

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	20MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	-
Number of I/O	24
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86c9320vsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PRODUCT SPECIFICATION

Z86C93

CMOS Z8® MULTIPLY/DIVIDE MICROCONTROLLER

FEATURES

- Complete microcontroller, up to 24 I/O lines, and up to 64 Kbytes of addressable external space each for program and data memory.
- 16-bit x 16-bit hardwired multiplier with 32-bit product in 17 clock cycles.
- 32-bit x 16-bit hardwired divider with 16-bit quotient and 16-bit remainder in 20 clock cycles.
- 256-byte register file, including 236 general-purpose registers, up to three I/O port registers and 16 status and control registers.
- 17-byte Expanded Register File, including two generalpurpose registers and 15 status and control registers.
- Vectored, priority interrupts for I/O, counter/timers and UART.
- On-chip oscillator that accepts crystal or external clock drive.

- Two 16-bit counter timers with 6-bit prescalers.
- Third 16-bit counter/timer with 4-bit prescaler, one capture register and a fast decrement mode.
- Register Pointer for short, fast instructions that can access any one of the sixteen working register groups.
- Additional emulation signals SCLK, IACK, and /SYNC are made available.
- Two low power standby modes, STOP and HALT
- Full-duplex UART
- 3.3 ± 10% volt operation at 25 MHz
- \blacksquare 5.0 \pm 10% volt operation at 20, 25 and 33 MHz

GENERAL DESCRIPTION

The Z86C93 is a CMOS ROMless Z8 microcontroller enhanced with a hardwired 16-bit x 16-bit multiplier and 32-bit/16-bit divider and three 16-bit counter timers (Figure 1). A capture register and a fast decrement mode is also provided. It is offered in 40-pin PDIP, 44-pin PLCC, 44-pin QFP and 48-pin VQFP (Figures 2, 3, 4, 5 and 6). Besides the four additional signals (SCLK, IACK, /SYNC and /WAIT), the Z86C93 is compatible with the Z86C91, yet it offers a much more powerful mathematical capability.

The Z86C93 provides up to 16 output address lines permitting an address space of up to 64 Kbytes of data and program memory each. Eight address outputs (AD7-AD0) are provided by a multiplexed, 8-bit, Address/Data bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits A15-A8.

PIN DESCRIPTION

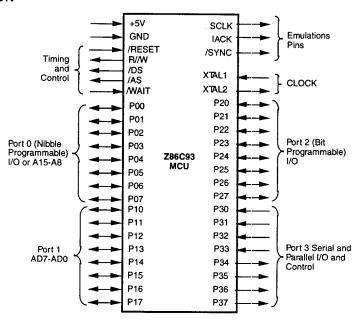
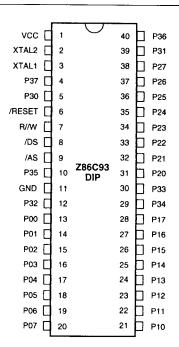



Figure 2. Pin Functions

Pin# Symbol **Function** Direction V_{cc} XTAL1 1 **Power Supply** Input 2 Crystal, Oscillator Clock Input 3 XTAL2 Crystal, Oscillator Clock Output 4 P37 Port 3 pin 7 Output 5 P30 Port 3 pin 0 Input 6 /RESET Reset Input 7 R//W Read/Write Output 8 /DS Data Strobe Output 9 /AS Address Strobe Output 10 P35 Port 3 pin 5 Output 11 GND Ground, GND Input 12 P32 Port 3 pin 2 Input 13-20 P00-P07 Port 0 pin 0,1,2,3,4,5,6,7 In/Output 21-28 P10-P17 Port 1 pin 0,1,2,3,4,5,6,7 In/Output 29 P34 Port 3 pin 4 Output 30 P33 Port 3 pin 3 Input 31-38 P20-P27 Port 2 pin 0,1,2,3,4,5,6,7 In/Output 39 P31 Port 3 pin 1 Input 40 P36 Port 3 pin 6 Output

Table 1. 40-Pin DIP Pin Identification

Figure 3. 40-Pin DIP

PIN DESCRIPTION (Continued)

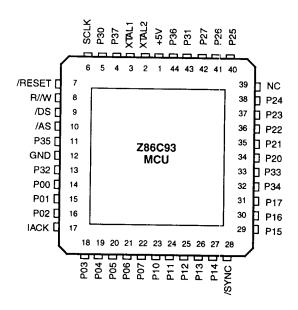


Figure 4. 44-Pin PLCC

Table 2. 44-Pin PLCC Pin Identification

No	Symbol	Function	Direction	No	Symbol	Function	Direction
1	V _{cc}	Power Supply	Input	14-16	P00-P02	Port 0 pin 0,1,2	In/Output
2	XTĂĽ2	Crystal, Osc. Clock	Output	17	IACK	Int. Acknowledge	Output
3	XTAL1	Crystal, Osc. Clock	Input	18-22	P03-P07	Port 0 pin 3,4,5,6,7	In/Output
4	P37	Port 3 pin 7	Output	23-27	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
5	P30	Port 3 pin 0	Input	28	/SYNC	Synchronize Pin	Output
6	SCLK	System Clock	Output	29-31	P15-P17	Port 1 pin 5,6,7	In/Output
7	/RESET	Reset	Input	32	P34	Port 3 pin 4	Output
8	R//W	Read/Write	Output	33	P33	Port 3 pin 3	Input
9	/DS	Data Strobe	Output	34-38	P20-P24	Port 2 pin 0,1,2,3,4	In/Output
10	/AS	Address Strobe	Output	39	N/C	Not Connected (20 MH	
11	P35	Port 3 pin 5	Output		M/AIT	WAIT (25 or 33 MHz)	Input
12	GND	Ground GND	Input	40-42	P25-P27	Port 2 pin 5,6,7	In/Output
13	P32	Port 3 pin 2	Input	43	P31	Port 3 pin 1	Input
				44	P36	Port 3 pin 6	Output

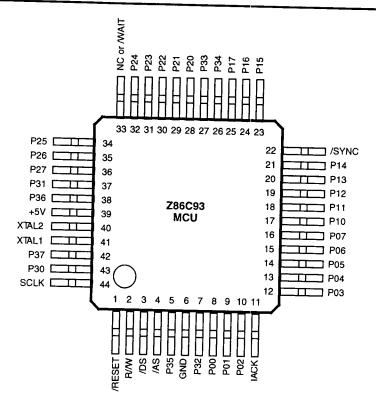


Figure 5. 44-Pin QFP

Table 3. 44-Pin QFP Pin Identification

No	Symbol	Function	Direction
1	/RESET	Reset	Input
2	R//W	Read/Write	Output
3	/DS	Data Strobe	Output
4	/AS	Address Strobe	Output
5	P35	Port 3 pin 5	Input
6	GND	Ground GND	Input
7	P32	Port 3 pin 2	Input
8-10	P00-P02	Port 0 pin 0,1,2	In/Output
11	IACK	Int. Acknowledge	Output
12-16	P03-P07	Port 0 pin 3,4,5,6,7	In/Output
17-21	P10-P14	Port 1 pin 0,1,2,3,4	In/Output
22	/SYNC	Synchronize Pin	Output
23-25	P15-P17	Port 1 pin 5,6,7	In/Output

No	Symbol	Function	Direction
26 27 28-32 33	P34 P33 P20-P24 N/C /WAIT	Port 3 pin 4 Port 3 pin 3 Port 2 pin 0,1,2,3,4 Not Connected (20 MHz WAIT (25 or 33 MHz)	Output Input In/Output Input Input
34-36	P25-P27	Port 2 pin 5,6,7	In/Output
37	P31	Port 3 pin 1	Input
38	P36	Port 3 pin 6	Output
39	V ₃₀	Power Supply	Input
40	XTAL2	Crystal, Osc. Clock	Output
41	XTAL1	Crystal, Osc. Clock	Input
42	P37	Port 3 pin 7	Output
43	P30	Port 3 pin 0	Input
44	SCLK	System Clock	Output

PIN FUNCTIONS (Continued)

Port 1. (P10-P17). Port 1 is an 8-bit, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports for interfacing external memory (Figure 8).

If more than 256 external locations are required, Port 0 must output the additional lines.

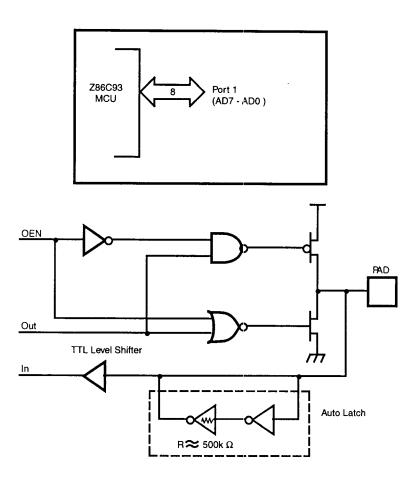


Figure 8. Port 1 Configuration

PIN FUNCTIONS (Continued)

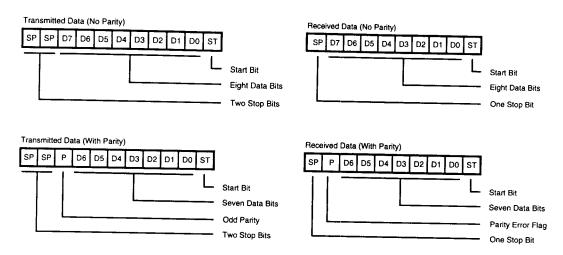


Figure 11. Serial Data Formats

ADDRESS SPACE

Program Memory. The Z86C93 can address up to 64 Kbytes of external program memory. Program execution begins at external location 000CH after a reset.

Data Memory. The Z96C93 can address up to 64 Kbytes of external data memory. External data memory is included with, or separated from, the external program memory

space. /DM, an optional I/O function that can be programmed to appear on pin P34 is used to distinguish between data and program memory space (Figure 12). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active Low) memory.

FUNCTIONAL DESCRIPTION

This section breaks down the Z86C93 into its main functional parts.

Multiply/Divide Unit

The Multiply/Divide unit describes the basic features, implementation details of the interface between the Z8 and the multiply/divide unit.

Basic features:

- 16-bit by 16-bit multiply with 32-bit product
- 32-bit by 16-bit divide with 16-bit quotient and 16-bit remainder
- Unsigned integer data format
- Simple interface to Z8

Interface to Z8. The following is a brief description of the register mapping in the multiply/divide unit and its interface to the Z8 (Figure 16).

The multiply/divide unit is interfaced like a peripheral. The only addressing mode available with the peripheral interface is register addressing. In other words, all of the operands are in the respective registers before a multiplication/division can start.

Register mapping. The registers used in the multiply/divide unit are mapped onto the expanded register file in Bank E. The exact register locations used are shown below.

REGISTER	ADDRESS
MREG0	(E) 00
MREG1	(E) 01
MREG2	(E) 02
MREG3	(E) 03
MREG4	(E) 04
MREG5	(E) 05
MDCON	(E) 06
GPR	(E) 14
GPR	(E) 15

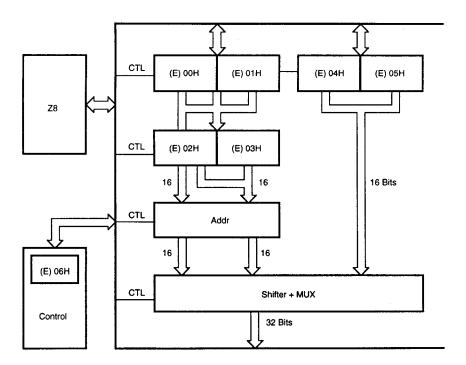


Figure 16. Multiply/Divide Unit Block Diagram

The counters are programmed to start, stop, restart to continue, or restart from the initial value. The counters can also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, but not the prescalers, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that is retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers are cascaded by connecting the T0 output to the input of T1. Either T0 or T1 can be outputted via P36.

The following are the enhancements made to the counter/ timer block on the Z86C93 (Figure 18):

- T0 counter length is extended to 16 bits. For example, T0 now has a 6-bit prescaler and 16-bit down counter.
- T1 counter length is extended to 16 bits. For example,
 T1 now has a 6-bit prescaler and 16-bit down counter.
- A new counter/timer T2 is added. T2 has a 4-bit prescaler and a 16-bit down counter with capture register.

These three counters are cascadable as shown in Table 6. The result is that T2 may be extendable to 32 bits and T1 extendable to 24 bits. Bits 1 and 0 (CAS1 AND CAS0) of the T2 Prescaler Register (PRE2) determine the counter length.

Table 6. Counter Length Configurations

CAS 1	CAS0	ТО	T1	T2
0	0	8	8	32
0	1	16	16	16
1	0	8	24	16
1	1	8	16	24

The controlling clock input to T2 is programmed to XTAL/2 or XTAL/8 (only when T2 counter length is 16 bits), which results in a resolution of 100 ns at an external XTAL clock speed of 20 MHz.

Capture Register. T2 has a 16-bit capture register associated with T2 HIGH BYTE and T2 LOW BYTE registers. The negative going transition on pin P33 enables the latching of the current T2 value (16 bits) into the capture register. The register mapping of the capture register is in Bank D (Figure 13). Note that the negative transition on P33 is capable of generating an interrupt. Also, the negative transition on P33 always latches the current T2 value into the capture register. There is no need for a control bit to enable/disable the latching; the capture register is read only.

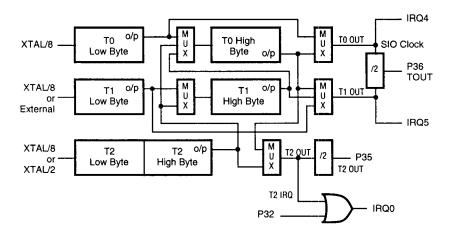


Figure 18. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Operation

Except for the programmable down counter length and clock input, T2 is identical to T0.

T0 and T1 retain all their features except that now they are extendable interims of the down-counter length.

The output of T2, under program control, goes to an output pin (P35). Also, the interrupt generated by T2 is ORed with the interrupt request generated by P32. Note that the service routine then has to poll the T2 flag bit and also clear it (Bit 7 of T2 Timer Mode Register).

On power up, T0 and T1 are configured in the 8-bit down counter length mode (to be compatible with Z86C91) and T2 is in the 32-bit mode with its output disabled (no interrupt is generated and T2 output DOES NOT go to port pin P35).

The UART uses T0 for generating the bit clock. This means, while using UART, T0 should be in 8-bit mode. So, while using the UART there are only two independent timer/counters.

The counters are configured in the following manner:

Timer	Mode	Byte
TO	8-bit	Low Byte (T0)
TO	16-bit	High Byte (TO) + Low Byte (TO)
T1	8-bit	Low Byte (T1)
T1	16-bit	High Byte (T1)+ Low Byte (T1)
T1	24-bit	High Byte (T0) + High Byte (T1) + Low Byte (T1)
T2	16-bit	High Byte (T2) + Low Byte (T2)
T2	24-bit	High Byte (T0) + High Byte (T2) + Low Byte (T2)
T2	32-bit	High Byte (T0) + High Byte (T1) + High Byte (T2) + Low Byte (T2)

Note that the T2 interrupt is logically 0Red with P32 to generate IRQ0.

The T2 Timer Mode register is shown in Figure 19. Upon reaching end of count, bit 7 of this register is set to one. This bit IS NOT reset in hardware and it has to be cleared by the interrupt service routine.

T2 interrogates the state of the Count Mode Bit (D2) once it has counted down to it's zero value. T2 then makes the decision to continue counting (Module N Mode) or stop (Single Pass Mode). Observe this functionality if attempting to modify the count mode prior to the end of count bit (D7) being set.

The register map of the new CTC registers is shown in Figure 13. To high byte and T1 high byte are at the same relative locations as their respective low bytes, but in a different register bank.

The T2 prescaler register is shown in Figure 19. Bits 1 and 0 of this register control the various cascade modes of the counters.

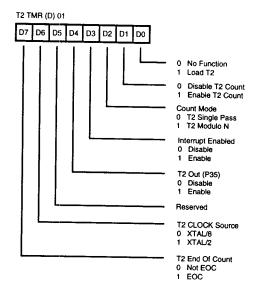


Figure 19. T2 Timer Mode Register (T2)

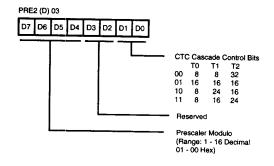


Figure 20. T2 Prescaler Register (PRE2)

Interrupts

The Z86C93 has six different interrupts from nine different sources. The interrupts are maskable and prioritized. The nine sources are divided as follow: four sources are claimed by Port 3 lines P30-P33, one in Serial Out, one in Serial In, and three in the counter/timers. The Interrupt Mask Register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. All Z86C93 interrupts are vectored through locations in the program memory. When an interrupt machine cycle is activated an interrupt request is granted. Thus, this disables all of the subsequent interrupts, save the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request.

To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service. Software initiated interrupts are supported by setting the appropriate bit in the Interrupt Request Register (IRQ).

Internal interrupt requests are sampled on the falling edge of the last cycle of every instruction. The interrupt request must be valid 5TpC before the falling edge of the last clock cycle of the currently executing instruction:

When the device samples a valid interrupt request, the next 48 (external) clock cycles are used to prioritize the interrupt, and push the two PC bytes and the FLAG register on the stack. The following nine cycles are used to fetch the interrupt vector from external memory. The first byte of the interrupt service routine is fetched beginning on the 58th TpC cycle following the internal sample point, which corresponds to the 63th TpC cycle following the external interrupt sample point.

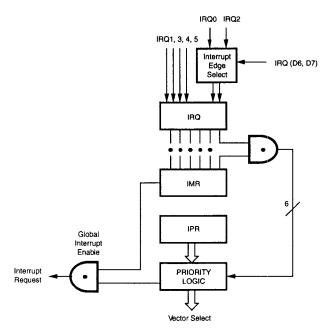


Figure 21. Interrupt Block Diagram

DC ELECTRICAL CHARACTERISTICS $V_{\text{CC}} = 3.3 V \pm 10\%$

Sym	Parameter	T _A = 0°C t Min	o +70°C Max	Typical at 25℃	Units	Conditions
	Max Input Voltage		7		V	I _{IN} 250 μA
н	Clock Input High Voltage	0.8 V _{cc}	V _{cc}		٧	Driven by External Clock Generator
L	Clock Input Low Voltage	-0.03	0.1xV _{cc}		٧	Driven by External Clock Generator
	Input High Voltage	$0.7xV_{cc}$	V _{cc}		V	,
	Input Low Voltage	-0.3	0.1xV _{cc}		٧	
н	Output High Voltge	1.8			٧	I _{DH} = -1.0 mA
i	Output High Voltge	V _{cc} - 100mV			V	$I_{0H}^{(H)} = -100 \mu A$
	Output Low Voltage	00	0.4		V	$I_{01} = +1.0 \text{ mA}$
1	Reset Input High Voltage	$0.8xV_{cc}$	V _{cc}		٧	o.
	Reset Input Low Voltage	-0.03	0.1xV _{cc}		V	
	Input Leakage	-2	2		μA	Test at OV, V _{cc}
	Output Leakage	-2	2		μA	Test at OV, V _{cc}
	Reset Input Current		-80		μA	$V_{RI} = 0V$
	Supply Current		30	20	mA	@ 25 MHz [1]
,	Stand By Current (HALT Mode)		12	8	mA	HALT Mode V _{IN} =0V, V _{CC} @ 25 MHz [1]
2	Stand By Current (HALT Mode)		8	1	μA	STOP Mode V _№ =0V, V _{CC} [1]
	Auto Latch Low Current	-10	10	5	μA	00

Note: [1] All inputs driven to 0V, $V_{\rm cc}$ and outputs floating.

DC ELECTRICAL CHARACTERISTICS $V_{cc} = 5.0V \pm 10\%$

Sym	Parameter	T _A ≃ 0°C to Min	+70°C Max	Typical at 25°C	Units	Conditions
	Max Input Voltage		7			l _{,ν} 250 μA
V_{ch}	Clock Input High Voltage	3.8	Vcc		٧	Driven by External Clock Generator
V _{ci}	Clock Input Low Voltage	-0.03	V _{cc} 0.8		V	Driven by External Clock Generator
V _{iH}	Input High Voltage	2.0	V _{cc}		٧	
V _{iL}	Input Low Voltage	-0.3	0.8		٧	
V _{OH}	Output High Voltge	2.4			V	I _a =-2.0 mA
OH OL BH	Output High Voltage \	√ _{cc} -100mV			٧	I _{он} =-2.0 mA I _{он} = -100 µA
OL	Output Low Voltage	•	0.4		٧	$I_{01}^{on} = +5 \text{ mA}$
/ _{RH}	Reset Input High Voltage	3.8	V _{cc}		٧	OL
V _{RI}	Reset Input Low Voltage	-0.03	0.8		٧	
IL.	Input Leakage	-2	2		μA	Test at OV, V _{cc}
OL.	Output Leakage	-2	2		μA	Test at 0V, V _{CC}
iŘ.	Reset Input Current		-80		μA	$V_{p_i} = 0V$
CC	Supply Current		55	35	mΑ	@ 33 MHz [1]
			40	25	m A	@ 25 MHz [1]
			30	20	mA	@ 20 MHz [1]
CC1	Standby Current (HALT Mod	e)	15	9	mA	HALT Mode V _{IN} = OV, V _{CC} @ 25 MHz [1]
			20	15		HALT Mode $V_{in}^{in} = 0V$, V_{cc}^{ic} @ 33 MHz [1]
			12	7	mΑ	HALT Mode V _{IN} = 0V, V _{CC} @ 20 MHz [1]
CC2	Standby Current (STOP Mod	le)	10	1	μA	STOP Mode $V_{IN} = OV$, V_{CC} [1]
AL.	Auto Latch Current	-16	16	5	μA	IN CC 1.1

Note: [1] All inputs driven to 0V, or $\rm \,V_{cc}$ and outputs floating.

AC CHARACTERISTICSExternal I/O or Memory Read/Write Timing Diagram

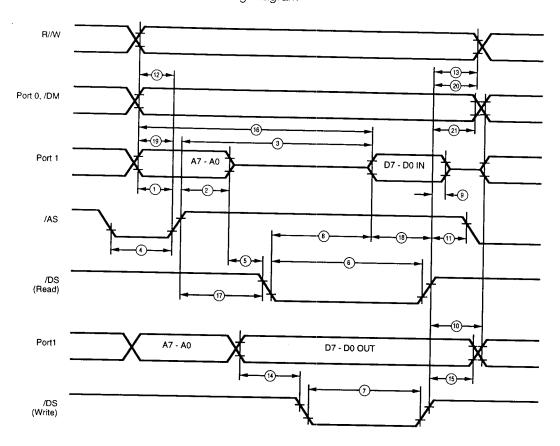


Figure 24. External I/O or Memory Read/Write Timing

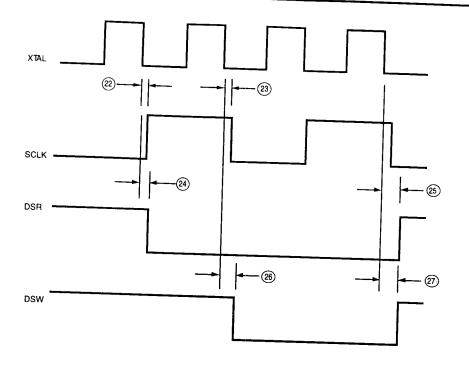


Figure 25. XTAL/SCLK To DSR and DSW Timing

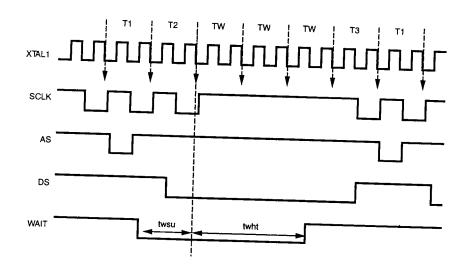


Figure 26. XTAL/SCLK To WAIT Timing (25 MHz Device Only)

Z8 CONTROL REGISTERS (Continued)

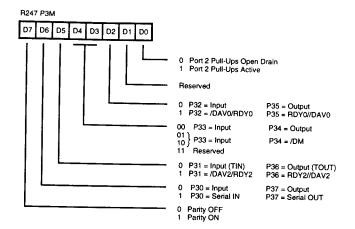


Figure 44. Port 3 Mode Register (F7H: Write Only)

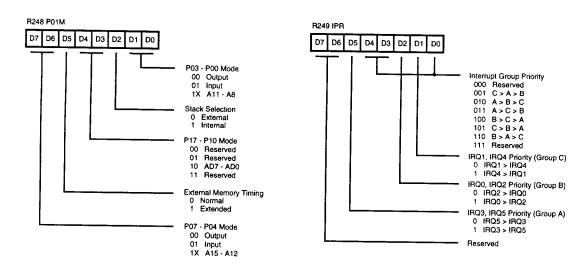


Figure 45. Ports 0 and 1 Mode Registers (F8H: Write Only)

Figure 46. Interrupt Priority Register (F9H: Write Only)

INSTRUCTION SET NOTATION

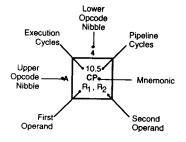
Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

Symbol	Meaning
IRR	Indirect register pair or indirect working- register pair address
Irr	Indirect working-register pair only
X	Indexed address
DA	Direct address
RA	Relative address
IM	Immediate
R	Register or working-register address
r	Working-register address only
IR	Indirect-register or indirect
	working-register address
Ir	Indirect working-register address only
RR	Register pair or working register pair address

 $\mbox{Symbols}$. The following symbols are used in describing the instruction set.

Symbol	Meaning
dst	Destination location or contents
src	Source location or contents
cc	Condition code
@	Indirect address prefix
SP	Stack Pointer
PC	Program Counter
FLAGS	Flag register (Control Register 252)
RP	Register Pointer (R253)
IMR	Interrupt mask register (R251)

Flags. Control register (R252) contains the following six flags:

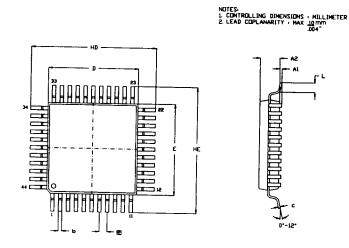

Symbol	Meaning
С	Carry flag
Z	Zero flag
S	Sign flag
V	Overflow flag
D	Decimal-adjust flag
Н	Half-carry flag
Affected flags a	ere indicated by:
0	Clear to zero
1	Set to one
*	Set to clear according to operation
-	Unaffected
X	Undefined

CONDITION CODES

Value Mnemonic		Meaning	Flags Set		
1000		Always True			
0111	С	Carry	C = 1		
1111	NC	No Carry	C = 0		
0110	Z	Zero	Z = 1		
1110	NZ	Not Zero	Z = 0		
1101	PL	Plus	S = 0		
0101	MI	Minus	S = 1		
0100	OV	Overflow	V = 1		
1100	NOV	No Overflow	V = 0		
0110 EQ		Equal	Z = 1		
1110	NE	Not Equal	Z = 0		
1001	GE	Greater Than or Equal	(S XOR V) = 0		
0001	LT	Less than	(S XOR V) = 1		
1010	GT	Greater Than	[Z OR (S XOR V)] = 0		
0010	LE	Less Than or Equal	[Z OR (S XOR V)] = 1		
1111	UGE	Unsigned Greater Than or Equal	C = 0		
0111	ULT	Unsigned Less Than	C = 1		
1011	UGT	Unsigned Greater Than	(C = 0 AND Z = 0) = 1		
0011	ULE	Unsigned Less Than or Equal	(C OR Z) = 1		
0000		Never True	(, -, · ·		

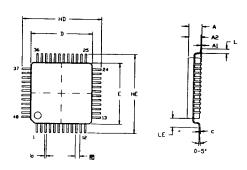
OPCODE MAP

								ι	ower Ni	bble (H	ex)						
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
	0	6.5 DEC R1	6.5 DEC IR1	6.5 ADD r1, r2	6.5 ADD r1, lr2	10.5 ADD R2, R1	10.5 ADD IR2, R1	10.5 ADD R1, IM	10.5 ADD IR1, IM	6.5 LD r1, R2	6.5 LD r2, R1	12/10.5 DJNZ r1, RA	12/10.0 JR cc, RA	6.5 LD	12.10.0 JP	6.5 INC	
	1	6.5 RLC R1	6.5 RLC IR1	6.5 ADC r1, r2	6.5 ADC r1, Ir2	10.5 ADC R2, R1	10.5 ADC IR2, R1	10.5 ADC R1, IM	10.5 ADC IR1, IM					r1, IM	∞, DA		-
	2	6.5 INC R1	6.5 INC	6.5 SUB r1, r2	6.5 SUB r1, Ir2	10.5 SUB R2, R1	10.5 SUB IR2, R1	10.5 SUB R1, IM	10.5 SUB IR1, IM								
	3	8.0 JP IRR1	6.1 SRP IM	6.5 SBC r1, r2	6.5 SBC r1, lr2	10.5 SBC R2, R1	10.5 SBC IR2, R1	10.5 SBC R1, IM	10.5 SBC								
	4	8.5 DA R1	8.5 DA IR1	6.5 OR r1, r2	6.5 OR r1, lr2	10.5 OR R2, R1	10.5 OR IR2, R1	10.5 OR R1, IM	10.5 OR								
	5	10.5 POP R1	10.5 POP IR1	6.5 AND r1, r2	6.5 AND r1, lr2	10.5 AND R2, R1	10.5 AND IR2, R1	10.5 AND R1, IM	IR1, IM 10.5 AND IR1, IM								
(xe	6	6.5 COM R1	6.5 COM IR1	6.5 TCM r1, r2	6.5 TCM r1, ir2	10.5 TCM R2, R1	10.5 TCM IR2, R1	10.5 TCM R1, IM	10.5 TCM IR1, IM								6.0 STOP
Upper Nibble (Hex)	7	10/12.1 PUSH R2	12/14.1 PUSH IR2	6.5 TM r1, r2	6.5 TM r1, lr2	10.5 TM R2, R1	10.5 TM	10.5 TM F1, IM	10.5 TM IR1, IM								7.0 HALT
Jpper Ni	8	10.5 DECW RR1	10.5 DECW IR1	12.0 LDE r1, lrr2	18.0 LDEI lr1, lrr2												6.1 DI
_	9	6.5 RL R1	6.5 RL IR1	12.0 LDE r2, lrr1	18.0 LDEI lr2, lrr1												6.1 EI
	A	10.5 INCW RR1	10.5 INCW IR1	6.5 CP r1, r2	6.5 CP r1, lr2	10.5 CP R2, R1	10.5 CP IR2, R1	10.5 CP R1, IM	10.5 CP IR1, IM								14.0 RET
ı	В	6.5 CLR R1	6.5 CLR IR1	6.5 XOR r1, r2	6.5 XOR r1, lr2	10.5 XOR R2, R1	10.5 XOR IR2, R1	10.5 XOR	10.5 XOR IR1, IM								16.0 IRET
•	2	6.5 RAC R1	6.5 RRC IR1	12.0 LDC r1, lrr2	18.0 LDCI lr1, lrr2				10.5 LD r1,x,R2								6.5 RCF
ı	,	6.5 SRA R1	6.5 SRA IR1	12.0 LDC r2, lrr1	18.0 LDCI Ir2, Irr1	20.0 CALL* IRR1		20.0 CALL	10.5 LD r2,x,R1								6.5 SCF
ı	=	6.5 RR R1	6.5 RR IR1		6.5 LD r1, IR2	10.5 L D R2, R1	10.5 LD R2, R1	10.5 LD	10.5 LD								6.5 CCF
ı	•	8.5 SWAP R1	8.5 SWAP IR1		6.5 LD lr1, r2		10.5 LD R2, IR1										6.0 NOP
	•											\Rightarrow			\Rightarrow		
			2				3	Byt	es per In	structio	on	2			3	1	


Legend: R = 8-bit address r = 4-bit address R_1 or $r_2 = D$ st address R_1 or $r_2 = S$ rc address

Sequence: Opcode, First Operand, Second Operand

Note: The blank areas are not defined.


* 2-byte instruction appears as a 3-byte instruction

PACKAGE INFORMATION (Continued)

SYMBOL	MILLI	METER	INCH		
	MIN	MAX	NIM	HAX	
Al	0.05	0.25	.002	.010	
SA	2.05	2.25	.081	.089	
b	0.25 -	0.45	.010	.018	
c	0.13	0.20	.005	.008	
HD	13.70	14.30	.539	.563	
D	9.90	10.10	.390	.398	
HE	13.70	14.30	.539	.563	
E	9.90	10.10	.390	.398	
8	0.80	TYP	.031 TYP		
L .	0.60	1.20	024	047	

44-Pin QFP Package Diagram

ZYMBOL	HILLI	METER	INCH			
STRIBLE.	MIN	MAX	MIN	MAX		
Α	1.35	1.60	.053	.063		
A1	0.05	0.20	.002	.008		
A2	1.30	1.50	.051	.059		
b	0.15	0.26 `	.006	.010		
c	0.10	0.18	.004	.007		
HB	8.60	9.40	.339	.370		
D	6.90	7.10	.272	.280		
HE	8.60	9.40	.339	.370		
Ε	6.90	7.10	.272	.280		
8	0.50	TYP	.020 TYP			
L	0.30	0.70	.012	.028		
LE	0.90	1.10	.035	.043		

1. CONTROLLING DIMENSIONS - MI 2. MAX COPLANARITY : 10mm

ORDERING INFORMATION

Z86C93

20 MHz

 44-pin PLCC
 44-pin QFP
 40-pin DIP
 48-pin VQFP

 Z86C9320VSC
 Z86C9320FSC
 Z86C9320PSC
 Z80C9320ASC

25 MHz

 44-pin PLCC
 44-pin QFP
 40-pin DIP
 48-pin VQFP

 Z86C9325VSC
 Z86C9325FSC
 Z86C9325PSC
 Z80C9325ASC

33 MHz

 44-pin PLCC
 44-pin QFP
 40-pin DIP
 48-pin VQFP

 Z86C9333VSC
 Z86C9333FSC
 Z86C9333PSC
 Z80C9333ASC

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

V = Plastic Leaded Chip Carrier P = Plastic Dual In Line Package

Longer Lead Time

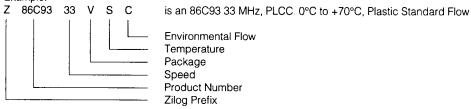
F = Plastic Quad Flat Pack A = Very Small Quad Flat Pack

Temperature

 $S = 0^{\circ}C$ to $+70^{\circ}C$

Speed

20 = 20 MHz


25 = 25 MHz

33 = 33 MHz

Environmental

C = Standard Flow

Example:

