

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	CPU16
Core Size	16-Bit
Speed	16MHz
Connectivity	EBI/EMI, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc68hc16z1mag16

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

LIST OF ILLUSTRATIONS (Continued) Title

Figure

Page

5-12 5-13 5-14 5-15 5-16 5-17 5-18 5-19 5-20 5-21 5-22 5-23	Word Read Cycle Flowchart5-38Write Cycle Flowchart5-39CPU Space Address Encoding5-47Breakpoint Operation Flowchart5-42LPSTOP Interrupt Mask Level5-42Bus Arbitration Flowchart for Single Request5-47Preferred Circuit for Data Bus Mode Select Conditioning5-57Alternate Circuit for Data Bus Mode Select Conditioning5-56Basic MCU System5-62Chip-Select Circuit Block Diagram5-62CPU Space Encoding for Interrupt Acknowledge5-68	8 9 1 2 3 7 0 1 6 2 3 8
8-1 8-2 8-3 8-4 8-5 8-5 8-6 8-7 8-8 8-9 8-10	ADC Block Diagram8-28-Bit Conversion Timing8-1210-Bit Conversion Timing8-1310-Bit Conversion Timing8-14Analog Input Circuitry8-18Errors Resulting from Clipping8-16Star-Ground at the Point of Power Supply Origin8-17Input Pin Subjected to Negative Stress8-18Voltage Limiting Diodes in a Negative Stress Circuit8-18External Multiplexing of Analog Signal Sources8-20Electrical Model of an A/D Input Pin8-27	2 2 3 5 6 7 8 9 0
9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11	QSM Block Diagram9-4QSPI Block Diagram9-5QSPI RAM9-7Flowchart of QSPI Initialization Operation9-10Flowchart of QSPI Master Operation (Part 1)9-17Flowchart of QSPI Master Operation (Part 2)9-12Flowchart of QSPI Master Operation (Part 3)9-12Flowchart of QSPI Slave Operation (Part 1)9-14Flowchart of QSPI Slave Operation (Part 1)9-14Flowchart of QSPI Slave Operation (Part 2)9-14SCI Transmitter Block Diagram9-22SCI Receiver Block Diagram9-23	1 5 7 0 1 2 3 4 5 2 3
10-1 10-2 10-3 10-4 10-5	MCCI Block Diagram10-7SPI Block Diagram10-8CPHA = 0 SPI Transfer Format10-9CPHA = 1 SPI Transfer Format10-10SCI Transmitter Block Diagram10-10	1 5 9 0 4

SECTION 1 INTRODUCTION

M68HC16 Z-series microcontrollers (including the MC68HC16Z1, MC68CM16Z1, MC68CK16Z1, MC68HC16Z2, MC68HC16Z3, MC68HC16Z4, and MC68CK16Z4) are high-speed 16-bit control units that are upwardly code compatible with M68HC11 controllers. All are members of the M68HC16 Family of modular microcontrollers.

M68HC16 microcontroller units (MCUs) are built from standard modules that interface via a common internal bus. Standardization facilitates rapid development of devices tailored for specific applications.

M68HC16 Z-series MCUs incorporate a number of different modules. Refer to **Table 1-1** for information on the contents of a specific Z-series MCU. (x) indicates that the module is used in the MCU. All of these modules are interconnected by the intermodule bus (IMB).

Modules	MC68HC16Z1 MC68CK16Z1 ¹ MC68CM16Z1 ¹	MC68HC16Z2	MC68HC16Z3	MC68HC16Z4 MC68CK16Z4 ¹
Central Processor Unit (CPU16)	Х	Х	Х	—
Low-Power Central Processor Unit (CPU16L)	_	_	_	х
System Integration Module (SIM)	Х	Х	Х	—
Low-Power System Integration Module (SIML)	_	_	_	х
Standby RAM (SRAM)	1 Kbyte	2 Kbytes	4 Kbytes	1 Kbyte
Masked ROM Module (MRM)	—	8 Kbytes	8 Kbytes	—
Analog-to-Digital Converter (ADC)	Х	Х	Х	Х
Queued Serial Module (QSM)	Х	Х	Х	—
Multichannel Communication Interface (MCCI)	_	_	_	х
General-Purpose Timer (GPT)	Х	Х	Х	Х

Table 1-1 M68HC16 Z-Series MCUs

NOTES:

1. "C" designator indicates a 2.7V to 3.6V part; "M" indicates a fast reference frequency and "K" indicates a slow reference frequency. "HC" stands for HCMOS.

The maximum system clock for M68HC16 Z-series MCUs can be either 16.78 MHz, 20.97 MHz, or 25.17 MHz. An internal phase-locked loop circuit synthesizes the system clock from a slow (typically 32.768 kHz) or fast (typically 4.194 MHz) reference, or uses an external frequency source. Refer to **Table 1-2** for information on which reference frequency is applied to a particular MCU. (x) indicates the reference frequency applicable to the MCU.

INTRODUCTION

NOTES:

1. MMMMM = MASK OPTION NUMBER

2. ATWLYYWW = ASSEMBLY TEST LOCATION/YEAR, WEEK

HC16Z1/CKZ1/CMZ1/Z2/Z3 144-PIN QFP

Figure 3-5 MC68HC16Z1/CKZ1/CMZ1/Z2/Z3 Pin Assignments for 144-Pin Package

OVERVIEW

M68HC16 Z SERIES USER'S MANUAL

For More Information On This Product, Go to: www.freescale.com

3-8

NOTE:

1. THE ADDRESSES DISPLAYED IN THIS MEMORY MAP ARE THE FULL 24-BIT IMB ADDRESSES. THE CPU16 ADDRESS BUS IS 20 BITS WIDE, AND CPU16 ADDRESS LINE 19 DRIVES IMB ADDRESS LINES [23:20]. THE BLOCK OF ADDRESSES FROM \$080000 TO \$F7FFFF MARKED AS UNDEFINED WILL NEVER APPEAR ON THE IMB. MEMORY BANKS 0 TO 15 APPEAR FULLY CONTIGUOUS IN THE CPU16'S FLAT 20-BIT ADDRESS SPACE. THE CPU16 NEED ONLY GENERATE A 20-BIT EFFECTIVE ADDRESS TO ACCESS ANY LOCATION IN THIS RANGE.

HC16Z4/CKZ4 MEM MAP (C)

Figure 3-13 MC68HC16Z4/CKZ4 Combined Program and Data Space Map

OVERVIEW

Mnemonic	Operation	Description	Address		Instruction				Con	ditior	n Co	des		
			Mode	Opcode	Operand	Cycles	s	ΜV	н	EV	N	z	v	С
ABA	Add B to A	$(A) + (B) \Rightarrow A$	INH	370B	_	2	—	_	Δ	-	Δ	Δ	Δ	Δ
ABX	Add B to IX	$(XK : IX) + (000 : B) \Rightarrow XK : IX$	INH	374F	_	2	—	_	_	_	—	_	_	_
ABY	Add B to IY	$(YK:IY) + (000:B) \Rightarrow YK:IY$	INH	375F	_	2	_	_	_	_	_	_	_	_
ABZ	Add B to IZ	$(ZK : Z) + (000 : B) \Rightarrow ZK : Z$	INH	376F	_	2	_	_	_	_	_	_	_	_
ACE	Add E to AM	$(AM[31:16]) + (E) \Rightarrow AM$	INH	3722	_	2	_	Δ	_	Δ	_	_	_	_
ACED	Add E : D to AM	$(AM) + (F : D) \rightarrow AM$	INH	3723	_	4	_	Δ	_	Δ	_	_	_	_
	Add with Carry to A	$(A) + (M) + C \rightarrow A$		43	ff	6	_		Δ	_		Δ	Δ	Δ
		$(\mathcal{A},\mathcal{A}) = (\mathcal{A},\mathcal{A}) = \mathcal{A}$	IND8, Y	53	ff	6			-			-	-	-
			IND8, Z	63	ff	6								
			IMM8	73	ii	2								
			IND16, X	1743	<u>gggg</u>	6								
				1753	9999	6								
			EXT	1703	hh ll	6								
			E, X	2743	_	6								
			E, Y	2753	—	6								
			E, Z	2763	—	6								
ADCB	Add with Carry to B	$(B) + (M) + C \Rightarrow B$	IND8, X	C3	ff	6	—	—	Δ	—	Δ	Δ	Δ	Δ
			IND8, Y	D3	ff	6								
				E3	11 	6								
				го 17С3	0000	6								
			IND16, X	17D3	aaaa	6								
			IND16, Z	17E3	gggg	6								
			EXT	17F3	hh ll	6								
			E, X	27C3	—	6								
			E, Y	27D3	-	6								
4.000				27E3		0								
ADCD	Add with Carry to D	$(D) + (M : M + 1) + C \Rightarrow D$	IND8, X	83 93	ff	6	_	_	_	_		Δ	Δ	Δ
			IND8, Z	A3	ff	6								
			IMM16	37B3	jj kk	4								
			IND16, X	37C3	gggg	6								
			IND16, Y	37D3	gggg	6								
			IND16, Z	37E3	9999 bb !!	6								
				2783		6								
			E, Y	2793	_	6								
			E, Z	27A3	—	6								
ADCE	Add with Carry to E	$(E) + (M : M + 1) + C \Rightarrow E$	IMM16	3733	jj kk	4	—	_	_	_	Δ	Δ	Δ	Δ
			IND16, X	3743	gggg	6								
			IND16, Y	3753	<u>gggg</u>	6								
			IND16, Z	3763	9999 bb ll	6								
		$(\Lambda) + (\Lambda) \rightarrow \Lambda$		41	""	6						•	•	4
ADDA	Add to A	$(A) + (M) \Rightarrow A$	IND8 Y	51	ff	6	_	_	Δ	_		Δ	Δ	Δ
			IND8, Z	61	ff	6								
			IMM8	71	ii	2								
			IND16, X	1741	<u>g</u> ggg	6								
			IND16, Y	1751	9999	6								
			IND16, Z	1761	9999 bb !!	b 6								
			E.X	2741		6								
			E, Y	2751	_	6								
			E, Z	2761	—	6								

Table 4-2 Instruction Set Summary

CENTRAL PROCESSING UNIT

Mnemonic	Operation	Description	Address		Instruction				Con	ditior	n Co	des		
			Mode	Opcode	Operand	Cycles	s	ΜV	н	EV	Ν	z	٧	С
RORW	Rotate Right Word		IND16, X IND16, Y IND16, Z EXT	270E 271E 272E 273E	9999 9999 9999 hh ll	8 8 8 8	—		_	_	Δ	Δ	Δ	Δ
RTI ³	Return from Interrupt	$(SK : SP) + 2 \Rightarrow SK : SP$ Pull CCR $(SK : SP) + 2 \Rightarrow SK : SP$ Pull PC $(PK : PC) - 6 \Rightarrow PK : PC$	INH	2777	_	12	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ
RTS ⁴	Return from Subrou- tine	$(SK : SP) + 2 \Rightarrow SK : SP$ Pull PK $(SK : SP) + 2 \Rightarrow SK : SP$ Pull PC $(PK : PC) - 2 \Rightarrow PK : PC$	INH	27F7	_	12	—		_	_	_	_	_	
SBA	Subtract B from A	$(A) - (B) \Rightarrow A$	INH	370A	—	2	—	—	—	—	Δ	Δ	Δ	Δ
SBCA	Subtract with Carry from A	$(A) - (M) - C \Rightarrow A$	IND8, X IND8, Y IND8, Z IMM8 IND16, X IND16, Y IND16, Z EXT E, X E, Y E, Z	42 52 62 72 1742 1752 1762 1772 2742 2752 2762	ff ff ii 9999 9999 9999 hH II —	6 6 2 6 6 6 6 6 6 6		_	_	_	Δ	Δ	Δ	Δ
SBCB	Subtract with Carry from B	$(B)-(M)-C\RightarrowB$	IND8, X IND8, Y IND8, Z IMM8 IND16, X IND16, Y IND16, Z EXT E, X E, Y E, Z	C2 D2 E2 F2 17C2 17D2 17E2 17F2 27C2 27D2 27E2	ff ff ii 9999 9999 9999 hH II —	6 6 6 6 6 6 6 6 6		_	_	_	Δ	Δ	Δ	Δ
SBCD	Subtract with Carry from D	$(D) - (M : M + 1) - C \Rightarrow D$	IND8, X IND8, Y IND8, Z IMM16 IND16, X IND16, Y IND16, Z EXT E, X E, Y E, Z	82 92 A2 37B2 37C2 37D2 37E2 37F2 2782 2782 2792 27A2	ff ff jj kk 9999 9999 9999 hH II —	6 6 4 6 6 6 6 6 6 6		_	_		Δ	Δ	Δ	Δ
SBCE	Subtract with Carry from E	$(E) - (M : M + 1) - C \Rightarrow E$	IMM16 IND16, X IND16, Y IND16, Z EXT	3732 3742 3752 3762 3772	jj kk 9999 9999 9999 9999 hh ll	4 6 6 6				_	Δ	Δ	Δ	Δ
SDE	Subtract D from E	(E) – (D)⇒ E	INH	2779	-	2	-	_	_	_	Δ	Δ	Δ	Δ
STAA	Store A	(A) ⇒ M	IND8, X IND8, Y IND8, Z IND16, X IND16, Y IND16, Z EXT E, X E, Y E, Z	4A 5A 6A 174A 175A 176A 177A 274A 275A 276A	ff ff 9999 9999 9999 hh II —	4 4 6 6 6 6 4 4 4		_	_	_	Δ	Δ	0	_

Table 4-2 Instruction Set Summary (Continued)

Semiconductor, Inc.

5.3.1 Clock Sources

The state of the clock mode (MODCLK) pin during reset determines the system clock source. When MODCLK is held high during reset, the clock synthesizer generates a clock signal from an external reference frequency. The clock synthesizer control register (SYNCR) determines operating frequency and mode of operation. When MOD-CLK is held low during reset, the clock synthesizer is disabled and an external system clock signal must be driven onto the EXTAL pin.

The input clock, referred to as f_{ref} , can be either a crystal or an external clock source. The output of the clock system is referred to as f_{sys} . Ensure that f_{ref} and f_{sys} are within normal operating limits.

To generate a reference frequency using the crystal oscillator, a reference crystal must be connected between the EXTAL and XTAL pins. Typically, a 32.768-kHz crystal is used for a slow reference, but the frequency may vary between 25 kHz to 50 kHz. **Figure 5-3** shows a typical circuit.

RESISTANCE AND CAPACITANCE BASED ON A TEST CIRCUIT CONSTRUCTED WITH A DAISHINKU DMX-38 32.768-KHz CRYSTAL. SPECIFIC COMPONENTS MUST BE BASED ON CRYSTAL TYPE. CONTACT CRYSTAL VENDOR FOR EXACT CIRCUIT.

32 OSCILLATOR

Figure 5-3 Slow Reference Crystal Circuit

A 4.194-MHz crystal is typically used for a fast reference, but the frequency may vary between one MHz up to six MHz. **Figure 5-4** shows a typical circuit.

* RESISTANCE AND CAPACITANCE BASED ON A TEST CIRCUIT CONSTRUCTED WITH A KDS041-18 4.194 MHz CRYSTAL. SPECIFIC COMPONENTS MUST BE BASED ON CRYSTAL TYPE. CONTACT CRYSTAL VENDOR FOR EXACT CIRCUIT.

16 OSCILLATOR 4M

Figure 5-4 Fast Reference Crystal Circuit

M68HC16 Z SERIES USER'S MANUAL SYSTEM INTEGRATION MODULE

Grounding is the most important factor influencing analog circuit performance in mixed signal systems (or in stand-alone analog systems). Close attention must be paid to avoid introducing additional sources of noise into the analog circuitry. Common sources of noise include ground loops, inductive coupling, and combining digital and analog grounds together inappropriately.

The problem of how and when to combine digital and analog grounds arises from the large transients which the digital ground must handle. If the digital ground is not able to handle the large transients, the current from the large transients can return to ground through the analog ground. It is the excess current overflowing into the analog ground which causes performance degradation by developing a differential voltage between the true analog ground and the microcontroller's ground pin. The end result is that the ground observed by the analog circuit is no longer true ground and often ends in skewed results.

Two similar approaches designed to improve or eliminate the problems associated with grounding excess transient currents involve star-point ground systems. One approach is to star-point the different grounds at the power supply origin, thus keeping the ground isolated. Refer to **Figure 8-6**.

ADC POWER SCHEM

Figure 8-6 Star-Ground at the Point of Power Supply Origin

Another approach is to star-point the different grounds near the analog ground pin on the microcontroller by using small traces for connecting the non-analog grounds to the analog ground. The small traces are meant only to accommodate DC differences, not AC transients.

M68HC16 Z SERIES
USER'S MANUAL

ANALOG-TO-DIGITAL CONVERTER

QSPI MSTR2 FLOW 3

For More Information On This Product, Go to: www.freescale.com

A receiver is placed in wake-up mode by setting the RWU bit in SCCR1. While RWU is set, receiver status flags and interrupts are disabled. Although the CPU16 can clear RWU, it is normally cleared by hardware during wake-up.

The WAKE bit in SCCR1 determines which type of wake-up is used. When WAKE = 0, idle-line wake-up is selected. When WAKE = 1, address-mark wake-up is selected. Both types require a software-based device addressing and recognition scheme.

Idle-line wake-up allows a receiver to sleep until an idle line is detected. When an idleline is detected, the receiver clears RWU and wakes up. The receiver waits for the first frame of the next transmission. The byte is received normally, transferred to RDR, and the RDRF flag is set. If software does not recognize the address, it can set RWU and put the receiver back to sleep. For idle-line wake-up to work, there must be a minimum of one frame of idle line between transmissions. There must be no idle time between frames within a transmission.

Address-mark wake-up uses a special frame format to wake up the receiver. When the MSB of an address-mark frame is set, that frame contains address information. The first frame of each transmission must be an address frame. When the MSB of a frame is set, the receiver clears RWU and wakes up. The byte is received normally, transferred to the RDR, and the RDRF flag is set. If software does not recognize the address, it can set RWU and put the receiver back to sleep. Address-mark wake-up allows idle time between frames and eliminates idle time between transmissions. However, there is a loss of efficiency because of an additional bit-time per frame.

9.4.3.9 Internal Loop Mode

The LOOPS bit in SCCR1 controls a feedback path in the data serial shifter. When LOOPS is set, the SCI transmitter output is fed back into the receive serial shifter. TXD is asserted (idle line). Both transmitter and receiver must be enabled before entering loop mode.

10.3.4.2 CPHA = 1 Transfer Format

Figure 10-4 is a timing diagram of an 8-bit, MSB-first SPI transfer in which CPHA equals one. Two waveforms are shown for SCK, one for CPOL equal to zero and another for CPOL equal to one. The diagram may be interpreted as a master or slave timing diagram since the SCK, MISO and MOSI pins are directly connected between the master and the slave. The MISO signal shown is the output from the slave and the MOSI signal shown is the output from the slave select input to the slave.

Figure 10-4 CPHA = 1 SPI Transfer Format

For a master, writing to the SPDR initiates the transfer. For a slave, the first edge of SCK indicates the start of a transfer. The SPI is left-shifted on the first and each succeeding odd clock edge, and data is latched on the second and succeeding even clock edges.

SCK is inactive for the last half of the eighth SCK cycle. For a master, SPIF is set at the end of the eighth SCK cycle (after the seventeenth SCK edge). Since the last SCK edge occurs in the middle of the eighth SCK cycle, however, the slave has no way of knowing when the end of the last SCK cycle occurs. The slave therefore considers the transfer complete after the last bit of serial data has been sampled, which corresponds to the middle of the eighth SCK cycle.

When CPHA is one, the \overline{SS} line may remain at its active low level between transfers. This format is sometimes preferred in systems having a single fixed master and only one slave that needs to drive the MISO data line.

Table A-11 Low Voltage 16.78-MHz DC Characteristics (Continued)

 $(V_{DD} \text{ and } V_{DDSYN} = 2.7 \text{ to } 3.6 \text{Vdc}, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H)$

Num	Characteristic	Symbol	Min	Max	Unit
17	MC68CM16Z1/Z4 Power Dissipation ¹¹	PD	_	191	mW
18	Input Capacitance ^{2, 7} All input-only pins All input/output pins	C _{in}	_	10 20	pF
19	Load Capacitance ² Group 1 I/O Pins, CLKOUT, FREEZE/QUOT, IPIPE0 Group 2 I/O Pins and CSBOOT, BG/CS Group 3 I/O Pins Group 4 I/O Pins	CL	 	90 100 100 100	pF

NOTES:

1. Applies to: Port ADA [7:0] — AN[7:0] Port E [7:4] — SIZ[1:0], AS, DS Port F [7:0] — IRQ[7:1], MODCLK Port GP[7:0] — IC4/OC5/OC1, IC[3:1], OC[4:1]/OC1 Port MCCI[7:0] — TXD, PCS[3:1], PCS0/SS, SCK, MOSI, MISO BKPT/DSCLK, DSI/IPIPE1, PAI, PCLK, RESET, RXD, TSC

- Input-Only Pins: EXTAL, TSC, BKPT/DSCLK, PAI, PCLK, RXD Output-Only Pins: CSBOOT, BG/CS1, CLKOUT, FREEZE/QUOT, DSO/IPIPE0, PWMA, PWMB Input/Output Pins:
 - Group 1: Port GP[7:0] IC4/OC5/OC1, IC[3:1], OC[4:1]/OC1, DATA[15:0], DSI/IPIPE1
 - Group 2: Port C[6:0] ADDR[22:19]/CS[9:6], FC[2:0]/CS[5:3]
 - Port E[7:0] SIZ[1:0], AS, DS, AVEC, DSACK[1:0]
 - Port F[7:0] IRQ[7:1], MODCLK
 - Port MCCI[7:3] TXD, PCS[3:1], PCS0/SS, ADDR23/CS10/ECLK
 - Group 3: HALT, RESET
 - Group 4: MISO, MOSI, SCK
- 3. Does not apply to \overrightarrow{HALT} and \overrightarrow{RESET} because they are open drain pins.
- Does not apply to port MCCI[7:0] (TXD, PCS[3:1], PCS0/SS, SCK, MOSI, MISO) in wired-OR mode.
- 4. Use of an active pulldown device is recommended.
- 5. Total operating current is the sum of the appropriate $I_{\text{DD}},\,I_{\text{DDSYN}},\,I_{\text{SB}},$ and $I_{\text{DDA}}.$
- 6. Current measured with system clock frequency of 16.78 MHz, all modules active.
- 7. This parameter is periodically sampled rather than 100% tested.
- 8. CPU16 in WAIT, all other modules inactive.
- 9. The RAM module will not switch into standby mode as long as V_{SB} does not exceed V_{DD} by more than 0.5 Volt. The RAM array cannot be accessed while the module is in standby mode.
- 10. When V_{DD} is transitioning during a power up or power down sequence, and V_{SB} is applied, current flows between the V_{STBY} and V_{DD} pins, which causes standby current to increase toward the maximum transient condition specification. System noise on the V_{DD} and V_{STBY} pins can contribute to this condition.
- 11. Power dissipation measured at specified system clock frequency, all modules active. Power dissipation can be calculated using the expression:

 $P_D = Maximum V_{DD} (I_{DD} + I_{DDSYN} + I_{SB}) + Maximum V_{DDA} (I_{DDA})$

 I_{DD} includes supply currents for all device modules powered by V_{DD} pins.

Table A-21 20.97-MHz Background Debug Mode Timing

 $(V_{DD} \text{ and } V_{DDSYN} = 5.0 \text{ Vdc} \pm 5\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H)^1$

Num	Characteristic	Symbol	Min	Max	Unit
B0	DSI Input Setup Time	t _{DSISU}	15	_	ns
B1	DSI Input Hold Time	t _{DSIH}	10	_	ns
B2	DSCLK Setup Time	t _{DSCSU}	15	_	ns
B3	DSCLK Hold Time	t _{DSCH}	10		ns
B4	DSO Delay Time	t _{DSOD}		25	ns
B5	DSCLK Cycle Time	t _{DSCCYC}	2	_	t _{cyc}
B6	CLKOUT High to FREEZE Asserted/Negated	t _{FRZAN}	_	50	ns
B7	CLKOUT High to IPIPE1 High Impedance	t _{IFZ}		50	ns
B8	CLKOUT High to IPIPE1 Valid	t _{IF}	_	50	ns
B9	DSCLK Low Time	t _{DSCLO}	1		t _{cyc}
B10	IPIPE1 High Impedance to FREEZE Asserted	t _{IPFA}	TBD		t _{cyc}
B11	FREEZE Negated to IPIPE[0:1] Active	t _{FRIP}	TBD		t _{cyc}

NOTES:

1. All AC timing is shown with respect to $V_{\mbox{\scriptsize IH}}/V_{\mbox{\scriptsize IL}}$ levels unless otherwise noted.

Table A-22 25.17-MHz Background Debug Mode Timing

 $(V_{DD} \text{ and } V_{DDSYN} = 5.0 \text{ Vdc} \pm 5\%, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H)^1$

Num	Characteristic	Symbol	Min	Max	Unit
B0	DSI Input Setup Time	t _{DSISU}	10	—	ns
B1	DSI Input Hold Time	t _{DSIH}	5	—	ns
B2	DSCLK Setup Time	t _{DSCSU}	10	_	ns
B3	DSCLK Hold Time	t _{DSCH}	5	—	ns
B4	DSO Delay Time	t _{DSOD}	—	20	ns
B5	DSCLK Cycle Time	t _{DSCCYC}	2	_	t _{cyc}
B6	CLKOUT High to FREEZE Asserted/Negated	t _{FRZAN}	—	20	ns
B7	CLKOUT High to IPIPE1 High Impedance	t _{IFZ}	—	20	ns
B8	CLKOUT High to IPIPE1 Valid	t _{IF}	_	20	ns
B9	DSCLK Low Time	t _{DSCLO}	1	—	t _{cyc}
B10	IPIPE1 High Impedance to FREEZE Asserted	t _{IPFA}	TBD	—	t _{cyc}
B11	FREEZE Negated to IPIPE[0:1] Active	t _{FRIP}	TBD	_	t _{cyc}

NOTES:

1. All AC timing is shown with respect to $V_{\mbox{\scriptsize IH}}/V_{\mbox{\scriptsize IL}}$ levels unless otherwise noted.

Figure A-15 ECLK Timing Diagram

Table A-27 Low Voltage QSPI Timing

(V_{DD} and V_{DDSYN} = 2.7 to 3.6 Vdc, V_{SS} = 0 Vdc, T_A = T_L to T_H)¹

Num	Function	Symbol	Min	Max	Unit
1	Operating Frequency Master Slave	f _{op}	DC DC	1/4 1/4	f _{sys} f _{sys}
2	Cycle Time Master Slave	t _{qcyc}	4 4	510 —	t _{cyc} t _{cyc}
3	Enable Lead Time Master Slave	t _{lead}	2 2	128 —	t _{cyc} t _{cyc}
4	Enable Lag Time Master Slave	t _{lag}	2	1/2	SCK t _{cyc}
5	Clock (SCK) High or Low Time Master Slave ²	t _{sw}	2 t _{cyc} – 60 2 t _{cyc} – n	255 t _{cyc}	ns ns
6	Sequential Transfer Delay Master Slave (Does Not Require Deselect)	t _{td}	17 13	8192 —	t _{cyc} t _{cyc}
7	Data Setup Time (Inputs) Master Slave	t _{su}	20 20		ns ns
8	Data Hold Time (Inputs) Master Slave	t _{hi}	30 20		ns ns
9	Slave Access Time	t _a	_	1	t _{cyc}
10	Slave MISO Disable Time	t _{dis}	_	2	t _{cyc}
11	Data Valid (after SCK Edge) Master Slave	t _v		50 50	ns ns
12	Data Hold Time (Outputs) Master Slave	t _{ho}	0 0		ns ns
13	Rise Time Input Output	t _{ri} t _{ro}	_	2 30	μs ns
14	Fall Time Input Output	t _{fi} t _{fo}		2 30	μs ns

NOTES:

1. Refer to notes in Table A-28.

Table A-28 QSPI Timing

 $(V_{DD} \text{ and } V_{DDSYN} = 5.0 \text{ Vdc} \pm 5\% \text{ for 16.78 MHz}, 10\% \text{ for 20/25 MHz}, V_{SS} = 0 \text{ Vdc}, T_A = T_L \text{ to } T_H)^1$

Num	Function	Symbol	Min	Мах	Unit
1	Operating Frequency Master Slave	f _{op}	DC DC	1/4 1/4	f _{sys} f _{sys}
2	Cycle Time Master Slave	t _{qcyc}	4 4	510 —	t _{cyc} t _{cyc}
3	Enable Lead Time Master Slave	t _{lead}	2 2	128 —	t _{cyc} t _{cyc}
4	Enable Lag Time Master Slave	t _{lag}	2	1/2	SCK t _{cyc}
5	Clock (SCK) High or Low Time Master Slave ²	t _{sw}	2 t _{cyc} – 60 2 t _{cyc} – n	255 t _{cyc}	ns ns
6	Sequential Transfer Delay Master Slave (Does Not Require Deselect)	t _{td}	17 13	8192 —	t _{cyc} t _{cyc}
7	Data Setup Time (Inputs) Master Slave	t _{su}	30 20		ns ns
8	Data Hold Time (Inputs) Master Slave	t _{hi}	0 20		ns ns
9	Slave Access Time	t _a	_	1	t _{cyc}
10	Slave MISO Disable Time	t _{dis}	_	2	t _{cyc}
11	Data Valid (after SCK Edge) Master Slave	t _v		50 50	ns ns
12	Data Hold Time (Outputs) Master Slave	t _{ho}	0 0		ns ns
13	Rise Time Input Output	t _{ri} t _{ro}	_	2 30	μs ns
14	Fall Time Input Output	t _{fi} t _{fo}		2 30	μs ns

NOTES:

1. All AC timing is shown with respect to $V_{\mbox{\scriptsize IH}}/V_{\mbox{\scriptsize IL}}$ levels unless otherwise noted.

2. For high time, n = External SCK rise time; for low time, n = External SCK fall time.

ELECTRICAL CHARACTERISTICS

NOTES:

1. PHI1 IS THE SAME FREQUENCY AS THE SYSTEM CLOCK; HOWEVER, IT DOES NOT HAVE THE SAME TIMING.

2. A = PAI SIGNAL AFTER THE SYNCHRONIZER.

3. B = "A" AFTER THE DIGITAL FILTER.

4. THE EXTERNAL LEADING EDGE CAUSES THE PULSE ACCUMULATOR TO INCREMENT AND THE PAIF FLAG TO BE SET.

5. THE COUNTER TRANSITION FROM \$FF TO \$00 CAUSES THE PAOVF FLAG TO BE SET.

PULSE ACCUM ECM LEAD EDGE

Figure A-25 Pulse Accumulator — Event Counting Mode (Leading Edge)

Table A-36 ADC AC Characteristics (Operating)

(V_{DD} and V_{DDA} = 5.0 Vdc \pm 5% for 20/25 MHz, \pm 10% for 16 MHz, V_{SS} = 0 Vdc, T_A within operating temperature range)

Num	Parameter	Symbol	Min	Max	Unit
1	ADC Clock Frequency	f _{ADCLK}	0.5	2.1	MHz
2	8-Bit Conversion Time ¹ $f_{ADCLK} = 1.0 \text{ MHz}$ $f_{ADCLK} = 2.1 \text{ MHz}$	t _{CONV}	15.2 7.6		μs
3	10-Bit Conversion Time ¹ $f_{ADCLK} = 1.0 \text{ MHz}$ $f_{ADCLK} = 2.1 \text{ MHz}$	t _{CONV}	17.1 8.6	_	μs
4	Stop Recovery Time	t _{SR}	—	10	μs

NOTES:

1. Conversion accuracy varies with f_{ADCLK} rate. Reduced conversion accuracy occurs at maximum.

D.2.1 SIM Module Configuration Register

SIMCR — SIM Module Configuration Register									\$YFFA00						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EXOFF	FRZSW	FRZBM	0	RSVD ¹	0	SHEN	N[1:0]	SUPV	MM	0	0		IAR	3[3:0]	
RE	SET:														
0	1	1	0	DATA11	0	0	0	1	1	0	0	1	1	1	1

NOTES:

1. This bit must be left at zero. Pulling DATA11 high during reset ensures this bit remains zero. A one in this bit could allow the MCU to enter an unsupported operating mode.

SIMCR controls system configuration. SIMCR can be read or written at any time, except for the module mapping (MM) bit, which can only be written once after reset, and the reserved bit, which is read-only. Write has no effect.

EXOFF — External Clock Off

- 0 = The CLKOUT pin is driven during normal operation.
- 1 = The CLKOUT pin is placed in a high-impedance state.

FRZSW — Freeze Software Enable

- 0 = When FREEZE is asserted, the software watchdog and periodic interrupt timer continue to operate, allowing interrupts during background debug mode.
- 1 = When FREEZE is asserted, the software watchdog and periodic interrupt timer are disabled, preventing interrupts during background debug mode.

FRZBM — Freeze Bus Monitor Enable

- 0 = When FREEZE is asserted, the bus monitor continues to operate.
- 1 = When FREEZE is asserted, the bus monitor is disabled.

SHEN[1:0] — Show Cycle Enable

The SHEN field determines how the external bus is driven during internal transfer operations. A show cycle allows internal transfers to be monitored externally.

Table D-3 indicates whether show cycle data is driven externally, and whether external bus arbitration can occur. To prevent bus conflict, external devices must not be selected during show cycles.

SHEN[1:0]	Action
00	Show cycles disabled, external arbitration enabled
01	Show cycles enabled, external arbitration disabled
10	Show cycles enabled, external arbitration enabled
11	Show cycles enabled, external arbitration enabled; internal activity is halted by a bus grant

SUPV — Supervisor/User Data Space

This bit has no effect because the CPU16 always operates in the supervisor mode.

REGISTER SUMMARY

	STD	SCCR1	;enable SCI receiver and transmitter						
	T.DAR	#¢01							
	TBZK	πφοτ	point ZK at bank 1 (the SRAM)						
	LDZ	#\$0000	; for indexing the variables CNT and DLY						
CNT	EQU	\$0000	;loop counter						
DLY	EQU	\$0002	;delay counter						
* * * * *	Main Pro	gram *****							
MATN:	LDAB	#\$7F	set clock speed to 16 777MHz						
	STAB	SYNCR	;w=0, x=1, y=111111						
NOT_L:	BRCLR	SYNCR+1,#8,NOT_I	L ;wait until synthesizer lock bit is set						
_	LDD	#\$01B5	-						
	STD	SCCR0	;set baud rate to 1200						
	JSR	DELAY	;delay for modulus counter of SCI to flush						
	LDX	#STRING	;load address of string into IX						
	JSR	SEND_STRING	;subroutine to send string to dummy terminal						
	LDAB	#\$05	;set up loop counter						
	STAB	CNT,Z							
LOOP1:	LDX	#SEC_STR	;load address of string into IX						
	JSR	SEND_STRING	;subroutine to send string to dummy terminal						
	DEC	CNT,Z	;decrement loop counter						
	BNE	LOOP1	;loop 5 times						
	LDAB	#\$4F	; change clock frequency to 4.194MHz						
	STAB	SYNCR	;w=0, x=1, y=001111						
LOOP2:	BRCLR	SYNCR+1,#8,LOOP2	2 ;wait until synthesizer lock bit is set						
	LDD	#\$006D							
	STD	SCCR0	;set BAUD rate back to 1200						
	JSR	DELAY	;delay for modulus counter of SCI to flush						
	LDX	#STRING2	;load address of string into IX						
	JSR	SEND_STRING	;subroutine to send string to dummy terminal						
	LDAB	#\$05	;set up # of loops for loop counter to 5						
	STAB	CNT,Z							
LOOP3:	LDX	#SEC_STR	;load address of string into IX						
	JSR	SEND_STRING	; subroutine to send string to dummy terminal						
	DEC	CNT,Z	decrement loop counter						
	BNE	LOOP3	;loop 5 times						
	LBRA	MAIN	;branch back to main						
* * * * *	Subrouti	nes *****							
DELAY:	LDD	#\$FFFF	;delay loop						
	STD	DLY,Z							
LOOP4:	DEC	DLY,Z							
	BNE	LOOP4							
	RTS								
SEND SI	'RING:		;subroutine to send out the entire ASCII						
_			;string						
	LDAB	0,X	;get next byte in string as pointed to by IX						
	BEQ	STRING_DONE	; if B=00, then message is done						

M68HC16 Z SERIES USER'S MANUAL

INITIALIZATION AND PROGRAMMING EXAMPLES