

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

_	
Details	
Product Status	Obsolete
Core Processor	Z8
Core Size	8-Bit
Speed	33MHz
Connectivity	EBI/EMI, UART/USART
Peripherals	-
Number of I/O	24
Program Memory Size	-
Program Memory Type	ROMless
EEPROM Size	-
RAM Size	236 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86c9333fsc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PRODUCT SPECIFICATION

Z86C93

CMOS Z8® MULTIPLY/DIVIDE MICROCONTROLLER

FEATURES

- Complete microcontroller, up to 24 I/O lines, and up to 64 Kbytes of addressable external space each for program and data memory.
- 16-bit x 16-bit hardwired multiplier with 32-bit product in 17 clock cycles.
- 32-bit x 16-bit hardwired divider with 16-bit quotient and 16-bit remainder in 20 clock cycles.
- 256-byte register file, including 236 general-purpose registers, up to three I/O port registers and 16 status and control registers.
- 17-byte Expanded Register File, including two generalpurpose registers and 15 status and control registers.
- Vectored, priority interrupts for I/O, counter/timers and UART.
- On-chip oscillator that accepts crystal or external clock drive.

- Two 16-bit counter timers with 6-bit prescalers.
- Third 16-bit counter/timer with 4-bit prescaler, one capture register and a fast decrement mode.
- Register Pointer for short, fast instructions that can access any one of the sixteen working register groups.
- Additional emulation signals SCLK, IACK, and /SYNC are made available.
- Two low power standby modes, STOP and HALT
- Full-duplex UART
- 3.3 ± 10% volt operation at 25 MHz
- \blacksquare 5.0 \pm 10% volt operation at 20, 25 and 33 MHz

GENERAL DESCRIPTION

The Z86C93 is a CMOS ROMless Z8 microcontroller enhanced with a hardwired 16-bit x 16-bit multiplier and 32-bit/16-bit divider and three 16-bit counter timers (Figure 1). A capture register and a fast decrement mode is also provided. It is offered in 40-pin PDIP, 44-pin PLCC, 44-pin QFP and 48-pin VQFP (Figures 2, 3, 4, 5 and 6). Besides the four additional signals (SCLK, IACK, /SYNC and /WAIT), the Z86C93 is compatible with the Z86C91, yet it offers a much more powerful mathematical capability.

The Z86C93 provides up to 16 output address lines permitting an address space of up to 64 Kbytes of data and program memory each. Eight address outputs (AD7-AD0) are provided by a multiplexed, 8-bit, Address/Data bus. The remaining 8 bits can be provided by the software configuration of Port 0 to output address bits A15-A8.

PIN DESCRIPTION

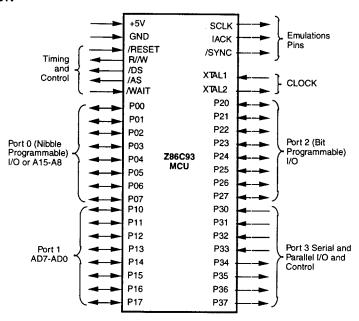
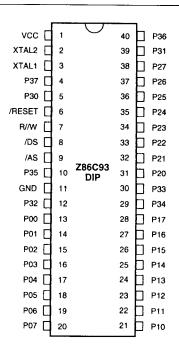



Figure 2. Pin Functions

Pin# Symbol **Function** Direction V_{cc} XTAL1 1 **Power Supply** Input 2 Crystal, Oscillator Clock Input 3 XTAL2 Crystal, Oscillator Clock Output 4 P37 Port 3 pin 7 Output 5 P30 Port 3 pin 0 Input 6 /RESET Reset Input 7 R//W Read/Write Output 8 /DS Data Strobe Output 9 /AS Address Strobe Output 10 P35 Port 3 pin 5 Output 11 GND Ground, GND Input 12 P32 Port 3 pin 2 Input 13-20 P00-P07 Port 0 pin 0,1,2,3,4,5,6,7 In/Output 21-28 P10-P17 Port 1 pin 0,1,2,3,4,5,6,7 In/Output 29 P34 Port 3 pin 4 Output 30 P33 Port 3 pin 3 Input 31-38 P20-P27 Port 2 pin 0,1,2,3,4,5,6,7 In/Output 39 P31 Port 3 pin 1 Input 40 P36 Port 3 pin 6 Output

Table 1. 40-Pin DIP Pin Identification

Figure 3. 40-Pin DIP

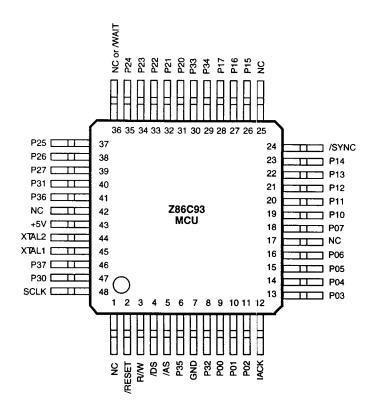


Figure 6. 48-Pin VQFP Package

Table 4. 48-Pin VQFP Pin Identification

No	Symbol	Function	Direction	No	Symbol	Function	Direction
1	N/C	Not Connected	Input	25	N/C	Not Connected	Input
2	/RESET	Reset	Input	26-28	P15-P17	Port 1 pin 5,6,7	In/Output
3	R/W	Read/Write	Output	29	F34	Port 3 pin 4	Output
4	/DS	Data Strobe	Output	30	P33	Port 3 pin 33	Input
5	/AS	Address Strobe	Output	31-35	P20-P24	Port 2 pin 0,1,2,3,4	In/Output
6	P35	Port 3 pin 5	Input	36	N/C	Not Connected (20 MH	lz)Input
7	GND	Ground GND	Input		M/AIT	WAIT (25 or 33 MHz)	Input
8	P32	Port 3 pin 2	Input	37-39	P25-P27	Port 2 pin 5,6,7	In/Output
9-11	P00-P02	Port 0 pin 3,4,5,6	In/Output	40	F31	Port 3 pin 1	Input
12	IACK	Int. Acknowledge	Output	41	P36	Port 3 pin 6	Output
13-16	P03-P06	Port O pin 2.4 5.6	In/Output	42	N/C	Not Connected	Input
13-16	N/C	Port 0 pin 3,4,5,6 Not Connected	Input	43	V _{cc}	Power Supply	Input
18	P07	Port 0 pin 7	In/Output	44	XTAL2	Crystal, Osc. Clock	Output
19-23	P10-P14	Port 1 pin 0,1,2,3,4	In/Output	45	XTAL1	Crystal, Osc. Clock	Input
24	/SYNC	Synchronize Pin	Output	46	P37	Port 3 pin 7	Output
	JOTING	Synchionize Fin	Output	47	P30	Port 3 pin 0	Input
						,	1
				48	SCLK	System Clock	Output

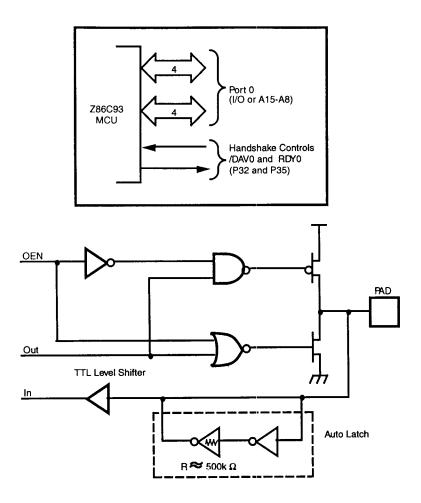


Figure 7. Port 0 Configuration

PIN FUNCTIONS (Continued)

Port 1. (P10-P17). Port 1 is an 8-bit, TTL compatible port. It has multiplexed Address (A7-A0) and Data (D7-D0) ports for interfacing external memory (Figure 8).

If more than 256 external locations are required, Port 0 must output the additional lines.

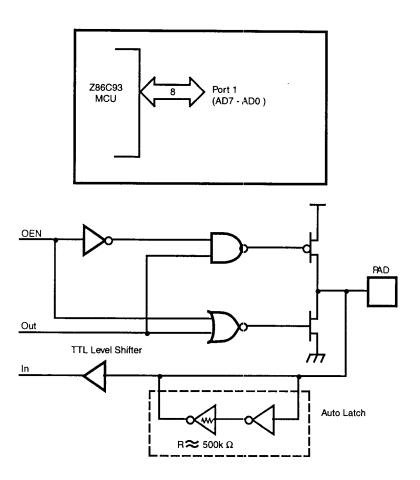


Figure 8. Port 1 Configuration

PIN FUNCTIONS (Continued)

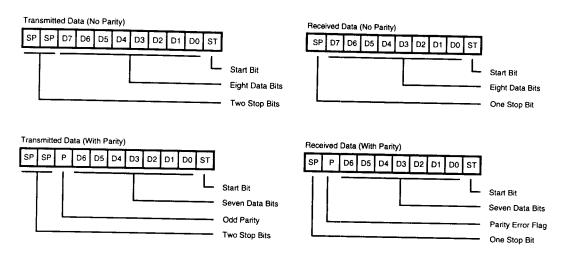


Figure 11. Serial Data Formats

ADDRESS SPACE

Program Memory. The Z86C93 can address up to 64 Kbytes of external program memory. Program execution begins at external location 000CH after a reset.

Data Memory. The Z96C93 can address up to 64 Kbytes of external data memory. External data memory is included with, or separated from, the external program memory

space. /DM, an optional I/O function that can be programmed to appear on pin P34 is used to distinguish between data and program memory space (Figure 12). The state of the /DM signal is controlled by the type instruction being executed. An LDC opcode references PROGRAM (/DM inactive) memory, and an LDE instruction references DATA (/DM active Low) memory.

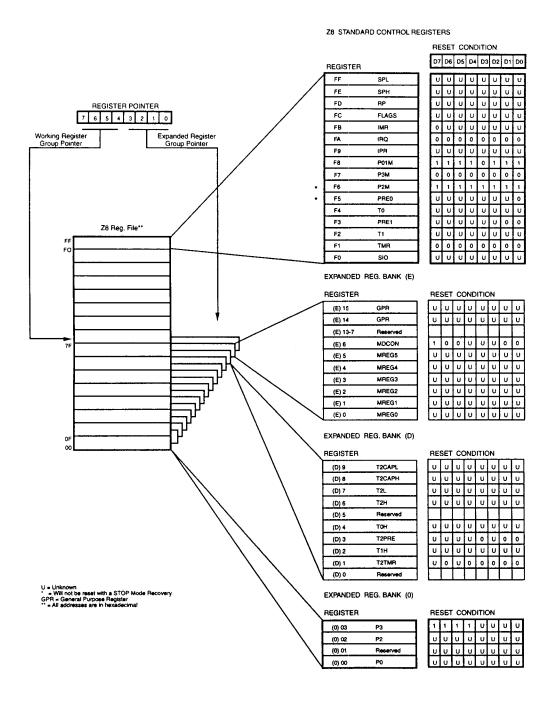


Figure 13. Register File

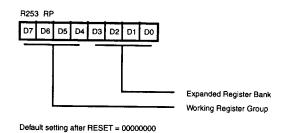


Figure 14. Register Pointer Register

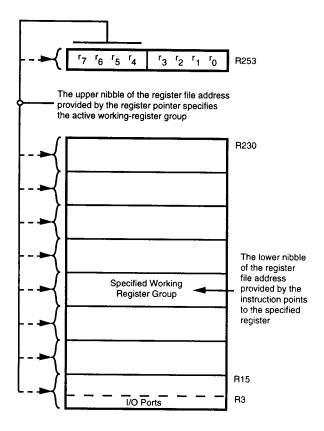


Figure 15. Register Pointer

FUNCTIONAL DESCRIPTION

This section breaks down the Z86C93 into its main functional parts.

Multiply/Divide Unit

The Multiply/Divide unit describes the basic features, implementation details of the interface between the Z8 and the multiply/divide unit.

Basic features:

- 16-bit by 16-bit multiply with 32-bit product
- 32-bit by 16-bit divide with 16-bit quotient and 16-bit remainder
- Unsigned integer data format
- Simple interface to Z8

Interface to Z8. The following is a brief description of the register mapping in the multiply/divide unit and its interface to the Z8 (Figure 16).

The multiply/divide unit is interfaced like a peripheral. The only addressing mode available with the peripheral interface is register addressing. In other words, all of the operands are in the respective registers before a multiplication/division can start.

Register mapping. The registers used in the multiply/divide unit are mapped onto the expanded register file in Bank E. The exact register locations used are shown below.

REGISTER	ADDRESS
MREG0	(E) 00
MREG1	(E) 01
MREG2	(E) 02
MREG3	(E) 03
MREG4	(E) 04
MREG5	(E) 05
MDCON	(E) 06
GPR	(E) 14
GPR	(E) 15

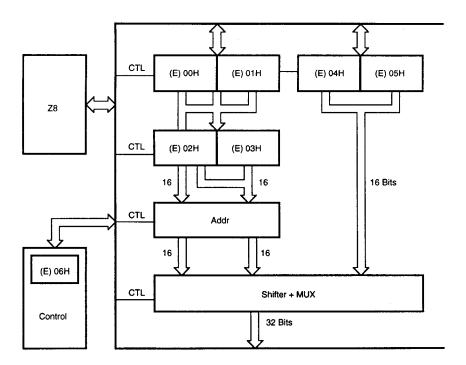


Figure 16. Multiply/Divide Unit Block Diagram

Name	Source	Vector Location	Comments				
IRQ 0	/DAV 0, P32, T2	0, 1	External (P32), Programmable Rise or Fall Edge Trigge				
IRQ 1,	P33	2, 3	External (P33), Fall Edge Triggered				
IRQ 2	/DAV 2, P31, T _{IN}	4, 5	External (P31), Programmable Rise or Fall Edge Trigge				
IRQ 3	P30, Serial In	6, 7	External (P30), Fall Edge Triggered				
IRQ 4	T0, Serial Out	8, 9	Internal				
IRQ 5	TI	10, 11	Internal				

Clock

The Z86C93 on-chip oscillator has a high-gain, parallel-resonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1=Input, XTAL2=Output). The external clock levels

are not TTL. The crystal should be AT cut, 1 MHz to 25 MHz max, and series resistance (RS) is less than or equal to 100 Ohms. The crystal should be connected across XTAL1 and XTAL2 using the recommended capacitors (10 pF<CL<100 pF) from each pin to ground (Figure 20).

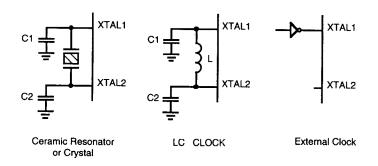


Figure 22. Oscillator Configuration

Power Down Modes

HALT. Turns off the internal CPU clock but not the XTAL oscillation. The counter/timers and the external interrupts IRQ0, IRQ1, IRQ2 and IRQ3 remain active. The devices are recovered by interrupts, either externally or internally generated. During HALT mode, /DS, /AS and R/W are HIGH. The outputs retain their preview value, and the inputs are floating.

STOP. This instruction turns off the internal clock and external crystal oscillation and reduces the standby current to 10 μ A or less. The STOP mode is terminated by a /RESET, which causes the processor to restart the application program at address 000CH.

In order to enter STOP (or HALT) mode, it is necessary to first flush the instruction pipeline to avoid suspending execution in mid-instruction. To do this, the user executes a NOP (opcode=OFFH) immediately before the appropriate sleep instruction, i.e.:

FF NOP ; clear the pipeline 6F STOP ; enter STOP mode

FF NOP ; clear the pipeline 7F HALT ; enter HALT mode

ABSOLUTE MAXIMUM RATINGS

Symbol	Description	Min	Мах	Units
V _{cc} T _{stg} T ₄	Supply Voltage* Storage Temp Oper Ambient Temp	-0.3 -65 +	+7.0 +150 +	V C C

- Voltages on all pins with respect to GND.
- † See Ordering Information

Stress greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability.

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to GND. Positive current flows into the referenced pin Test Load Diagram (Figure 23).

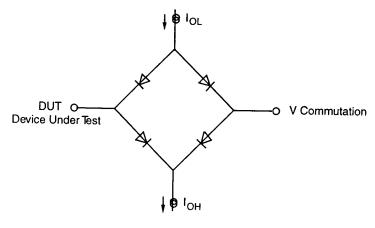


Figure 23. Test Load Diagram

DC ELECTRICAL CHARACTERISTICS $V_{\text{CC}} = 3.3 V \pm 10\%$

Sym	Parameter	T _A = 0°C t Min	o +70°C Max	Typical at 25℃	Units	Conditions
	Max Input Voltage		7		V	I _{IN} 250 μA
н	Clock Input High Voltage	0.8 V _{cc}	V _{cc}		٧	Driven by External Clock Generator
L	Clock Input Low Voltage	-0.03	0.1xV _{cc}		٧	Driven by External Clock Generator
	Input High Voltage	$0.7xV_{cc}$	V _{cc}		V	,
	Input Low Voltage	-0.3	0.1xV _{cc}		٧	
н	Output High Voltge	1.8			٧	I _{DH} = -1.0 mA
i	Output High Voltge	V _{cc} - 100mV			V	$I_{0H}^{(H)} = -100 \mu A$
	Output Low Voltage	00	0.4		V	$I_{01} = +1.0 \text{ mA}$
1	Reset Input High Voltage	$0.8xV_{cc}$	V _{cc}		٧	o.
	Reset Input Low Voltage	-0.03	0.1xV _{cc}		V	
	Input Leakage	-2	2		μA	Test at OV, V _{cc}
	Output Leakage	-2	2		μA	Test at OV, V _{cc}
	Reset Input Current		-80		μA	$V_{RI} = 0V$
	Supply Current		30	20	mA	@ 25 MHz [1]
,	Stand By Current (HALT Mode)		12	8	mA	HALT Mode V _{IN} =0V, V _{CC} @ 25 MHz [1]
2	Stand By Current (HALT Mode)		8	1	μA	STOP Mode V _№ =0V, V _{CC} [1]
	Auto Latch Low Current	-10	10	5	μA	

Note: [1] All inputs driven to 0V, $V_{\rm cc}$ and outputs floating.

Z8 CONTROL REGISTERS

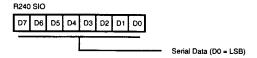


Figure 37. Serial I/O Register (F0H: Read/Write)

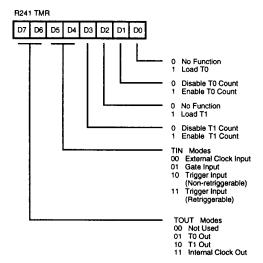


Figure 38. Timer Mode Register (F1H: Read/Write)

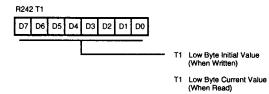


Figure 39. Counter/Timer 1 Register (F2H: Read/Write)

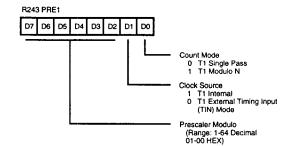


Figure 40. Prescaler 1 Register (F3H: Write Only)

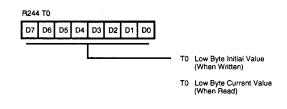


Figure 41. Counter/Timer 0 Register (F4H: Read/Write)

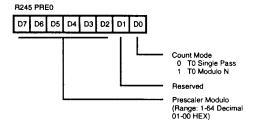


Figure 42. Prescaler 0 Register (F5H: Write Only)

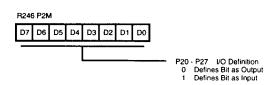
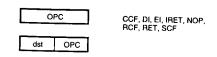
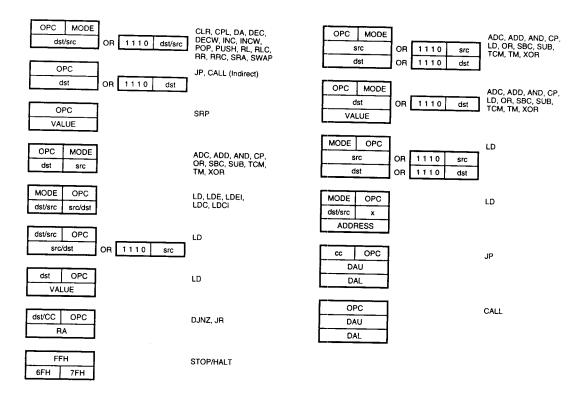




Figure 43. Port 2 Mode Register (F6H: Write Only)

INSTRUCTION FORMATS

One-Byte Instructions

Two-Byte Instructions

Three-Byte Instructions

INSTRUCTION SUMMARY

Note: Assignment of a value is indicated by the symbol " \leftarrow ". For example:

notation "addr (n)" is used to refer to bit (n) of a given operand location. For example:

dst ← dst + src

dst (7)

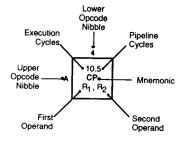
indicates that the source data is added to the destination data and the result is stored in the destination location. The

refers to bit 7 of the destination operand.

INSTRUCTION SUMMARY (Continued)

Instruction and Operation	M	ddress ode st src		ode (Hex)	F	Flag Affe	cte			D	Н
NOP			FF		-	-	-	-		•	-
OR dst, src dst←dst OR src	†	· · · · · ·	4[]		-	*		: () .		_
POP dst dst←@SP; SP←SP + 1	R		50 51	<u> </u>	-	-	-	-			-
PUSH src SP←SP - 1; @SP←src		R IR	70 71	<u> </u>	-	-	-	-	-		_
RCF C←0			CF	·	0	-	-	-	-		-
RET PC←@SP; SP←SP + 2		.,	AF	<u>.</u>	-	-	-	-	-		_
RL dst	R IR		90 91		*	*	*	*	-	•	-
RLC dst	R IR		10 11		*	*	*	*	-	-	- -
RR dst	R IR		E0 E1	:	*	*	*	*	-	-	_
RRC dst	R IR		C0 C1	:	*	*	*	*	-	-	-
SBC dst, src dst←dst←src←C	†		3[]		k	*	*	*	1	k	<
SCF C←1			DF	1	l	-	-	•	-	-	_
SRA dst	R IR		D0 D1	k	k	*	*	0	-	-	_
SRP src RP←src		lm .	31	-		-	-	-	•	-	-

Instruction and Operation	Address Mode	Opcode Byte (Hex)		ag:	s cted	1		_
	dst src		С	Z	S	٧	D	Н
STOP		6F	-	-		-	-	-
SUB dst, src dst←dst←src	†	2[]	*	*	*	*	1	*
SWAP dst	R IR	F0 F1	X	*	*	X	-	-
TCM dst, src (NOT dst) AND src	†	6[]	-	*	*	0	-	-
TM dst, src dst AND src	†	7[]	-	*	*	0	-	-
XOR dst, src dst←dst XOR src	t	B[]	-	*	*	0	-	•

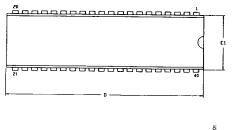

† These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a '[]' in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

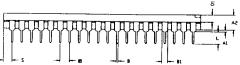
For example, the opcode of an ADC instruction using the addressing modes ${\bf r}$ (destination) and ${\bf lr}$ (source) is 13.

Addre dst	ss Mode src	Lower Opcode Nibble
r	r	[2]
r	Ir	[3]
R	R	[4]
R	IR	[5]
R	IM	[6]
IR	IM	[7]

OPCODE MAP

								ι	ower Ni	bble (H	ex)						
		0	1	2	3	4	5	6	7	8	9	A	В	С	D	Ε	F
	0	6.5 DEC R1	6.5 DEC IR1	6.5 ADD r1, r2	6.5 ADD r1, lr2	10.5 ADD R2, R1	10.5 ADD IR2, R1	10.5 ADD R1, IM	10.5 ADD IR1, IM	6.5 LD r1. R2	6.5 LD r2, R1	12/10.5 DJNZ r1, RA	12/10.0 JR cc, RA	6.5 LD	12.10.0 JP	6.5 INC	
	1	6.5 RLC R1	6.5 RLC IR1	6.5 ADC r1, r2	6.5 ADC r1, Ir2	10.5 ADC R2, R1	10.5 ADC IR2, R1	10.5 ADC R1, IM	10.5 ADC IR1, IM				١	r1, IM	∞, DA		-
	2	6.5 INC R1	6.5 INC IR1	6.5 SUB r1, r2	6.5 SUB r1, Ir2	10.5 SUB R2, R1	10.5 SUB IR2, R1	10.5 SUB R1, IM	10.5 SUB IR1, IM								
	3	8.0 JP IRR1	6.1 SRP	6.5 SBC r1, r2	6.5 SBC r1, lr2	10.5 SBC R2, R1	10.5 SBC IR2, R1	10.5 SBC R1, IM	10.5 SBC								
	4	8.5 DA R1	8.5 DA IR1	6.5 OR r1, r2	6.5 OR r1, lr2	10.5 OR R2, R1	10.5 OR IR2, R1	10.5 OR R1, IM	10.5 OR								
	5	10.5 POP R1	10.5 POP IR1	6.5 AND r1, r2	6.5 AND r1, lr2	10.5 AND R2, R1	10.5 AND IR2, R1	10.5 AND R1, IM	IR1, IM 10.5 AND IR1, IM								
(xe	6	6.5 COM R1	6.5 COM IR1	6.5 TCM r1, r2	6.5 TCM r1, ir2	10.5 TCM R2, R1	10.5 TCM IR2, R1	10.5 TCM R1, IM	10.5 TCM IR1, IM								6.0 STOP
Upper Nibble (Hex)	7	10/12.1 PUSH R2	12/14.1 PUSH IR2	6.5 TM r1, r2	6.5 TM r1, Ir2	10.5 TM R2, R1	10.5 TM	10.5 TM F1, IM	10.5 TM IR1, IM								7.0 HALT
pper Ni	8	10.5 DECW RR1	10.5 DECW IR1	12.0 LDE r1, lrr2	18.0 LDEI Ir1, Irr2			,									6.1 Dt
_	9	6.5 RL R1	6.5 RL IR1	12.0 LDE r2, irr1	18.0 LDEI Ir2, Irr1												6.1 EI
	A	10.5 INCW RR1	10.5 INCW IR1	6.5 CP r1, r2	6.5 CP r1, lr2	10.5 CP R2, R1	10.5 CP IR2, R1	10.5 CP R1, IM	10.5 CP IR1, IM								14.0 RET
	В	6.5 CLR R1	6.5 CLR IR1	6.5 XOR r1, r2	6.5 XOR r1, lr2	10.5 XOR R2, R1	10.5 XOR IR2, R1	10.5 XOR	10.5 XOR IR1, IM								16.0 IRET
1	С	6.5 RAC R1	6.5 RRC IR1	12.0 LDC r1, lrr2	18.0 LDCI lr1, lrr2				10.5 LD r1,x,R2								6.5 RCF
1	D	6.5 SRA R1	6.5 SRA IR1	12.0 LDC r2, lrr1	18.0 LDCI lr2, lrr1	20.0 CALL* IRR1		20.0 CALL	10.5 LD r2,x,R1								6.5 SCF
ı	Ē	6.5 RR R1	6.5 RR IR1		6.5 LD r1, IR2	10.5 LD R2, R1	10.5 LD R2, R1	10.5 LD	10.5 LD								6.5 CCF
ı	F	8.5 SWAP R1	8.5 SWAP IR1		6.5 LD lr1, r2		10.5 LD R2, IR1										6.0 NOP
	•											\Rightarrow			\Rightarrow		
			2				3	Byt	es per In	structio	on	2			3	1	

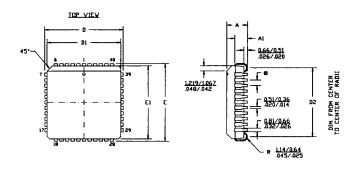

Legend: R = 8-bit address r = 4-bit address R_1 or $r_2 = D$ st address R_1 or $r_2 = S$ rc address


Sequence: Opcode, First Operand, Second Operand

Note: The blank areas are not defined.

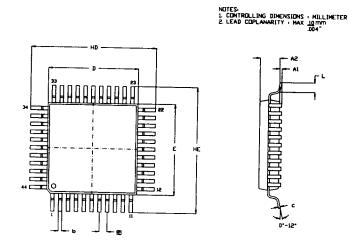
* 2-byte instruction appears as a 3-byte instruction

PACKAGE INFORMATION

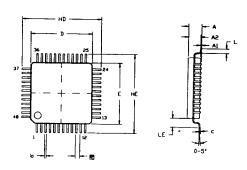


ZAMBOF	HILLI	METER	11	VCH
	MEN	MAX	MIN	MAX
Al	0.51	0.81	050	.032
42	3.25	3.43	128	135
В	0.38	0.53	.015	150
Bi	1.02	1.52	.040	.060
C	0.63	0.38	.009	015
D	52.07	52.58	2.050	2.070
ε	15.24	15.75	.600	.620
£1	13.59	14.22	.535	.560
	2.54	TYP	.100	TYP
eA.	15.49	16.51	.610	.650
L	3.18	3.81	125	150
. D1	1.52	1.91	.060	.075
2	1.52	2 2 9	.060	090

CONTROLLING DIMENSIONS : INCH


40-Pin DIP Package Diagram

JOBMYZ	HILLI	METER	INCH			
311,000	MIN	MAX	MIN	MAX		
A	4.27	4.57	.168	.180		
Al	2.67	2.92	.105	.115		
B/E	17.40	17.65	.685	.695		
DI/EI	16.51	16.66	.650	.656		
D2	15.24	16.00	.600	.630		
8	. 1.27	TYP	.050	TYP		


44-Pin PLCC Package Diagram

PACKAGE INFORMATION (Continued)

SYMBOL	MILLIMETER		INCH	
	MIN	MAX	NIM	MAX
Al	0.05	0.25	.002	.010
SA	2.05	2.25	.081	.089
ь	0.25 -	0.45	.010	.018
c	0.13	0.20	.005	.008
HD	13.70	14.30	.539	.563
D	9.90	10.10	.390	.398
HE	13.70	14.30	.539	.563
E	9.90	10.10	.390	.398
8	0.80 TYP		.031	TYP
L .	0.60	1.20	024	047

44-Pin QFP Package Diagram

SYMBOL.	HILLIMETER		INCH	
	MIN	MAX	MIN	MAX
Α	1.35	1.60	.053	.063
A1	0.05	0.20	.002	.008
A2	1.30	1.50	.051	.059
b	0.15	0.26 `	.006	.010
c	0.10	0.18	.004	.007
HB	8.60	9.40	.339	.370
D	6.90	7.10	.272	.280
HE	8.60	9.40	.339	.370
Ε	6.90	7.10	.272	.280
8	0.50 TYP		.020 TYP	
L	0.30	0.70	.012	.028
LE	0.90	1.10	.035	.043

1. CONTROLLING DIMENSIONS - MI 2. MAX COPLANARITY : 10mm

Notes:			

ZILOG DOMESTIC SALES OFFICES AND TECHNICAL CENTERS

CALIFORNIA Agoura 818-707-2160 Irvine714-453-9701 COLORADO **FLORIDA** Largo813-585-2533 **GEORGIA** ILLINOIS Schaumburg708-517-8080 **MINNESOTA** NEW HAMPSHIRE OHIO OREGON Portland503-274-6250 **PENNSYLVANIA** Ambler.....215-653-0230 **TEXAS** WASHINGTON

INTERNATIONAL SALES OFFICES

CANIADA

Toronto	416-673-0634
GERMANY Munich Sömmerda	49-8967-2045 49-3634-23906
JAPAN Tokyo	81-3-3587-0528
HONG KONG Kowloon	852-7238979
KOREA Seoul	82-2-577-3272
SINGAPORE Singapore	65-2357155
TAIWAN Taipei	886-2-741-3125
UNITED KINGDOM Maidenhead	44-628-392-00

© 1992 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of mer-

chantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 Telex 910-338-7621 FAX 408 370-8056