

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	20MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	-
Number of I/O	24
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.620", 15.75mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86c9320psg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

GENERAL DESCRIPTION (Continued)

There are 256 registers located on-chip and organized as 236 general-purpose registers, 16 control and status registers, and four I/O port registers. The register file can be divided into sixteen groups of 16 working registers each. Configuration of the registers in this manner allows the use of short format instructions; in addition, any of the individual registers can be accessed directly. There are an additional 17 registers implemented in the Expanded Register File in Banks D and E. Two of the registers may be used as general-purpose registers, while 15 registers supply the data and control functions for the Multiply/ Divide Unit and Counter/Timer blocks.

Notes:

All Signals with a preceding front slash, "/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc} GND	V _{DO}
Ground	GND	V _{ss}

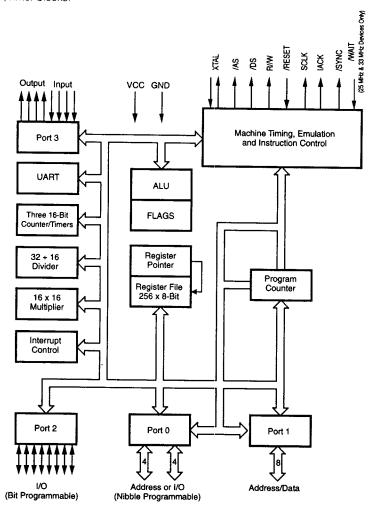


Figure 1. Functional Block Diagram

PIN DESCRIPTION

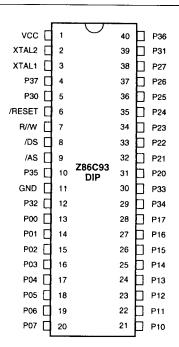



Figure 2. Pin Functions

Pin# Symbol **Function** Direction V_{cc} XTAL1 1 **Power Supply** Input 2 Crystal, Oscillator Clock Input 3 XTAL2 Crystal, Oscillator Clock Output 4 P37 Port 3 pin 7 Output 5 P30 Port 3 pin 0 Input 6 /RESET Reset Input 7 R//W Read/Write Output 8 /DS Data Strobe Output 9 /AS Address Strobe Output 10 P35 Port 3 pin 5 Output 11 GND Ground, GND Input 12 P32 Port 3 pin 2 Input 13-20 P00-P07 Port 0 pin 0,1,2,3,4,5,6,7 In/Output 21-28 P10-P17 Port 1 pin 0,1,2,3,4,5,6,7 In/Output 29 P34 Port 3 pin 4 Output 30 P33 Port 3 pin 3 Input 31-38 P20-P27 Port 2 pin 0,1,2,3,4,5,6,7 In/Output 39 P31 Port 3 pin 1 Input 40 P36 Port 3 pin 6 Output

Table 1. 40-Pin DIP Pin Identification

Figure 3. 40-Pin DIP

PIN DESCRIPTION (Continued)

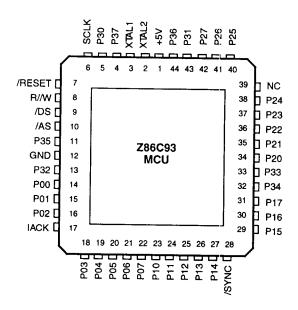


Figure 4. 44-Pin PLCC

Table 2. 44-Pin PLCC Pin Identification

No	Symbol	Function	Direction	No	Symbol	Function	Direction
1	V _{cc}	Power Supply	Input	14-16	P00-P02	Port 0 pin 0,1,2	In/Output
2	XTĂĽ2	Crystal, Osc. Clock	Output	17	IACK	Int. Acknowledge	Output
3	XTAL1	Crystal, Osc. Clock	Input	18-22	P03-P07	Port 0 pin 3,4,5,6,7	In/Output
4	P37	Port 3 pin 7	Output	23-27	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
5	P30	Port 3 pin 0	Input	28	/SYNC	Synchronize Pin	Output
6	SCLK	System Clock	Output	29-31	P15-P17	Port 1 pin 5,6,7	In/Output
7	/RESET	Reset	Input	32	P34	Port 3 pin 4	Output
8	R//W	Read/Write	Output	33	P33	Port 3 pin 3	Input
9	/DS	Data Strobe	Output	34-38	P20-P24	Port 2 pin 0,1,2,3,4	In/Output
10	/AS	Address Strobe	Output	39	N/C	Not Connected (20 MH	
11	P35	Port 3 pin 5	Output		M/AIT	WAIT (25 or 33 MHz)	Input
12	GND	Ground GND	Input	40-42	P25-P27	Port 2 pin 5,6,7	In/Output
13	P32	Port 3 pin 2	Input	43	P31	Port 3 pin 1	Input
				44	P36	Port 3 pin 6	Output

PIN FUNCTIONS

/DS. (output, active Low). Data Strobe is activated once for each external memory transfer. For a READ operation, data must be available prior to the trailing edge of /DS. For WRITE operations, the falling edge of /DS indicates that output data is valid.

/AS. (output, active Low). Address Strobe is pulsed once at the beginning of each machine cycle. Address output is via Port 1 for all external programs. When /RESET is asserted, /AS toggles. Memory address transfers are valid at the trailing edge of /AS.

XTAL1, XTAL2. Crystal 1, Crystal 2(time-based input and output, respectively). These pins connect a parallel-resonant crystal, ceramic resonator, LC, or any external single-phase clock to the on-chip oscillator and buffer.

R/W. (output, read High/write Low). The Read/Write signal is Low when the MCU is writing to the external program or data memory. It is High when the MCU is reading from the external program or data memory.

/RESET. (input, active Low). To avoid asynchronous and noisy reset problems, the Z86C93 is equipped with a reset filter of four external clocks (4TpC). If the external /RESET signal is less than 4TpC in duration, no reset occurs.

On the 5th clock after the /RESET is detected, an internal RST signal is latched and held for an internal register count of 18 external clocks, or for the duration of the external /RESET, whichever is longer. During the reset cycle, /DS is held active Low while /AS cycles at a rate of 2TpC. When /RESET is deactivated, program execution begins at location 000CH. Reset time must be held Low for 50 ms or until $\rm V_{cc}$ is stable, whichever is longer.

SCLK. System Clock (output). The internal system clock is available at this pin. Available in the PLCC, QFP and VQFP packages only.

IACK. Interrupt Acknowledge (output, active High). This output, when High, indicates that the Z86C93 is in an interrupt cycle. Available in the PLCC, QFP and VQFP packages only.

/SYNC. (output, active Low). This signal indicates the last clock cycle of the currently executing instruction. Available in the PLCC, QFP and VQFP packages only.

WAIT. (input, active Low). Introduces asynchronous wait states into the external memory fetch cycle. When this inut goes Low during an external memory access, the Z86C93 freezes the fetch cycle until tis pin goes High. This pin is sampled after /DS goes Low; should be pulled up if not used. Available in the 25 MHz and 33 MHz devices only.

Port 0 P00-P07. Port 0 is an 8-bit, nibble programmable, bidirectional, TTL compatible port. These eight I/O lines can be configured under software control as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3, lines P32 and P35 are used as the handshake control /DAV0 and RDY0 (Data Available and Ready). Handshake signal assignment is dictated by the I/O direction of the upper nibble P04-P07. The lower nibble must have the same direction as the upper nibble to be under handshake control. Port 0 comes up as A15-A8 Address lines after /RESET.

For external memory references, Port 0 can provide address bits A11-A8 (lower nibble) or A15-A8 (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as I/O while the lower nibble is used for addressing. If one or both nibbles are needed for I/O operation, they must be configured by writing to the Port 0 Mode register. After a hardware reset, Port 0 lines are defined as address lines A15-A8, and extended timing is set to accommodate slow memory access. The initialization routine can include reconfiguration to eliminate this extended timing mode (Figure 7). The /OEN (Output Enable) signal in Figure 7 is an internal signal.

The Auto Latch on Port 0 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

Port 2. (P20-P27). Port 2 is an 8-bit, bit programmable, bidirectional, TTL compatible port. Each of these eight I/O lines can be independently programmed as an input or output or globally as an open-drain output. Port 2 is always available for I/O operation. When used as an I/O port, Port 2 is placed under handshake control. In this configuration, Port 3 lines P31 and P36 are used as the handshake control lines /DAV2 and RDY2. The handshake signal

assignment for Port 3 lines P31 and P36 is dictated by the direction (input or output) assigned to P27 (Figure 9).

The Auto Latch on Port 2 puts valid CMOS levels on all CMOS inputs which are not externally driven. Whether this level is 0 or 1, cannot be determined. A valid CMOS level, rather than a floating node, reduces excessive supply current flow in the input buffer.

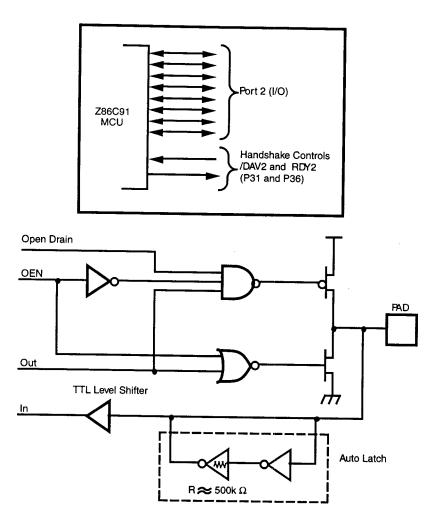


Figure 9. Port 2 Configuration

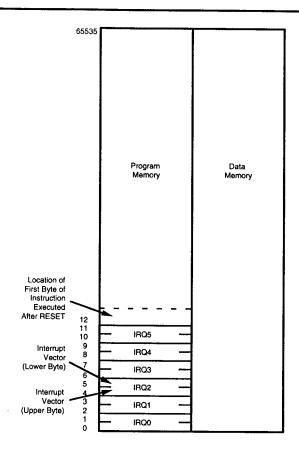


Figure 12. Program and Data Memory Configuration

Expanded Register File. The register file has been expanded to allow for additional system control registers, and for mapping of additional peripheral devices along with I/O ports into the register address area (Figure 13). The Z8 register address space R0 through R15 has now been implemented as 16 groups of 16 registers per group. These register groups are known as the ERF (Expanded Register File). Bits 7-4 of register RP select the working register group. Bits 3-0 of register RP select the expanded register group (Figure 14). The registers that are used in the multiply/divide unit reside in the Expanded Register File at Bank E and those for the additional timer control words reside in Bank D. The rest of the Expanded Register is not physically implemented and is open for future expansion.

Register File. The Register File consists of four I/O port registers, 236 general-purpose registers and 16 control

and status registers. The instructions can access registers directly or indirectly via an 8-bit address field. The Z86C93 also allows short 4-bit register addressing using the Register Pointer (Figure 15). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer addresses the starting location of the active working-register group.

Note: Register Group E0-EF can only be accessed through working registers and indirect addressing modes.

Stack. The Z86C93 has a 16-bit Stack Pointer (R254-R255), used for external stack, that resides anywhere in the data memory. An 8-bit Stack Pointer (R255) is used for the internal stack that resides within the 236 general-purpose registers (R4-R239). The high byte of the Stack Pointer (SPH, Bits 8-15) can be used as a general-purpose register when using internal stack only.

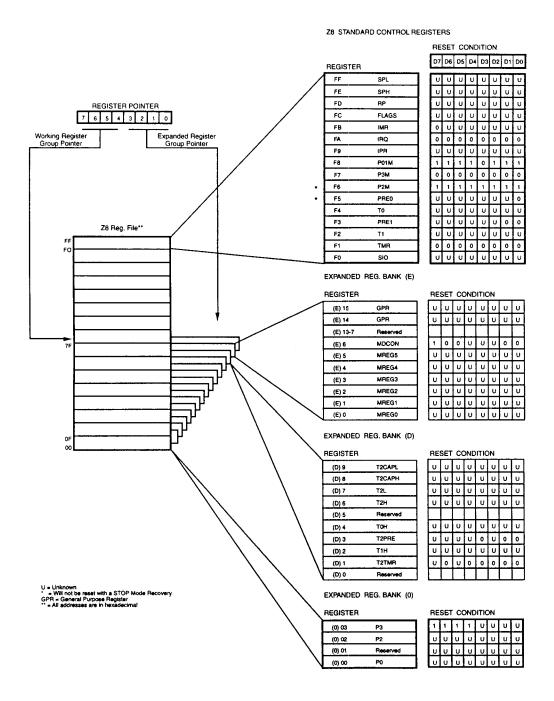


Figure 13. Register File

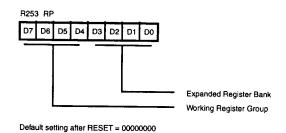


Figure 14. Register Pointer Register

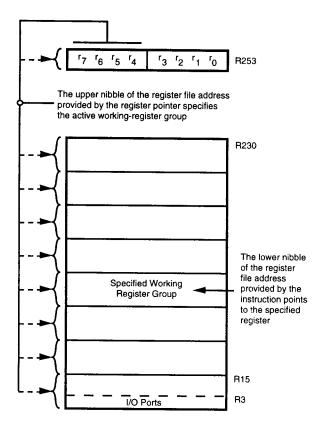


Figure 15. Register Pointer

FUNCTIONAL DESCRIPTION

This section breaks down the Z86C93 into its main functional parts.

Multiply/Divide Unit

The Multiply/Divide unit describes the basic features, implementation details of the interface between the Z8 and the multiply/divide unit.

Basic features:

- 16-bit by 16-bit multiply with 32-bit product
- 32-bit by 16-bit divide with 16-bit quotient and 16-bit remainder
- Unsigned integer data format
- Simple interface to Z8

Interface to Z8. The following is a brief description of the register mapping in the multiply/divide unit and its interface to the Z8 (Figure 16).

The multiply/divide unit is interfaced like a peripheral. The only addressing mode available with the peripheral interface is register addressing. In other words, all of the operands are in the respective registers before a multiplication/division can start.

Register mapping. The registers used in the multiply/divide unit are mapped onto the expanded register file in Bank E. The exact register locations used are shown below.

REGISTER	ADDRESS
MREG0	(E) 00
MREG1	(E) 01
MREG2	(E) 02
MREG3	(E) 03
MREG4	(E) 04
MREG5	(E) 05
MDCON	(E) 06
GPR	(E) 14
GPR	(E) 15

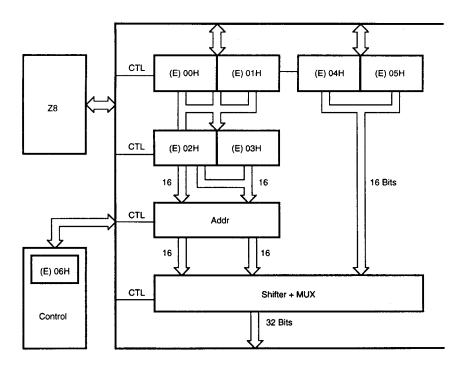


Figure 16. Multiply/Divide Unit Block Diagram

Register allocation. The following is the register allocation during multiplication.

The following is the register allocation during division.

Multiplier high byte	MREG2
Multiplier low byte	MREG3
Multiplicand high byte	MREG4
Multiplicand low byte	MREG5
Result high byte of high word Result low byte of high word Result high byte of low word Result low byte of low word Multiply/Divide Control register	MREG0 MREG1 MREG2 MREG3 MDCON

High byte of high word of dividend Low byte of high word of dividend High byte of low word of dividend Low byte of low word of dividend High byte of divisor	MREG0 MREG1 MREG2 MREG3 MREG4
Low byte of divisor High byte of remainder Low byte of remainder High byte of quotient Low byte of quotient Multiply/Divide Control register	MREG5 MREG0 MREG1 MREG2 MREG3 MDCON

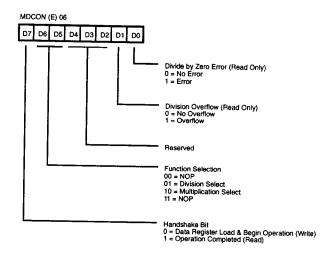


Figure 17. Multiply/Divide Control Register (MDCON)

Control register. The MDCON (Multiply/Divide Control Register) is used to interface with the multiply/divide unit (Figure 16). Specific functions of various bits in the control register are given below.

DONE bit (D7). This bit is a handshake bit between the math unit and the external world. On power up, this bit is set to 1 to indicate that the math unit has completed the previous operation and is ready to perform the next operation.

Before starting a new multiply/divide operation, this bit should be reset to 0 by the processor/programmer. This indicates that all the data registers have been loaded and the math unit can now begin a multiply/divide operation. During the process of multiplication or division, this bit is write-protected. Once the math unit completes its operation it sets this bit to indicate the completion of operation. The processor/programmer can then read the result.

MULSL. Multiply Select (D6). If this bit is set to 1, it indicates a multiply operation directive. Like the DONE bit, this bit is also write-protected during math unit operation and is reset to 0 by the math unit upon starting of the multiply/divide operation.

DIVSL. *Division Select* (D5). Similar to D6, D5 starts a division operation.

D4-D2. Reserved.

DIVOVF. Division Overflow (D1). This bit indicates an overflow during the division process. Division overflow occurs when the high word of the dividend is greater than or equal to the divisor. This bit is read only. When set to 1, it indicates overflow error.

FUNCTIONAL DESCRIPTION (Continued)

DIVZR. Division by Zero (D0). When set to 1, this indicates an error of division by 0. This bit is read only.

Example:

Upon reset, the status of the MDCON register is 100uuu00b (D7 to D0).

u = Undefined

x = Irrelevant

b = Binary

If multiplication operation is desired, the MDCON register is set to 010xxxxxb.

If the MDCON register is READ during multiplication, it would have a value of 000uuu00b.

Upon completion of multiplication, the result of the MDCON register is 100uuu00b.

If division operation is desired, the MDCON register is set to 001xxxxxb.

During division operation, the register would contain 000uu??b(?-value depends on the DIVIDEND, DIVISOR).

Upon completion of division operation, the MDCON register contains 100uuu??b.

Note that once the multiplication/division operation starts, all data registers (MREG5 through MREG0) are write-protected and so are the writable bits of the MDCON register. The write protection is released once the math unit operation is complete. However, the registers may be read at any time.

A multiplication sequence would look like:

- 1. Load multiplier and multiplicand.
- 2. Load MDCON register to start multiply operation.
- Wait for the DONE bit of the MDCON register to be set to 1 and then read results.

Note that while the multiply/divide operation is in progress, the programmer can use the Z8 to do other things. Also, since the multiplication/division takes a fixed number of cycles, he can start reading the results before the DONE bit is set.

During a division operation, the error flag bits are set at the beginning of the division operation which means the flag bits can be checked by the Z8 while the division operation is being done.

The two general purpose registers can be used as scratch pad registers or as external data memory address pointers during an LDE instruction. MREG0 through MREG5, if not used for multiplication or division, can be used as general purpose registers.

Performance of multiplication. The actual multiplication takes 17 internal clock cycles. It is expected that the chip would run at a 10 MHz internal clock frequency (external clock divided by two). This results in an actual multiplication time (16-bit x 16-bit) of 1.7 μ s. If the time to load operands and read results is included:

Number of internal clock cycles to load 5 registers: 30 Number of internal clock cycles to read 4 registers: 24

The total internal clock cycles to perform a multiplication is 71. This results in a net multiplication time of 7.1 μ s. Note that this would be the worst case. This assumes that all of the operands are loaded from the external world as opposed to some of the operands being already in place as a result of a previous operation whose destination register is one of the math unit registers.

Performance of division. The actual division needs 20 internal clock cycles. This translates to 2.0 µs for the actual division at 10 MHz (internal clock speed). If the time to load operands and read results is included:

Number of internal clock cycles to load operands: 42 Number of internal clock cycles to read results: 24

The total internal clock cycles to perform a division is 86. This translates to $8.6~\mu s$ at 10~MHz.

Counter/Timers

This section describes the enhanced features of the counter/timers (CTC) on the Z86C93. It contains the register mapping of CTC registers and the bit functions of the newly added Timer2 control register.

In a standard Z8, there are two 8-bit programmable counter/timers (T0 and T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only.

The 6-bit prescalers divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request IRQ4 (T0) or IRQ5 (T1), is generated.

FUNCTIONAL DESCRIPTION (Continued)

Operation

Except for the programmable down counter length and clock input, T2 is identical to T0.

T0 and T1 retain all their features except that now they are extendable interims of the down-counter length.

The output of T2, under program control, goes to an output pin (P35). Also, the interrupt generated by T2 is ORed with the interrupt request generated by P32. Note that the service routine then has to poll the T2 flag bit and also clear it (Bit 7 of T2 Timer Mode Register).

On power up, T0 and T1 are configured in the 8-bit down counter length mode (to be compatible with Z86C91) and T2 is in the 32-bit mode with its output disabled (no interrupt is generated and T2 output DOES NOT go to port pin P35).

The UART uses T0 for generating the bit clock. This means, while using UART, T0 should be in 8-bit mode. So, while using the UART there are only two independent timer/counters.

The counters are configured in the following manner:

Timer	Mode	Byte
TO	8-bit	Low Byte (T0)
TO	16-bit	High Byte (TO) + Low Byte (TO)
T1	8-bit	Low Byte (T1)
T1	16-bit	High Byte (T1)+ Low Byte (T1)
T1	24-bit	High Byte (T0) + High Byte (T1) + Low Byte (T1)
T2	16-bit	High Byte (T2) + Low Byte (T2)
T2	24-bit	High Byte (T0) + High Byte (T2) + Low Byte (T2)
T2	32-bit	High Byte (T0) + High Byte (T1) + High Byte (T2) + Low Byte (T2)

Note that the T2 interrupt is logically 0Red with P32 to generate IRQ0.

The T2 Timer Mode register is shown in Figure 19. Upon reaching end of count, bit 7 of this register is set to one. This bit IS NOT reset in hardware and it has to be cleared by the interrupt service routine.

T2 interrogates the state of the Count Mode Bit (D2) once it has counted down to it's zero value. T2 then makes the decision to continue counting (Module N Mode) or stop (Single Pass Mode). Observe this functionality if attempting to modify the count mode prior to the end of count bit (D7) being set.

The register map of the new CTC registers is shown in Figure 13. To high byte and T1 high byte are at the same relative locations as their respective low bytes, but in a different register bank.

The T2 prescaler register is shown in Figure 19. Bits 1 and 0 of this register control the various cascade modes of the counters.

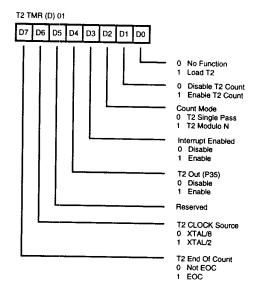


Figure 19. T2 Timer Mode Register (T2)

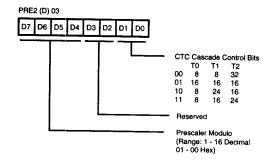


Figure 20. T2 Prescaler Register (PRE2)

Name	Source	Vector Location	Comments
IRQ 0	/DAV 0, P32, T2	0, 1	External (P32), Programmable Rise or Fall Edge Triggered External (P33), Fall Edge Triggered External (P31), Programmable Rise or Fall Edge Triggered
IRQ 1,	P33	2, 3	
IRQ 2	/DAV 2, P31, T _{IN}	4, 5	
IRQ 3	P30, Serial In	6, 7	External (P30), Fall Edge Triggered
IRQ 4	T0, Serial Out	8, 9	Internal
IRQ 5	TI	10, 11	Internal

Clock

The Z86C93 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1=Input, XTAL2=Output). The external clock levels

are not TTL. The crystal should be AT cut, 1 MHz to 25 MHz max, and series resistance (RS) is less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors (10 pF<CL<100 pF) from each pin to ground (Figure 20).

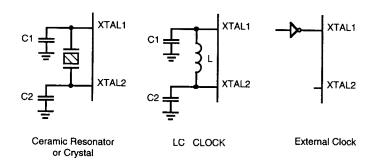


Figure 22. Oscillator Configuration

AC CHARACTERISTICS External I/O or Memory Read and Write; DSR/DSW; WAIT Timing Table

		T _A = 0°C to +70°C								
No	Sym	Parameter	33 I Min	MHz Max		MHz Max	20 Min	MHz Max	Typical V _{cc} =5.0V ଡ 25℃	Units
1	TdA(AS)	Address Valid To /AS Rise Delay	13		22		26			ns
2	TdAS(A)	/AS Rise To Address Hold Time	20		25		28			ns
4	TdAS(DI) TwAS	/AS Rise Data in Req'd Valid Delay /AS Low Width	00	90		130		160		ns
_	TWAS	/AS LOW WIGH	20		28		36			ns
5	TdAZ(DSR)	Address Float To /DS (Read)	0		0		0			ns
6	TwDSR	/DS (Read) Low Width	65		100		130			ns
7	TwDSW	/DS (Write) Low Width	40		65		75			ns
8	TdDSR(DI)	/DS (Read) To Data in Req'd Valid Delay		30		78		100		ns
9	ThDSR(DI)	/DS Rise (Read) to Data In Hold Time	0		0		0			ns
10	TdDS(A)	/DS Rise To Address Active Delay	25		34		40			ns
11 12	TdDS(AS)	/DS Rise To /AS Delay	16		30		36			ns
	TdR/W(AS)	R/W To /AS Rise Delay	12		26		32			ns
13	TdDS(R/W)	/DS Rise To R/W Valid Delay	12	-	30		36			ns
14	TdDO(DSW)	Data Out To /DS (Write) Delay	12		34		40			ns
15 16	ThDSW(DO)	/DS Rise (Write) To Data Out Hold Time	12		34		40			ns
10	TdA(DI)	Address To Data In Req'd Valid Delay		110		160		200		ns
17	TdAS(DSR)	/AS Rise To /DS (Read) Delay	20		40		48			ns
18	TaDI(DSR)	Data In Set-up Time To /DS Rise Read	16		30		36			ns
19 20	TdDM(AS) TdDS(DM)	/DM To /AS Rise Delay	10		22		26			ns
		/DS Rise To /DM Valid Delay							34*	ns
21	ThDS(A)	/DS Rise To Address Valid Hold Time							34*	ns
22 23	TdXT(SCR)	XTAL Falling to SCLK Rising							20*	ns
24	TdXT(SCF) TdXT(DSRF)	XTAL Falling to SCLK Falling							23*	ns
		XTAL Falling to/DS Read Falling							29*	ns
25 26	TdXT(DSRR)	XTAL Falling to /DS Read Rising							29*	ns
26 27	TdXT(DSWF)	XTAL Falling to /DS Write Falling							29*	ns
28	TdXT(DSWF) TsW(XT)	XTAL Falling to /DS Write Rising							29*	ns
29	ThW(XT)	Wait Set-up Time Wait Hold Time							10*	ns
30	TwW	Wait Width (One Wait Time)							15*	ns
		Trace Trider (One Walt Time)							25*	ns

When using extended memory timing add 2 TpC.
Timing numbers given are for minimum TpC.
* Preliminary value to be characterized.

Z8 CONTROL REGISTERS

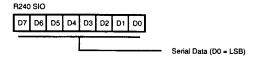


Figure 37. Serial I/O Register (F0H: Read/Write)

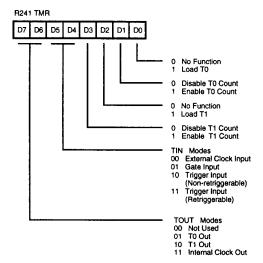


Figure 38. Timer Mode Register (F1H: Read/Write)

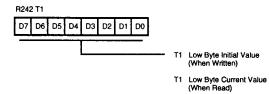


Figure 39. Counter/Timer 1 Register (F2H: Read/Write)

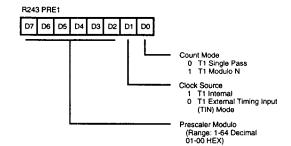


Figure 40. Prescaler 1 Register (F3H: Write Only)

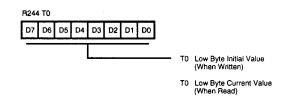


Figure 41. Counter/Timer 0 Register (F4H: Read/Write)

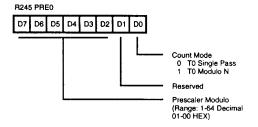


Figure 42. Prescaler 0 Register (F5H: Write Only)

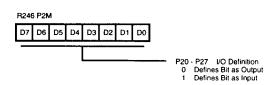


Figure 43. Port 2 Mode Register (F6H: Write Only)

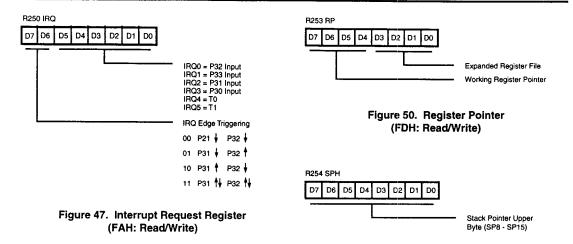


Figure 51. Stack Pointer High (FEH: Read/Write)

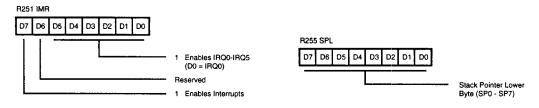


Figure 48. Interrupt Mask Register (FBH: Read/Write)

Figure 52. Stack Pointer Low (FFH: Read/Write)

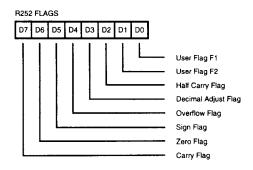


Figure 49. Flag Register (FCH: Read/Write)

INSTRUCTION SET NOTATION

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
	working-register address
Ir	Indirect working-register address only
RR	Register pair or working register pair address

 $\mbox{Symbols}$. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

Symbol	Meaning
С	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
Н	Half-carry flag
Affected flags a	ere indicated by:
0	Clear to zero
1	Set to one
*	Set to clear according to operation
-	Unaffected
X	Undefined

CONDITION CODES

Value	Mnemonic	Meaning	Flags Set	
1000		Always True		
0111	С	Carry	C = 1	
1111	NC	No Carry	C = 0	
0110	Z	Zero	Z = 1	
1110	NZ Not Zero		Z = 0	
1101	PL	Plus	S = 0	
0101	MI	Minus	S = 1	
0100	OV	Overflow	V = 1	
1100	NOV	No Overflow	V = 0	
0110	EQ	Equal	Z = 1	
1110	NE	Not Equal	Z = 0	
1001	GE	Greater Than or Equal	(S XOR V) = 0	
0001	LT	Less than	(S XOR V) = 1	
1010	GT	Greater Than	[Z OR (S XOR V)] = 0	
0010	LE	Less Than or Equal	[Z OR (S XOR V)] = 1	
1111	UGE	Unsigned Greater Than or Equal	C = 0	
0111	ULT	Unsigned Less Than	C = 1	
1011	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1	
0011	ULE	Unsigned Less Than or Equal	(C OR Z) = 1	
0000		Never True	(= = : = ; - :	

ORDERING INFORMATION

Z86C93

20 MHz

 44-pin PLCC
 44-pin QFP
 40-pin DIP
 48-pin VQFP

 Z86C9320VSC
 Z86C9320FSC
 Z86C9320PSC
 Z80C9320ASC

25 MHz

 44-pin PLCC
 44-pin QFP
 40-pin DIP
 48-pin VQFP

 Z86C9325VSC
 Z86C9325FSC
 Z86C9325PSC
 Z80C9325ASC

33 MHz

 44-pin PLCC
 44-pin QFP
 40-pin DIP
 48-pin VQFP

 Z86C9333VSC
 Z86C9333FSC
 Z86C9333PSC
 Z80C9333ASC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

V = Plastic Leaded Chip Carrier P = Plastic Dual In Line Package

Longer Lead Time

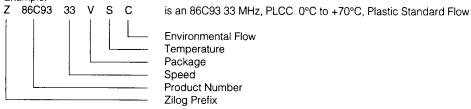
F = Plastic Quad Flat Pack A = Very Small Quad Flat Pack

Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$

Speed

20 = 20 MHz


25 = 25 MHz

33 = 33 MHz

Environmental

C = Standard Flow

Example:

Notes:			