exception processing without accessing any of
the CIRs (refer to 7.5.2.3 Privilege Violations).

7.3 COPROCESSOR INTERFACE REGISTER SET

The instructions of the M68000 coprocessor interface use registers of the CIR set to
communicate with the coprocessor. These CIRs are not directly related to the coprocessor
programming model.

Figure 7-4 is a memory map of the CIR set. The response, control, save, restore,
command, condition, and operand registers must be included in a coprocessor interface
that implements all four coprocessor instruction categories. The complete register model
must be implemented if the system uses all coprocessor response primitives defined for
the M68000 coprocessor interface.

The following paragraphs contain detailed descriptions of the registers.

7.3.1 Response CIR

The coprocessor uses the 16-bit response CIR to communicate all service requests
(coprocessor response primitives) to the main processor. The main processor reads the
response CIR to receive the coprocessor response primitives during the execution of
instructions in the general and conditional instruction categories. The offset from the base
address of the CIR set for the response CIR is $00. Refer to 7.4 Coprocessor Response
Primitives for additional information.

7.3.2 Control CIR

The main processor writes to the 2-bit control CIR to acknowledge coprocessor-requested
exception processing or to abort the execution of a coprocessor instruction. The offset
from the base address of the CIR set for the control CIR is $02. The control CIR occupies
the two least significant bits of the word at that offset. The 14 most significant bits of the
word are undefined and reserved by Motorola. Figure 7-19 shows the format of this
register.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 7-39

The write to previously evaluated effective address primitive uses the CA and PC bits as
described in 7.4.2 Coprocessor Response Primitive General Format.

The length field of the primitive format specifies the length of the operand in bytes. The
MC68020/EC020 transfers operands of 0–255 bytes in length.

When the main processor receives this primitive during the execution of a general
category instruction, it transfers an operand from the operand CIR to an effective address
specified by a temporary register within the MC68020/EC020. When a previous primitive
for the current instruction has evaluated the effective address, this temporary register
contains the evaluated effective address. Primitives that store an evaluated effective
address in a temporary register of the main processor are the evaluate and transfer
effective address, evaluate effective address and transfer data, and transfer multiple
coprocessor registers primitive. If this primitive is used during an instruction in which the
effective address specified in the instruction operation word has not been calculated, the
effective address used for the write is undefined. Also, if the previously evaluated effective
address was register direct, the address written to in response to this primitive is
undefined.

The function code value during the write operation indicates either supervisor or user data
space, depending on the value of the S-bit in the MC68020/EC020 SR when the
processor reads this primitive. While a coprocessor should request writes to only alterable
effective addressing modes, the MC68020/EC020 does not check the type of effective
address used with this primitive. For example, if the previously evaluated effective address
was PC relative and the MC68020/EC020 is at the user privilege level (S = 0 in SR), the
MC68020/EC020 writes to user data space at the previously calculated program relative
address (the 32-bit value in the temporary internal register of the processor).

Operands longer than four bytes are transferred in increments of four bytes (operand
parts) when possible. The main processor reads a long-word operand part from the
operand CIR and transfers this part to the current effective address. The transfers
continue in this manner using ascending memory locations until all of the long-word
operand parts are transferred, and any remaining operand part is then transferred using a
one-, two-, or three-byte transfer as required. The operand parts are stored in memory
using ascending addresses beginning with the address in the MC68020/EC020 temporary
register, which is internal to the processor and not for user use.

The execution of this primitive does not modify any of the registers in the
MC68020/EC020 programming model, even if the previously evaluated effective address
mode is the predecrement or postincrement mode. If the previously evaluated effective
addressing mode used any of the MC68020/EC020 internal address or data registers, the
effective address value used is the final value from the preceding primitive. That is, this
primitive uses the value from an evaluate and transfer effective address, evaluate effective
address and transfer data, or transfer multiple coprocessor registers primitive without
modification.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 8-11

NOTE

This CC time is a maximum since the times given for the
MULU.L and DIVS.L are maximums.

The MOVE instruction timing tables include all necessary timing for extension word fetch,
address calculation, and operand fetch.

The instruction timing tables are used to calculate a best-case and worst-case bounds for
some target instruction stream. Calculating exact timing from the timing tables is
impossible because the tables cannot anticipate how the combination of factors will
influence every particular sequence of instructions. This is illustrated by comparing the
observed instruction timing from the prior four examples with instruction timing derived
from the instruction timing tables.

Table 8-2 lists the original instruction stream and the corresponding clock timing from the
appropriate timing tables for the best case, cache-only case, and worst case.

Table 8-2. Instruction Timings from Timing Tables

Instruction Best Case Cache Case Worst Case

#1) MOVE.L
#2) ADD.L
#3) MOVE.L
#4) ADD.L

D4,(A1)+
D4,D5
(A1),–(A2)
D5,D6

4
0
6
0

4
2
7
2

6
3
9
3

Total 10 15 21

Table 8-3 summarizes the observed instruction timings for the same instruction stream as
executed according to the assumptions of the four examples. For each example, Table 8-
3 shows which entry (BC/CC/WC) from the timing tables corresponds to the observed
timing for each of the four instructions. Some of the observed instruction timings cannot be
found in the timing tables and appear in Table 8-3 within parentheses in the most
appropriate column. These timings occur when instruction execution overlap dynamically
alters what would otherwise be a BC, CC, or WC timing.

Table 8-3. Observed Instruction Timings

Example 1 Example 2 Example 3 Example 4

Instruction BC CC WC BC CC WC BC CC WC BC CC WC

#1) MOVE.L
#2) ADD.L
#3) MOVE.L
#4) ADD.L

D4,(A1)+
D4,D5
(A1),–(A2)
D5,D6

0

(1)

6

9

4

6
3

3

0

(1)

4

7
0

0

(5)

(8)

Total (16) (16) (12) (13)

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



MOTOROLA M68020 USER’S MANUAL 8-39

8.2.17 Exception-Related Instructions

The exception-related instructions table indicates the number of clock periods needed for
the processor to perform the specified exception-related action. Footnotes specify when it
is necessary to add the entry from another table to calculate the total effective execution
time for the given instruction. The total number of clock cycles is outside the parentheses;
the number of read, prefetch, and write cycles is given inside the parentheses as (r/p/w).
These cycles are included in the total clock cycle number.

Instruction Best Case Cache Case Worst Case

BKPT 9(1/0/0) 10(1/0/0) 10(1/0/0)

Interrupt (I-Stack) 26(2/0/4) 26(2/0/4) 33(2/2/4)

Interrupt (M-Stack) 41(2/0/8) 41(2/0/8) 48(2/2/8)

RESET Instruction 518(0/0/0) 518(0/0/0) 519(0/1/0)

STOP 8(0/0/0) 8(0/0/0) 8(0/0/0)

Trace 25(1/0/5) 25(1/0/5) 32(1/2/5)

TRAP #n 20(1/0/4) 20(1/0/4) 27(1/2/4)

Illegal Instruction 20(1/0/4) 20(1/0/4) 27(1/2/4)

A-Line Trap 20(1/0/4) 20(1/0/4) 27(1/2/4)

F-Line Trap 20(1/0/4) 20(1/0/4) 27(1/2/4)

Privilege Violation 20(1/0/4) 20(1/0/4) 27(1/2/4)

TRAPcc (Trap) 23(1/0/5) 25(1/0/5) 32(1/2/5)

TRAPcc (No Trap) 1(0/0/0) 4(0/0/0) 5(0/1/0)

TRAPcc.W (Trap) 23(1/0/5) 25(1/0/5) 33(1/3/5)

TRAPcc.W (No Trap) 3(0/0/0) 6(0/0/0) 7(0/1/0)

TRAPcc.L (Trap) 23(1/0/5) 25(1/0/5) 33(1/3/5)

TRAPcc.L (No Trap) 5(0/0/0) 8(0/0/0) 10(0/2/0)

TRAPV (Trap) 23(1/0/5) 25(1/0/5) 32(1/2/5)

TRAPV (No Trap) 1(0/0/0) 4(0/0/0) 5(0/1/0)

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



8-40 M68020 USER’S MANUAL MOTOROLA

8.2.18 Save and Restore Operations

The save and restore operations table indicates the number of clock periods needed for
the processor to perform the specified state save or return from exception, with complete
execution times and stack length given. No additional tables are needed to calculate total
effective execution time for these operations. The total number of clock cycles is outside
the parentheses; the number of read, prefetch, and write cycles is given inside the
parentheses as (r/p/w). These cycles are included in the total clock cycle number.

Operation Best Case Cache Case Worst Case

Bus Cycle Fault (Short) 42(1/0/10) 43(1/0/10) 50(1/2/10)

Bus Cycle Fault (Long) 79(1/0/24) 79(1/0/24) 86(1/2/24)

RTE (Normal) 20(4/0/0) 21(4/0/0) 24(4/2/0)

RTE (Six Word) 20(4/0/0) 21(4/0/0) 24(4/2/0)

RTE (Throwaway)* 15(4/0/0) 16(4/0/0) 39(4/0/0)

RTE (Coprocessor) 31(7/0/0) 32(7/0/0) 33(7/1/0)

RTE (Short Fault) 42(10/0/0) 43(10/0/0) 45(10/2/0)

RTE (Long Fault) 91(24/0/0) 92(24/0/0) 94(24/2/0)

*Add the time for RTE on second stack frame.

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.



9-16 M68020 USER’S MANUAL MOTOROLA

OPT TYPE ACCESS LEVEL (RESERVED, MUST BE ZERO)

31 28 23 15 0

BASE
+$04

MODULE ENTRY WORD POINTER

MODULE DATA AREA POINTER

ADDITIONAL USER-DEFINED INFORMATION

+$08

+$0C

+$10

29 24 16

Figure 9-10. Module Descriptor Format

The opt field specifies how arguments are to be passed to the called module; the
MC68020/EC020 recognizes only the options of 000 and 100; all others cause a format
exception. The 000 option indicates that the called module expects to find arguments from
the calling module on the stack just below the module stack frame. In cases where there is
a change of stack pointer during the call, the MC68020/EC020 will copy the arguments
from the old stack to the new stack. The 100 option indicates that the called module will
access the arguments from the calling module through an indirect pointer in the stack of
the calling module. Hence, the arguments are not copied, but the MC68020/EC020 puts
the value of the stack pointer from the calling module in the module stack frame.

The type field specifies the type of the descriptor; the MC68020/EC020 only recognizes
descriptors of type $00 and $01; all others cause a format exception. The $00 type
descriptor defines a module for which there is no change in access rights, and the called
module builds its stack frame on top of the stack used by the calling module. The $01 type
descriptor defines a module for which there may be a change in access rights; such a
called module may have a separate stack area from that of the calling module.

The access level field is used only with the type $01 descriptor and is passed to external
hardware to change the access control.

The module entry word pointer specifies the entry address of the called module. The first
word at the entry address (see Figure 9-11) specifies the register to be saved in the
module stack frame and then loaded with the module descriptor data area pointer; the first
instruction of the module starts with the next word. The module descriptor data area
pointer field contains the address of the called module data area.

If the access change requires a change of stack pointer, the old value is saved in the
module stack frame, and the new value is taken from the module descriptor stack pointer
field. Any further information in the module descriptor is user defined.

OPERATION WORD OF FIRST INSTRUCTION

D/A

15 14

REGISTER

12 11 9

0

8

0

7

0

6 5 0

0 0

4

0

3

0

2

0

1

000

10

0

Figure 9-11. Module Entry Word

    

  

F
re

e
sc

a
le

 S
e

m
ic

o
n

d
u

c
to

r,
 I

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

Freescale Semiconductor, Inc.

For More Information On This Product,
  Go to: www.freescale.com

n
c

..
.


