E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CPU16
Core Size	16-Bit
Speed	16MHz
Connectivity	EBI/EMI, SCI, SPI
Peripherals	POR, PWM, WDT
Number of I/O	16
Program Memory Size	·
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	132-BQFP Bumpered
Supplier Device Package	132-PQFP (24.13x24.13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc16z1meh16

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table

Freescale Semiconductor, Inc.

LIST OF TABLES (Continued) Title

Page

5-25 5-26	Chip-Select Base and Option Register Reset Values
6-1 6-2	SRAM Configuration
7-1 7-2	ROM Array Space Field7-2Wait States Field7-3
8-1 8-2 8-3 8-4 8-5 8-6 8-7 8-8 8-9 8-10 8 11	FRZ Field Selection8-4Multiplexer Channel Sources8-5Prescaler Output8-7TS Field Selection8-7Conversion Parameters Controlled by ADCTL18-8ADC Conversion Modes8-8Single-Channel Conversions (MULT = 0)8-10Multiple-Channel Conversions (MULT = 1)8-11Result Register Formats8-14External Circuit Settling Time (10-Bit Conversions)8-23Error Resulting From Input Leakage (IOFF)8-23
0-11	
9-1 9-2 9-3 9-4 9-5	Effect of DDRQS on QSM Pin Function9-4QSPI Pins9-8Bits Per Transfer9-18Serial Frame Formats9-26Effect of Parity Checking on Data Size9-27
9-1 9-2 9-3 9-4 9-5 10-1 10-2 10-3 10-4 10-5 10-6 10-7	Effect of DDRQS on QSM Pin Function9-4QSPI Pins9-8Bits Per Transfer9-18Serial Frame Formats9-26Effect of Parity Checking on Data Size9-27MCCI Interrupt Vectors10-3Pin Assignments10-4SPI Pin Functions10-7SCK Frequencies10-11SCI Pins10-17Serial Frame Formats10-17Serial Frame Formats10-17
9-1 9-2 9-3 9-4 9-5 10-1 10-2 10-3 10-4 10-5 10-6 10-7 11-1 11-2 11-3	Effect of DDRQS on QSM Pin Function9-4QSPI Pins9-8Bits Per Transfer9-18Serial Frame Formats9-26Effect of Parity Checking on Data Size9-27MCCI Interrupt Vectors10-3Pin Assignments10-4SPI Pin Functions10-7SCK Frequencies10-11SCI Pins10-17Serial Frame Formats10-18Effect of Parity Checking on Data Size10-18Pin S10-17SCK Frequencies10-18Serial Frame Formats10-18Effect of Parity Checking on Data Size10-19GPT Status Flags11-5GPT Interrupt Sources11-6PWM Frequency Ranges11-18

NOTES:

1. MMMMM = MASK OPTION NUMBER

2. ATWLYYWW = ASSEMBLY TEST LOCATION/YEAR, WEEK

HC16Z1/CKZ1/CMZ1/Z2/Z3 144-PIN QFP

Figure 3-5 MC68HC16Z1/CKZ1/CMZ1/Z2/Z3 Pin Assignments for 144-Pin Package

OVERVIEW

M68HC16 Z SERIES USER'S MANUAL

For More Information On This Product, Go to: www.freescale.com

3-8

OVERVIEW

For More Information On This Product, Go to: www.freescale.com M68HC16 Z SERIES USER'S MANUAL

Table 5-5 16.78-MHz System Clock Frequencies

(Shaded cells represent values that exceed 16.78 MHz specifications.)

Modulus	Prescaler										
Y	[W:X] = 00 (f _{VCO} = 2 × Value)	[W:X] = 01 (f _{VCO} = Value)	[W:X] = 10 (f _{VCO} = 2 × Value)	[W:X] = 11 (f _{VCO} = Value)							
000000	131 kHz	262 kHz	524 kHz	1049 kHz							
000001	262	524	1049	2097							
000010	393	786	1573	3146							
000011	524	1049	2097	4194							
000100	655	1311	2621	5243							
000101	786	1573	3146	6291							
000110	918	1835	3670	7340							
000111	1049	2097	4194	8389							
001000	1180	2359	4719	9437							
001001	1311	2621	5243	10486							
001010	1442	2884	5767	11534							
001011	1573	3146	6291	12583							
001100	1704	3408	6816	13631							
001101	1835	3670	7340	14680							
001110	1966	3932	7864	15729							
001111	2097	4194	8389	16777							
010000	2228	4456	8913	17826							
010001	2359	4719	9437	18874							
010010	2490	4981	9961	19923							
010011	2621	5243	10486	20972							
010100	2753	5505	11010	22020							
010101	2884	5767	11534	23069							
010110	3015	6029	12059	24117							
010111	3146	6291	12583	25166							
011000	1000 3277 6554		13107	26214							
011001	3408	6816	13631	27263							
011010	3539	7078	14156	28312							
011011	3670	7340	14680	29360							
011100	3801	7602	15204	30409							
011101	3932	7864	15729	31457							
011110	4063	8126	16253	32506							
011111	4194	8389	16777	33554							

SYSTEM INTEGRATION MODULE

Descriptions are made in terms of individual system clock states, labelled {S0, S1, S2,..., SN}. The designation "state" refers to the logic level of the clock signal, and does not correspond to any implemented machine state. A clock cycle consists of two successive states. Refer to **APPENDIX A ELECTRICAL CHARACTERISTICS** for more information on clock control timing.

Bus cycles terminated by DSACK assertion normally require a minimum of three CLKOUT cycles. To support systems that use CLKOUT to generate DSACK and other inputs, asynchronous input setup time and asynchronous input hold times are specified. When these specifications are met, the MCU is guaranteed to recognize the appropriate signal on a specific edge of the CLKOUT signal.

5.6.2 Regular Bus Cycle

The following paragraphs contain a discussion of cycles that use external bus control logic. Refer to **5.6.3 Fast Termination Cycles** for information about fast termination cycles.

To initiate a transfer, the MCU asserts an address and the SIZ[1:0] signals. The SIZ signals and ADDR0 are externally decoded to select the active portion of the data bus. Refer to **5.5.2 Dynamic Bus Sizing**. When \overline{AS} , \overline{DS} , and R/W are valid, a peripheral device either places data on the bus (read cycle) or latches data from the bus (write cycle), then asserts a $\overline{DSACK[1:0]}$ combination that indicates port size.

The $\overline{\text{DSACK}[1:0]}$ signals can be asserted before the data from a peripheral device is valid on a read cycle. To ensure valid data is latched into the MCU, a maximum period between $\overline{\text{DSACK}}$ assertion and $\overline{\text{DS}}$ assertion is specified.

There is no specified maximum for the period between the assertion of \overline{AS} and \overline{DSACK} . Although the MCU can transfer data in a minimum of three clock cycles when the cycle is terminated with \overline{DSACK} , the MCU inserts wait cycles in clock period increments until either \overline{DSACK} signal goes low.

If bus termination signals remain unasserted, the MCU will continue to insert wait states, and the bus cycle will never end. If no peripheral responds to an access, or if an access is invalid, external logic should assert the BERR or HALT signals to abort the bus cycle (when BERR and HALT are asserted simultaneously, the CPU16 acts as though only BERR is asserted). When enabled, the SIM bus monitor asserts BERR when DSACK response time exceeds a predetermined limit. The bus monitor time-out period is determined by the BMT[1:0] field in SYPCR. The maximum bus monitor time-out period is 64 system clock cycles.

5.6.2.1 Read Cycle

During a read cycle, the MCU transfers data from an external memory or peripheral device. If the instruction specifies a long-word or word operation, the MCU attempts to read two bytes at once. For a byte operation, the MCU reads one byte. The portion of the data bus from which each byte is read depends on operand size, peripheral address, and peripheral port size. Figure 5-12 is a flowchart of a word read cycle. Refer to 5.5.2 Dynamic Bus Sizing, 5.5.4 Misaligned Operands, and the *SIM Reference Manual* (SIMRM/AD) for more information.

M68HC16 Z SERIES USER'S MANUAL SYSTEM INTEGRATION MODULE

The chip-select address compare logic uses only the most significant bits to match an address within a block. The value of the base address must be an integer multiple of the block size.

Because the logic state of ADDR[23:20] follows that of ADDR19 in the CPU16, maximum block size is 512 Kbytes, and addresses from \$080000 to \$F7FFFF are inaccessible.

After reset, the MCU fetches the initialization routine from the address contained in the reset vector, located beginning at address \$000000 of program space. To support bootstrap operation from reset, the base address field in the boot chip-select base address register (CSBARBT) has a reset value of \$000, which corresponds to a base address of \$000000 and a block size of 512 Kbytes. A memory device containing the reset vector and initialization routine can be automatically enabled by CSBOOT after a reset. Refer to **5.9.4 Chip-Select Reset Operation** for more information.

5.9.1.3 Chip-Select Option Registers

Option register fields determine timing of and conditions for assertion of chip-select signals. To assert a chip-select signal, and to provide DSACK or autovector support, other constraints set by fields in the option register and in the base address register must also be satisfied. The following paragraphs summarize option register functions. Refer to **D.2.21 Chip-Select Option Registers** for register and bit field information.

The MODE bit determines whether chip-select assertion simulates an asynchronous bus cycle, or is synchronized to the M6800-type bus clock signal ECLK available on ADDR23. Refer to **5.3 System Clock** for more information on ECLK.

BYTE[1:0] controls bus allocation for chip-select transfers. Port size, set when a chipselect is enabled by a pin assignment register, affects signal assertion. When an 8-bit port is assigned, any BYTE field value other than %00 enables the chip-select signal. When a 16-bit port is assigned, however, BYTE field value determines when the chipselect is enabled. The BYTE fields for $\overline{CS[10:0]}$ are cleared during reset. However, both bits in the boot ROM chip-select option register (CSORBT) BYTE field are set (%11) when the RESET signal is released.

R/W[1:0] causes a chip-select signal to be asserted only for a read, only for a write, or for both read and write. Use this field in conjunction with the STRB bit to generate asynchronous control signals for external devices.

The STRB bit controls the timing of a chip-select assertion in asynchronous mode. Selecting address strobe causes a chip-select signal to be asserted synchronized with the address strobe. Selecting data strobe causes a chip-select signal to be asserted synchronized with the data strobe. This bit has no effect in synchronous mode.

DSACK[3:0] specifies the source of DSACK in asynchronous mode. It also allows the user to optimize bus speed in a particular application by controlling the number of wait states that are inserted.

NOTE

The external DSACK pins are always active.

SYSTEM INTEGRATION MODULE

M68HC16 Z SERIES USER'S MANUAL

Error-detection logic is included to support interprocessor interfacing. A write-collision detector indicates when an attempt is made to write data to the serial shift register while a transfer is in progress. A multiple-master mode-fault detector automatically disables SPI output drivers if more than one MCU simultaneously attempts to become bus master.

10.3.1 SPI Registers

SPI control registers include the SPI control register (SPCR), the SPI status register (SPSR), and the SPI data register (SPDR). Refer to **D.7.13 SPI Control Register**, **D.7.14 SPI Status Register**, and **D.7.15 SPI Data Register** for register bit and field definitions.

10.3.1.1 SPI Control Register (SPCR)

The SPCR contains parameters for configuring the SPI. The register can be read or written at any time.

10.3.1.2 SPI Status Register (SPSR)

The SPSR contains SPI status information. Only the SPI can set the bits in this register. The CPU reads the register to obtain status information.

10.3.1.3 SPI Data Register (SPDR)

The SPDR is used to transmit and receive data on the serial bus. A write to this register in the master device initiates transmission or reception of another byte or word. After a byte or word of data is transmitted, the SPIF status bit is set in both the master and slave devices.

A read of the SPDR actually reads a buffer. If the first SPIF is not cleared by the time a second transfer of data from the shift register to the read buffer is initiated, an overrun condition occurs. In cases of overrun the byte or word causing the overrun is lost.

A write to the SPDR is not buffered and places data directly into the shift register for transmission.

10.3.2 SPI Pins

Four bidirectional pins are associated with the SPI. The MPAR configures each pin for either SPI function or general-purpose I/O. The MDDR assigns each pin as either input or output. The WOMP bit in the SPI control register (SPCR) determines whether each SPI pin that is configured for output functions as an open-drain output or a normal CMOS output. The MDDR and WOMP assignments are valid regardless of whether the pins are configured for SPI use or general-purpose I/O.

The operation of pins configured for SCI use depends on whether the SCI is operating as a master or a slave, determined by the MSTR bit in the SPCR.

 Table 10-3 shows SPI pins and their functions.

USER'S MANUAL

The state of the serial shifter is checked when the TE bit is set. If TC = 1, an idle frame is transmitted as a preamble to the following data frame. If TC = 0, the current operation continues until the final bit in the frame is sent, then the preamble is transmitted. The TC bit is set at the end of preamble transmission.

The SBK bit in SCCR1 is used to insert break frames in a transmission. A non-zero integer number of break frames is transmitted while SBK is set. Break transmission begins when SBK is set, and ends with the transmission in progress at the time either SBK or TE is cleared. If SBK is set while a transmission is in progress, that transmission finishes normally before the break begins. To assure the minimum break time, toggle SBK quickly to one and back to zero. The TC bit is set at the end of break transmission. After break transmission, at least one bit-time of logic level one (mark idle) is transmitted to ensure that a subsequent start bit can be detected.

If TE remains set, after all pending idle, data and break frames are shifted out, TDRE and TC are set and TXD is held at logic level one (mark).

When TE is cleared, the transmitter is disabled after all pending idle, data, and break frames are transmitted. The TC flag is set, and control of the TXD pin reverts to MPAR and MDDR. Buffered data is not transmitted after TE is cleared. To avoid losing data in the buffer, do not clear TE until TDRE is set.

Some serial communication systems require a mark on the TXD pin even when the transmitter is disabled. Configure the TXD pin as an output, then write a one to PQS7. When the transmitter releases control of the TXD pin, it reverts to driving a logic one output.

To insert a delimiter between two messages, to place non-listening receivers in wakeup mode between transmissions, or to signal a retransmission by forcing an idle line, clear and then set TE before data in the serial shifter has shifted out. The transmitter finishes the transmission, then sends a preamble. After the preamble is transmitted, if TDRE is set, the transmitter will mark idle. Otherwise, normal transmission of the next sequence will begin.

Both TDRE and TC have associated interrupts. The interrupts are enabled by the transmit interrupt enable (TIE) and transmission complete interrupt enable (TCIE) bits in SCCR1. Service routines can load the last byte of data in a sequence into SCDR, then terminate the transmission when a TDRE interrupt occurs.

10.4.5.6 Receiver Operation

The RE bit in SCCR1 enables (RE = 1) and disables (RE = 0) the receiver. The receiver contains a receive serial shifter and a parallel receive data register (RDR) located in the SCI data register (SCDR). The serial shifter cannot be directly accessed by the CPU16. The receiver is double-buffered, allowing data to be held in the RDR while other data is shifted in.

Receiver bit processor logic drives a state machine that determines the logic level for each bit-time. This state machine controls when the bit processor logic is to sample the RXD pin and also controls when data is to be passed to the receive serial shifter.

M68HC16 Z SERIES USER'S MANUAL

16/32 IC TIM

Figure 11-4 Input Capture Timing Example

An input capture occurs every time a selected edge is detected, even when the input capture status flag is set. This means that the value read from the input capture register corresponds to the most recent edge detected, which may not be the edge that caused the status flag to be set.

11.8.3 Output Compare Functions

Each GPT output compare pin has an associated 16-bit compare register and a 16-bit comparator. Each output compare function has an associated status flag, and can cause the GPT to make an interrupt service request. Output compare logic is designed to prevent false compares during data transition times.

When the programmed content of an output compare register matches the value in TCNT, an output compare status flag (OCxF) bit in TFLG1 is set. If the appropriate interrupt enable bit (OCxI) in TMSK1 is set, an interrupt request is made when a match occurs. Refer to **11.4.2 GPT Interrupts** for more information.

Operation of output compare 1 differs from that of the other output compare functions. OC1 control logic can be programmed to make state changes on other OC pins when an OC1 match occurs. Control bits in the timer compare force register (CFORC) allow for early forced compares.

Figure 11-5 Pulse Accumulator Block Diagram

In event counting mode, the counter increments each time a selected transition of the pulse accumulator input (PAI) pin is detected. The maximum clocking rate is the system clock divided by four.

In gated time accumulation mode a clock increments PACNT while the PAI pin is in the active state. There are four possible clock sources.

Two bits in the TFLG2 register show pulse accumulator status. The pulse accumulator flag (PAIF) indicates that a selected edge has been detected at the PAI pin. The pulse accumulator overflow flag (PAOVF) indicates that the pulse accumulator count has rolled over from \$FF to \$00. This can be used to extend the range of the counter beyond eight bits.

Num	Rating	Symbol	Value	Unit
1	Supply Voltage	V _{DD}	5.0	V
2	Operating Temperature	T _A	25	°C
3	V _{DD} Supply Current RUN LPSTOP, VCO off LPSTOP, External clock, max f _{sys}	I _{DD}	110 125 3.75	mA μA mA
4	Clock Synthesizer Operating Voltage	V _{DDSYN}	5.0	V
5	V _{DDSYN} Supply Current VCO on, maximum f _{sys} External Clock, maximum f _{sys} LPSTOP, VCO off V _{DD} powered down	I ddsyn	1.0 5.0 100 50	mA mA μA μA
6	RAM Standby Voltage	V _{SB}	5.0	V
7	RAM Standby Current Normal RAM operation Standby operation	I _{SB}	1.0 1.0	μΑ μΑ
8	Power Dissipation	PD	555	mW

Table A-5 Typical Ratings, 25.17-MHz

16 FAST WR CYC TIM

Figure A-7 Fast Termination Write Cycle Timing Diagram

For More Information On This Product, Go to: www.freescale.com M68HC16 Z SERIES USER'S MANUAL

NOTE

When changing a port E pin from an output to an input, the pin will drive high for approximately four milliseconds. This ensures that the shared bus control signal will be in a negated state before the pin becomes an input.

D.2.8 Port E Pin Assignment Register

PEPAR — Port E Pin Assignment

\$YFFA16

15	8	7	6	5	4	3	2	1	0
NOT USED		PEPA7	PEPA6	PEPA5	PEPA4	PEPA3	PEPA2	PEPA1	PEPA0
RESET:									

DATA8 DATA8 DATA8 DATA8 DATA8 DATA8 DATA8 DATA8

This register determines the function of port E pins. Setting a bit assigns the corresponding pin to a bus control signal; clearing a bit assigns the pin to I/O port E. PE3 is not connected to a pin. PEPA3 can be read and written, but has no function. Bits [15:8] are unimplemented and will always read zero.

 Table D-4 displays port E pin assignments.

PEPAR Bit	Port E Signal	Bus Control Signal
PEPA7	PE7	SIZ1
PEPA6	PE6	SIZ0
PEPA5	PE5	ĀS
PEPA4	PE4	DS
PEPA3	PE3	1
PEPA2	PE2	AVEC
PEPA1	PE1	DSACK1
PEPA0	PE0	DSACK0

Table D-4 Port E Pin Assignments

NOTES:

1. The CPU16 does not support the RMC function for this pin. This bit is not connected to a pin for I/O usage.

D.2.9 Port F Data Register

PORTF0 — Port F Data Register 0 PORTF1 — Port F Data Register 1								\$YFFA18 \$YFFA1A	
15	8	7	6	5	4	3	2	1	0
NOT USED		PF7	PF6	PF5	PF4	PF3	PF2	PF1	PF0
RESET:									
		U	U	U	U	U	U	U	U

This register can be accessed in two locations and can be read or written at any time. A write to this register is stored in an internal data latch, and if any pin in the corre-

1.1
6
_ P
9
U
0
0
D
(À)
0
Ö
Q
0
LL.,

REGISTER SUMMARY

M68HC16 Z SERIES USER'S MANUAL

SPACE[1:0] — Address Space Select

Use this option field to select an address space for chip-select assertion or to configure a chip-select as an interrupt acknowledge strobe for an external device. The CPU16 normally operates in supervisor mode only, but interrupt acknowledge cycles take place in CPU space. Table D-17 shows address space bit encodings.

SPACE[1:0]	Address Space
00	CPU Space
01	User Space
10	Supervisor Space
11	Supervisor/User Space

Table D-17 Address Space Bit Encodings

IPL[2:0] — Interrupt Priority Level

When SPACE[1:0] is set for CPU space (%00), chip-select logic can be used as an interrupt acknowledge strobe for an external device. During an interrupt acknowledge cycle, the interrupt priority level is driven on address lines ADDR[3:1] and is then compared to the value in IPL[2:0]. If the values match, an interrupt acknowledge strobe will be generated on the particular chip-select pin, provided other option register conditions are met. **Table D-18** shows IPL[2:0] field encoding.

Table D-18 Interrupt Priority Level Field Encoding

IPL[2:0]	Interrupt Priority Level
000	Any Level ¹
001	1
010	2
011	3
100	4
101	5
110	6
111	7

NOTES:

1. Any level means that chip-select is asserted regardless of the level of the interrupt acknowledge cycle.

AVEC — Autovector Enable

This field selects one of two methods of acquiring an interrupt vector during an interrupt acknowledge cycle. This field is not applicable when SPACE[1:0] = %00.

- 0 = External interrupt vector enabled
- 1 = Autovector enabled

If the chip select is configured to trigger on an interrupt acknowledge cycle (SPACE[1:0] = %00) and the \overline{AVEC} field is set to one, the chip-select automatically generates \overline{AVEC} and completes the interrupt acknowledge cycle. Otherwise, the vector must be supplied by the requesting external device to complete the IACK read cycle.

D.7.8 MCCI Port Data Registers

PORTMC — MCCI Port Data Register PORTMCP — MCCI Port Pin State Register										COC COE
15	9	8	7	6	5	4	3	2	1	0
NOT USED		PMC7	PMC6	PMC5	PMC5	PMC4	PMC3	PMC2	PMC1	PMC0
RESET:										
		U	U	U	U	U	U	U	U	U

Two registers are associated with port MCCI, the MCCI general-purpose I/O port. Pins used for general-purpose I/O must be configured for that function. When using port MCCI as an output port, after configuring the pins as I/O, write the first byte to be output before writing to the MDDR. Afterwards, write to the MDDR to assign each I/O pin as either input or output. This outputs the value contained in register PORTMC for all pins defined as outputs. To output different data, write another byte to PORTMC.

Writes to PORTMC are stored in the internal data latch. If any bit of PORTMC is configured as discrete output, the value latched for that bit is driven onto the pin. Reads of PORTMC return the value of the pin only if the pin is configured as a discrete input. Otherwise, the value read is the value of the latch.

Reads of PORTMCP always return the state of the pins regardless of whether the pins are configured for input or output. Writes to PORTMCP have no effect.

D.7.9 SCI Control Register 0

SCCR0A - SCCR0B -	— SCIA — SCIE	A Con 3 Con	trol R trol R	egiste egiste	er O er O								\$YFF \$YFF	C18 C28
15	13	12	11	10	9	8	7	6	5	4	3	2	1	0
NOT US	NOT USED						SCBR[12:0]							
RESET:														
		0	0	0	0	0	0	0	0	0	0	1	0	0

SCCR0 contains the SCI baud rate selection field. Baud rate must be set before the SCI is enabled. The CPU16 can read and write SCCR0 at any time. Changing the value of SCCR0 bits during a transfer operation can disrupt the transfer.

Bits [15:13] - Not Implemented

SCBR[12:0] - SCI Baud Rate

SCI baud rate is programmed by writing a 13-bit value to this field. Writing a value of zero to SCBR disables the baud rate generator. Baud clock rate is calculated as follows:

Table D-44 PAMOD and PEDGE Effects

PAMOD	PEDGE	Effect
0	0	PAI falling edge increments counter
0	1	PAI rising edge increments counter
1	0	Zero on PAI inhibits counting
1	1	One on PAI inhibits counting

PCLKS — PCLK Pin State (Read Only)

I4/O5 — Input Capture 4/Output Compare 5

0 = Output compare 5 enabled

1 = Input capture 4 enabled

PACLK[1:0] — Pulse Accumulator Clock Select (Gated Mode) **Table D-45** shows the PACLK[1:0] bit field effects.

Table D-45 PACLK[1:0] Effects

PACLK[1:0]	Pulse Accumulator Clock Selected					
00	System clock divided by 512					
01	Same clock used to increment TCNT					
10	TOF flag from TCNT					
11	External clock, PCLK					

PACNT — Pulse Accumulator Counter

Eight-bit read/write counter used for external event counting or gated time accumulation.

D.8.8 Input Capture Registers 1–3

TIC[1:3] — Input Capture Registers 1–3

The input capture registers are 16-bit read-only registers used to latch the value of TCNT when a specified transition is detected on the corresponding input capture pin. They are reset to \$FFFF.

D.8.9 Output Compare Registers 1–4

TOC[1:4] — Output Compare Registers 1-4

The output compare registers are 16-bit read/write registers which can be used as output waveform controls or as elapsed time indicators. For output compare functions, they are written to a desired match value and compared against TCNT to control specified pin actions. They are reset to \$FFFF.

M68HC16 Z SERIES USER'S MANUAL

For More Information On This Product, Go to: www.freescale.com

\$YFF914-\$YFF91A

\$YFF90E - \$YFF912

. .

Freescale Semiconductor, Inc.

. .

	/TFL	G2 –	– Tim	er In	terrup	t Flag	Regis	sters 1-	-2					\$YFF	·922
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
14/05F	-	OCF	4:1]			ICF[3:1]		TOF	0	PAOVF	PAIF	0	0	0	0
RESE	l: 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
The spo	ese re Inding	egiste j inte	ers sh rrupt	now enat	condit ble bit	ion fla in TMS	gs th SK1/T	at corre MSK2	espo is se	ond to et, an i	GPT nterru	ever upt oc	nts. If curs.	the o	corre
l/O5F Wh ue i is d	— In en I4/ in TI4 etecte	put (′O5 ii /O5. ed at	Captu n PAC Whei the I	re 4/ CTL i n 14/0 4/05	Outpu s zerc O5 in pin.	it Com o, this f PACTI	pare lag is _ is or	5 Flag set eac ne, the	ch tir flag	ne TC is set	NT m each	atche time	es the a sel	e TOC ected	5 val edg
OCF[4 An iste	:1] — outpu r. OC	Outp it cor F[4:1	out Co npare I] cor	ompa e flag respo	are Fla is se ond to	ags t each OC[4:	time :1].	TCNT r	nato	hes th	e cor	respo	onding	g TOC	C reg
CF[3:1 A fla pin.	I] — I ag is ICF[nput set e 3:1] a	Capt ach ti corres	ure F ime a spon	Flags a seleo d to IC	cted ec 2[3:1].	lge is	detecte	ed a	t the co	orres	pondi	ng in	put ca	ptur
OF — This	- Tim s flag	er O\ is se	verflov et eac	w Fla h tim	ag ne TCI	NT adv	/ance	s from a	a va	lue of \$	\$FFF	F to S	60000).	
AOVF This to \$	= — F s flag 600.	Pulse is se	Accu t eacl	imula h tim	ator O e the p	verflov oulse a	v Flag accum	ulator o	coun	ter adv	vance	es froi	m a v	alue c	of \$FI
AIF – In e In g	– Pul vent jated	se Ao coun time	ccumi ting m accu	ulato node mula	r Flag , this f tion m	lag is s node, it	set wh t is se	en an a t at the	ictive end	e edge I of the	is de time	etecte ed per	d on 1 iod.	the PA	\l pir
0.8.14	Com	pare	Ford	ce Re	egiste	r/PWN	/I Con	trol Re	gist	ter C					
	c — 0	Comp	bare F	Force	e Regi	ster/P	WM C	ontrol	Regi	ister				\$YFF	924
CFOR				11	10	9	8	7	6		4	3	2	1	0
2 FOR (_			
15	F	00			0	FPWMA	FPWMB	PPROUT		PPR		SFA	SFB	F1A	F1B
15 RESET:	F	OC			0	FPWMA	FPWMB	PPROUT		PPR		SFA	SFB	F1A	F1B

INITIALIZATION AND PROGRAMMING EXAMPLES

For More Information On This Product, USER Go to: www.freescale.com

M68HC16 Z SERIES USER'S MANUAL

reset operation 5-69 signals for interrupt acknowledge 5-68 timing diagram A-36 Clear (definition) 2-6 CL₁ 4-37 Clipping errors 8-16 CLKOUT 5-36, 5-48 output timing diagram A-28 CLKRST (clock reset) 5-48 CL_O 4-37 Clock ADC 8-6 control multipliers 16.78 MHz 5-9 20.97 MHz 5-11 25.17 MHz 5-13 frequency (calculation) D-7 mode pin (MODCLK) 5-52 selection 5-52 modes fast reference option (4.194 MHz) 5-4, 5-5 slow reference option (32.768 kHz) 5-4, 5-5 output (CLKOUT) 5-36 phase (CPHA) 10-8, D-47 = 0 transfer format 10-9 = 1 transfer format 10-10 polarity (CPOL) 10-8, D-47 synthesizer operation 5-6 timing 16.78 MHz A-7 20.97 MHz A-8 25.17 MHz A-9 low voltage A-6 Closed-loop control routines 4-45 CL_P 4-37 CL_T 4-37 Coherency 11-10, 11-12 Combined program and data space map MC68HC16Z1/CKZ1/CMZ1 3-20 MC68HC16Z2/Z3 3-21 MC68HC16Z4/CKZ4 3-22 Command RAM 9-8 Comparator 8-6 Completed queue pointer (CPTQP) D-51 Condition code register (CCR) 4-4, 11-6 CONT D-52 Contention 5-60 Continue (CONT) D-52 Continuous transfer mode 9-6 Conventions 2-6 Conversion complete flags (CCF) D-36 control logic 8-7 modes 8-8 multiple-channel conversions 8-11 parameters 8-8 single-channel conversions 8-10 counter (CCTR) D-36

timing 8-12 CPHA 9-17, 10-8, 10-9, 10-10, D-47 CPOL 9-17, 10-8, D-47 CPR D-73 CPROUT 11-10, D-73 CPTQP 9-8, D-51 CPU space 5-68 address encoding 5-41 cycles 5-40, 5-68 encoding for interrupt acknowledge 5-68 CPU16 4-1 accumulators 4-3 address extension register 4-5 addressing modes 4-8 accumulator offset 4-10 extended 4-10 immediate 4-9 indexed 4-10 inherent 4-10 post-modified index 4-10 relative 4-10 breakpoints 4-41 compatibility with M68HC11 4-1 condition code register (CCR) 4-4 data types 4-6 extension fields 4-6 features 3-1 general information 4-1 index registers 4-3 instruction 4-11 comparison to M68HC11 4-31 execution model 4-34 set abbreviations and symbols 4-30 summary 4-12 timing 4-36 levels of interrupt priority 5-58 memory management 4-5 organization 4-7 program counter (PC) 4-3 reference manual 4-1 register model 4-2, D-2 registers condition code register (CCR) D-3 mnemonics 2-2 multiply and accumulate (MAC) registers 4-5 stack pointer (SP) 4-3 CR D-52 CREG D-22 Cross-correlation 4-45 CSBAR D-17 CSBARBT D-17 CSBOOT 5-57, 5-63, 5-65, 5-66, 5-69, 5-70, 7-3 reset values 5-70 CSOR D-18 CSORBT D-18 CSPAR0/1 D-15